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Abstract

We study the existence of a directed Hamilton cycle in random digraphs with m
edges where we condition on minimum in- and out-degree at least one. Denote such a

random graph by D
(δ≥1)
n,m . We prove that if m = n

2 (log n+ 2 log log n+ cn) then

lim
n→∞

P(D(δ≥1)
n,m is Hamiltonian) =


0 cn → −∞.

e−e−c/4 cn → c.

1 cn →∞.

1 Introduction

Let Dn,m denote the random digraph with vertex set [n] and m random edges. McDiarmid
[15] proved that if m = n(log n + log log n + ω) where ω → ∞ then Dn,m is Hamiltonian
w.h.p. Subsequently, Frieze [9] sharpened this and proved that if m = n(log n+ cn)

lim
n→∞

P(Dn,m is Hamiltonian) =


0 cn → −∞.

e−2e−c
cn → c.

1 cn →∞.

(1)
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The R.H.S. of (1) is the limiting probability that min {δ−, δ+} ≥ 1, where δ− (resp. δ+)
denotes the minimum in-degree (resp. out-degree) of Dn,m. In this paper we study the effect

of conditioning on min {δ−, δ+} being at least one. So, let D(δ≥1)
n,m denote the set of digraphs

with vertex set [n] and m edges such that min {δ−, δ+} ≥ 1. Then let D
(δ≥1)
n,m be sampled

uniformly from D(δ≥1)
n,m .

Theorem 1. Let m = n
2
(log n+ 2 log log n+ cn) then

lim
n→∞

P(D(δ≥1)
n,m is Hamiltonian) =


0 cn → −∞.

e−e−c/8 cn → c.

1 cn →∞.

(2)

The R.H.S. of (2) is the limiting probability that D
(δ≥1)
n,m contains two vertices of in-degree one

(resp. out-degree one) that share a common in-neighbour (resp. common out-neighbour).

1.1 Previous work

Previous work in this area has focused on G
(δ≥k)
n,m , where we condition on Gn,m having mini-

mum degree at least k. This work was inspired by the result of Komlós and Szemerédi [14]:
suppose that m = n

2
(log n+ log log n+ cn). Then,

lim
n→∞

P(Gn,m is Hamiltonian) =


0 cn → −∞.

e−e−c
cn → c.

1 cn →∞.

= lim
n→∞

P(Gn,m has minimum degree at least two).

Bollobás, Fenner and Frieze [5] proved the following. Suppose thatm = n
6
(log n+ 6 log log n+ cn).

Then

lim
n→∞

P(G(δ≥2)
n,m is Hamiltonian) =


0 cn → −∞, sufficiently slowly.

e−e−c/1458 cn → c.

1 cn →∞.

(3)

Here the R.H.S. of (3) is the asymptotic probability of there being three vertices of degree
two sharing a common neighbour. The restriction “sufficiently slowly” is unlikely to be
necessary as stated. On the other hand, there needs to be some upper bound on cn though
as we must have m ≥ n.

Beginning with Bollobás, Cooper, Fenner and Frieze [4] there has been an attempt to find
out how many random edges we need if we condition on minimum degree at least three.
Anastos [1] has proved that G

(δ≥4)
n,m is Hamiltonian w.h.p. if m > 2n and Anastos and Frieze
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[2] have shown that G
(δ≥3)
n,m is Hamiltonian w.h.p. if m > 2.663n. Because a random cubic

graph is Hamiltonian w.h.p. (see Robinson and Wormald [16]) it is natural to conjecture

that G
(δ≥3)
n,m is Hamiltonian w.h.p. if m = cn, c ≥ 3/2.

It should be mentioned that the above papers [1], [4] prove more than Hamiltonicity. They

show that in G
(δ≥k)
n,m there are likely to be ⌊k/2⌋ edge disjoint Hamilton cycles plus an edge

disjoint perfect matching if k is odd. It would not be difficult to prove a similar extension of
Theorem 1 as no really new ideas are needed and so we will refrain from doing this, to avoid
making the proof more complicated than needed.

2 Proof of Theorem 1

We will base our proof on a 3-phase method used in various forms in [6], [8], [10], [12]. In
Phase 1 we construct a set of O(log n) vertex disjoint directed cycles that cover all vertices.
In Phase 2, we transform this cover so that each cycle has length at least n/ log1/2 n. In
Phase 3, we patch these cycles together to create a Hamilton cycle. There is also a Phase 0
in which we partition the edge set into E1, E2, E3 for use in the corresponding phase.

We first need to describe a useable model for D
(δ≥1)
n,m . For a sequence x = (x1, x2, . . . , x2m) ∈

[n]2m we let Dx be the multi-digraph with vertex set [n] and edge set
Ex = {(x2j−1, x2j) : j = 1, 2, . . . ,m}. Let d+x (i) = | {j : x2j−1 = i} | be the out-degree of
i ∈ [n] in Dx and similarly let d−x (i) = | {j : x2j = i} | be the in-degree of i ∈ [n] in Dx. Then
Ω1 = {x ∈ [n]2m : d+x (i), d

−
x (i) ≥ 1} for all i ∈ [n].

Given values for the degrees d±x we create a random member of Ω1 by taking a random
permutation of the multi-set {d+x (j)× j : j ∈ [n]} and placing the values in x1, x3, . . . , x2m−1

and then taking a random permutation of the multi-set {d−x (j)× j : j ∈ [n]} and placing the
values in x2, x4, . . . , x2m. (The notation d× a means that the multi-set contains d copies of
a).

For x ∈ Ω1, let Lx = {j ∈ [m] : x2j−1 = x2j} be the set of loops in Dx, let Mx = {j ∈
[m] : ∃j′ ̸= j s.t. (x2j′−1, x2j′) = (x2j−1, x2j)} define the set of multiple edges in Dx; and let
∆x = maxj(d

−
x (j) + d+x (j)). (We show later, see Lemma 12 below, that if m ≤ n log n then

w.h.p. there are severe restrictions on the closeness and multiplicity of loops and multiple
edges.)

Let Ω∗
1 = {x ∈ Ω1 : Lx = Mx = ∅}. We have that

D ∈ D(δ≥1)
n,m implies that | {x ∈ Ω∗

1 : Dx = D} | = m!. (4)

Consequently, choosing x (near) uniformly from Ω∗
1 and taking Dx is equivalent to sampling

(near) uniformly from D(δ≥1)
n,m . By sampling uniformly from Ω1 and then using switchings to

remove any loops or parallel edges we obtain a space Ω
(0,0)
1 which is almost all of Ω∗

1 and

whose entries are (near) uniformly distributed Ω
(0,0)
1 .
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We can generate a random member of Ω1 as follows: Let Z = Z(z) be a truncated Poisson
random variable with parameter z ≥ 1, where

P(Z = k) =
zk

k!(ez − 1)
, k = 1, 2, . . . .

Here z satisfies

E(Z) =
zez

ez − 1
= ρ where ρ =

m

n
, and Var(Z) = σ2 =

zez(ez − 1− z)

(ez − 1)2
. (5)

Note that
z ∼ ρ if ρ→∞. (6)

Indeed,

z ≤ ρ = z +
1

1 + z2

2!
+ z2

3!
+ · · ·+

≤ z + 1.

Note also that f(x) = xex/(ex− 1) is strictly monotone increasing and f(0) = 1, f(∞) =∞
and so the first equation defines z uniquely. This follows from (ex−1)2f ′(x) = e2x−(1+x)ex >
0.

and note

Lemma 2. Let Z ′
i, Z

′′
i , i ∈ [n] be independent copies of a truncated Poisson random variable

Z(z). Let x be chosen randomly from Ω1. Then {d+x (i)}j∈[n] is distributed as {Z ′
i}i∈[n]

conditional on
∑

j∈[n] Z
′
i = m and similarly for {d−x (i)}i∈[n] with respect to Z ′′

i .

The proof of this lemma is very similar to Lemma 4 of Aronson, Frieze and Pittel [3], the
proof is given in Appendix A.

We define the events

E ′ =

∑
j∈[n]

Z ′
i = m

 and E ′′ =

∑
j∈[n]

Z ′′
i = m

 . (7)

Lemma 12 (see Appendix B) proves some properties P of Ω1 that hold w.h.p. Let Ω
(0,0)
1 =

Ω∗
1 ∩ P and more generally let Ω

(k,ℓ)
1 = {x ∈ Ω1 : |Lx| = k, |Mx| = ℓ and P}.

Given x ∈ Ω
(k,ℓ)
1 with ℓ > 0, we will define a P -switch that removes two copies of edge (x, y)

and replaces them by loops (x, x), (y, y). More formally, suppose that i, j ∈ Mx. Then a
P -switch produces x′ where we make the replacements x′

2i ← x2j−1, x
′
2j−1 ← x2i. After ℓ

such P -switches we will have produced a member of Ω
(k+2ℓ,0)
1 .

Given x ∈ Ω
(k,0)
1 with k > 0, we will define an L-switch that removes a loop (x, x) by

choosing an edge (a, b) and replacing the pair by (a, x), (x, b). More formally, suppose that
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i ∈ Lx. Let j /∈ Lx. Then an L-switch produces x′ where we make the replacements
x′
2i−1 ← x2j−1, x

′
2j−1 ← x2i−1. After k P -switches we will have produced a member of Ω

(0,0)
1 .

(The above can make new parallel edges, but they are few in number and we show in Lemma
5 that we can exclude switches that create new parallel edges.)

P -switches preserve the precise degree sequence d+x (i), d
−
x (i), i ∈ [n] for x ∈ Ω1 but L-switches

do not. On the other hand, L-switches preserve the total degrees d+x (i) + d−x (i), i ∈ [n] for
x ∈ Ω1. However, they do preserve d+x (i) ≥ 1, d−x (i) ≥ 1 w.h.p. for i ∈ [n].

We make the following claim: for proof see Appendix B.

Claim 3. Suppose that x is a random member of Ω1 and that |Lx| = k, |Mx| = ℓ. Then after

ℓ P -switches and k + 2ℓ random L-switches we obtain y ∈ Ω
(0,0)
1 such that (i) y is almost

uniform in Ω
(0,0)
1 and (ii) |Ω(0,0)

1 | = (1 − o(1))|Ω∗
1|. (By almost uniform in (i) we mean the

following: if z is any member of Ω
(0,0)
1 , then P(y = z) = (1 + o(1))|Ω(0,0)

1 |−1.)

By a random L-switch, we mean choose one of the k loops and then choose a random edge
(a, b). Lemma 12 below implies that w.h.p. we need at most 3e2 log4 n switches altogether.

With a little bit of effort, we can use the analysis for Claim 3 to obtain an estimate of the
size of D(δ≥1)

n,m , see Appendix C.

Theorem 4.

|D(δ≥1)
n,m | ∼ m!

(ez − 1)2ne−z(z+1)

2πσz2m
.

2.1 Phase 0

There is a natural bijection between digraphs and bipartite graphs. Given a digraph D on
vertex set [n], we can define a bipartite graph G(D) with vertex partition = {ai : i ∈ [n]},
B = {bj : j ∈ [n]} and an edge {ai, bj} for every edge (i, j) of D. If D satisfies min {δ−, δ+} ≥
1 then G(D) has minimum degree at least one and vice-versa. Let Gz = G(Dz) for z ∈ Ω1.

Our input will be a sequence y constructed as in Claim 3, starting with a random x ∈ Ω1.
We will discuss Hamiltonicity in the context of Dy. This phase partitions Ey into three
subsets E1, E2, E3 each with different purpose. We first show that the digraph induced by
E1 contains a collection C1 of O(log n) vertex disjoint directed cycles that cover all vertices,
i.e. a vertex cycle cover. We then use E2 to transform C1 into a vertex cycle cover C2 in
which each cycle C ∈ C2 has size at least n/ log1/2 n. We use E3 to transform C2 into a
Hamilton cycle.

Let SMALL denote the set of vertices v such that d+x (v)+d−x (v) ≤ log n/100. LetALTERED
denote the set of vertices that are involved in switches. Let distz(v, w) denote the distance
between vertices v and w in either Dz or Gz, depending on context. Paths in Gz when
considered in Dz alternate in orientation.

5



Lemma 5. Suppose that m ≥ 2
5
n log n. Suppose that y is the result of switchings w.r.t. a

random x ∈ Ω1. Then w.h.p.,

(a) |SMALL| ≤ n7/8.

(b) No vertex is involved in four or more switches.

(c) No member of SMALL is incident to an edge involved in any of the switches used to
construct y.

(d) No member of SMALL lies on a cycle of Dy or of Gy of length at most ℓ0 = log n/(20 log log n).

(e) u, v, w ∈ SMALL ∪ ALTERED implies that disty(u, v) + disty(v, w) ≥ ℓ0 in Dy or in
Gy.

Proof. (a)

E(|SMALL|) ≤ 2nP
(
d+x (1) ≤ log n/100 | E ′

)
= 2n

logn/100∑
k=1

P

(
(dx(1) = k) ∧

(
n∑

i=2

Z ′
i = m− k

)∣∣∣∣ E ′
)

= 2n

logn/100∑
k=1

P(Z ′
1 = k)P (

∑n
i=2 Z

′
i = m− k)

P (
∑n

i=1 Z
′
i = m)

(8)

∼ 2n

logn/100∑
k=1

P(Z ′
1 = k) (9)

= 2n

logn/100∑
k=1

zk

k!(ez − 1)

≤ 3n

(
ze

log n/100

)logn/100

e−z

≤ n3/4.

We use Proposition 1 from Appendix B to obtain (9) from (8). The final inequality uses
the fact that z ∼ m/n if m/n → ∞. Our bound on |SMALL| follows from the Markov
inequality.

(b) The probability that a vertex is part of the randomly chosen edge of an L-switch is at
most ∆0/m. Here, throughout the paper,

∆0 = log2 n

is a high probability bound on the maximum degree, (proved in Lemma 12 below). So the
probability there is some vertex that is chosen twice in this way is at most n(∆0/m)2 = o(1).
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Apart from this, a vertex can be involved twice, once in a P -switch and once in an L-switch,
w.h.p. See Lemma 12 in the appendix for the constraints on loops and parallel edges.

(c) Assuming (a), the probability that (c) fails is w.h.p. at most O(n7/8 log4 n · n−1). The
factor log4 n comes from the bound of O(log4 n) on the number of switches needed, which in
turn follows from Lemma 12(b)(g) below.

(d) The probability that (d) fails can be bounded by

2

ℓ0∑
k=2

k

(
n

k

)
k!

(
m

k

)(
∆0

m

)2k logn/100∑
ℓ=0

(
m− k

ℓ

)
1

nℓ

(
1− 1

n

)m−k−ℓ

≤ 3(log n)2 logn/100(100e)ℓ0n−1/3+o(1) = o(1).

Explanation: After choosing the vertices of the cycle and then selecting a vertex of the

cycle in at most
(
n
k

)
k!k ways, we bound the probability that the edges exist by

(
m
k

) (
∆0

m

)2k
and then bound the probability that a selected vertex has few neighbours outside the cycle.

(e) The probability that (e) fails can be bounded by

ℓ0∑
k=1

(
n

k + 1

)
k!

(
k

3

)(
m

k

)(
∆0

n

)2k
(3e2 log4 n∆0

m

)
+

logn/100∑
ℓ=0

(
m− k

ℓ

)
1

nℓ

(
1− 1

n

)m−k−ℓ
3

= o(1).

Explanation: this is similar to (d). the expression
(

n
k+1

)
k!k counts paths u → v → w

and
(
m
k

) (
∆0

n

)2k
bounds the probability the edges exist. The large bracket is the sum of the

probability of being part of a switch and the probability that a selected vertices have few
neighbours outside the path.

We now discuss the construction of E1, E2, E3. Starting with a random x ∈ Ω1 we construct
y = y1, y2, . . . , y2m randomly as in Claim 3. We let j1 = n log n/5 and initialise E1 as
{(y2j−1, y2j) : j ≤ j1}. Then we go through y in order j = n log n/5 + 1, . . . ,m and add
(y2j−1, y2j) to E1 if either y2j−1 has appeared less than log n/100 times in y1, y3, . . . , y2j1−1

or if y2j has appeared less than log n/100 times in y2, y4, . . . , y2j1 . We randomly place the
edges Ey \ E1 into E2, E3, each with probability 1/2, and then re-order the edges so that
E2∩M appears before E3∩M where M is the set of edges induced by yi, i > n log n/5. This
re-ordering is not very important, it just helps in our description of the constructions. We
just need two large sets of sufficiently random edges.

2.2 Phase 1

Let Gi be the bipartite graph with bipartition A,B that is induced by the edges Ei, i = 1, 2, 3
and let Fi = E(Gi) = {{ar, bs} : (r, s) ∈ E(Gi)}. For S ⊆ A, we define N1(S) to the set of
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G1-neighbours of S in B

Lemma 6. Let m = n
2
(log n + 2 log log n + cn) satisfy m/n ≲ log n, where An ≲ Bn if

An ≤ (1 + o(1)Bn as n→∞. (This bounds cn and for larger cn we have minimum in- and
out-degree at least one w.h.p.) Then

lim
n→∞

P(G1 has a perfect matching ) =


0 cn → −∞.

e−e−c/8 cn → c.

1 cn →∞.

(10)

Proof. LetM1 denote the event that G1 contains two vertices of degree one in either A or
B that share a common neighbour. Let Nk, k ≥ 3 denote the event that G1 contains a set
S ⊆ A : |S| = k such that |N1(S)| ≤ k − 1. A minimal such S satisfies (i) |N1(S)| = k − 1
and (ii) each b ∈ N1(S) has at least two neighbours in S, (we can reduce S by one if
|N1(S)| < k − 1 or if there is a b ∈ N1(S) with one neighbour in S) and (iii) S ∪ N1(S)
induces a connected subgraph. If M1 does not occur then this reduction in the size of S
must stop before k = 1 because of our minimum degree condition. Then, because G1 has no
isolated vertices,

P(M1) ≤ P(G1 does not have a perfect matching) ≤ P(M1) + 2

n/2∑
k=3

P(Nk). (11)

As usual, we deal with k > n/2 by looking at the neighbourhood of sets T ⊆ B of size
n− k + 1 and using symmetry.

We first deal with P(M1).

Case 1: cn = −ω where ω →∞ and m/n→∞:
Let an A-cherry be a path of length two with centre vertex in A and endpoints of degree one
in B. We define B-cherries by reversing the roles of A and B. We let Z denote the number
of A-cherries. Then in Dx, with E ′, E ′′ as in (7), Dd = {d−x (1) = d−x (2) = 1, d+x (3) = d},

E(Z) = n

(
n

2

) ∑
Dd≥2

P(Dd | E ′, E ′′)
m(m− 1)d(d− 1)

m2(m− 1)2

= n

(
n

2

)∑
d≥2

P
(
Dd,

∑
i≥3 Z

′′
i = m− 2,

∑
i≥2 Z

′
i = m− d

)
P (
∑

i Z
′′
i = m,

∑
i Z

′
i = m)

d(d− 1)

m(m− 1)

= n

(
n

2

)∑
d≥2

P(Dd)P
(∑

i≥3 Z
′′
i = m− 2

)
P
(∑

i≥2 Z
′
i = m− d

)
P (
∑

i Z
′′
i = m)P (

∑
i Z

′
i = m)

d(d− 1)

m(m− 1)

∼ n

(
n

2

)∑
d≥2

P(Dd) ·
d(d− 1)

m(m− 1)
(12)

after removing the probabilities of sums of Z ′
i, Z

′′
i using Proposition 1 in Appendix B
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∼ n3

2m2

(
∆0∑
d=2

zd+2

(d− 2)!(ez − 1)3
+ P(d+x (3) ≥ ∆0)

)
, (13)

∼ n3z4

2m2e2z
, since P(d+x (3) ≥ ∆0) = (log n)−Ω(log2 n) and ez − 1 ∼ ez as m/n→∞,

∼ m2

2ne2m/n
, since m/n→∞ (14)

≥ eω/8→∞. (15)

It is worth observing that the above shows that conditioning on E ′, E ′′ only changes proba-
bilities by a factor 1 + o(1) and from now on we rely on this without mention.

Case 1a: ω ≤ α log n where α = 2/7:
At this point we want to use the Chebyshev inequality to prove that Z ̸= 0 w.h.p. Thus
we write E(Z(Z − 1)) = A1 + A2, where A1 counts disjoint cherries and A2 counts pairs of
A-cherries sharing an A-vertex (forming a K1,3). In this case, z ≥ (5− o(1)) log n/14, which
is needed for (16) below.

A1 =

n(n− 1)

(
n

2

)2 ∑
d1,d2≥2

P(d−x (1) = d−x (2) = d−x (3) = d−x (4) = 1, d+x (5) = d1, d
+
x (6) = d2 | E ′, E ′′)×

m(m− 1)d1(d1 − 1)

m2(m− 1)2
(m− 2)(m− 3)d2(d2 − 1)

(m− 2)2(m− 3)2

∼ E(Z)2, using (13).

A2 =

n

(
n

3

)∑
d≥3

P(d−x (1) = d−x (2) = d−x (3) = 1, d+x (4) = d | E ′, E ′′)m(m− 1)(m− 2)d(d− 1)(d− 2)

m2(m− 1)2(m− 2)2

∼ n4

6m3

∑
d≥3

zd+4

(d− 3)!(ez − 1)4
∼ m

6e3z
= O(no(1)+(3α−1)/2) = o(1). (16)

Thus E(Z(Z − 1)) ∼ E(Z)2 and so from (15), Z ̸= 0 w.h.p.

Case 1b: ω ≥ α log n and m ≥ n:
Let Ω̂1 be the set of sequences obtained by generating Z ′

i, Z
′′
i , i ∈ [n] and then randomly

permuting the multi-sets {j × Z ′
i} , {j × Z ′′

i } and placing the obtained sequences in the odd
and even positions respectively. If

∑n
i=1 Z

′
i >

∑n
i=1 Z

′′
i then use *’s to fill in any blanks

and vice-versa. Arguing as for (15) we see that E(Z) = Ω(n2α). Let Ẑ be the number of

A-cherries Z computed w.r.t. Ω̂1, when the Z ′
i, Z

′′
i are replaced by Ẑ ′

i = min {Z ′
i,∆0} , Ẑ ′′

i =

min {Z ′′
i ,∆0} respectively. now changing the value of a Ẑ ′

i, Ẑ
′′
i can only change Ẑ by at most

∆2
0. It follows from McDiarmid’s martingale inequality that for any t > 0,

P(|Ẑ − E(Ẑ)| ≥ t) ≤ exp

{
− 2t2

2n∆4
0

}
.
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Putting t = 1
2
E(Z) implies that P(Z = 0) = O(e−n4α−1

). We choose α = 2/7 to give

P(Z = 0) = O(e−n1/7
). We need to add in the probability that Ẑ ̸= Z, but this can be

bounded by O(n(log n)− log2 n). This completes Case 1.

Case 2: cn → c:
We first rule out A-cherries that share a vertex i.e. three vertices of degree one having a
common neighbour. Let this event be E3. We can because of Lemma 5 consider this event
in Dx i.e. in the digraph before we do any switches. This is because vertices in SMALL do
not participate in switches. Then

P(E3) ≤ 2n

(
n

3

)
P(N1({a1, a2, a3}) = {b1} | E ′1, E ′′1 )

≤ (1 + o(1))

∆0∑
d=3

n4d3m−3

(
1− 3

n

)m−3

+ (log n)−Ω(log2 n). (17)

Explanation: in the above expression, d is the degree of vertex b1 and Lemma 12 below
shows that d ≤ ∆0 with probability 1 − (log n)−Ω(log2 n). The 2 accounts for the common
neighbour being in A or B. Having chosen a1, a2, a3, b1 in at most n

(
n
3

)
ways, we choose the

relevant edges in at most m3 ways and then m3d3m−6 approximates the probability that the
edges are as claimed.

It follows from (17) that P(E3) = O(n−1/2+o(1)) = o(1).

We are going to apply the method of moments to estimate the distribution of Z. Fix k ≥ 1.
Then,

E((Z)k) ∼ n3k

k∑
t=0

(
k

t

)
m2kn−4k

(
1− 2k

n

)m−2k

∼
(
e−c

8

)k

.

It follows from the method of moments that Z is asymptotically Poisson with mean e−c/8.

Case 3: cn →∞, m ≤ (1 + o(1))n log n.:
Going back to (15), with cn = ω, we see that we see that E(Z) ≤ e−ω/8→ 0.

We have dealt withM1 and we now tackle the sum in (11). We can assume that cn ≥ c for
some constant c.

We will be more careful with our bound on maximum degree. A first moment calculation
bounds maxi dx(i) by 5 log n. Then, together with Lemma 5(b) this allows us to bound the
maximum degree in y by ∆1 = 6 log n. We remind the reader that ℓ0 = log n/20 log log n.

Case 1: 3 ≤ k ≤ ℓ0/2. Suppose then that S ⊆ A and 3 ≤ |S| ≤ ℓ0/2. It follows from Lemma
5(e) and the fact that S∪N1(S) forms a connected set that |S∩(SMALL∪ALTERED)| ≤ 2.
By construction, if v /∈ SMALL, then d1(v) ≥ log n/100, where di denotes degree in Gi.
Thus |N1(S)| > ℓ0/2.

Case 2: ℓ0/2 < k ≤ k0 = m
10∆1

. Suppose then that S ⊆ A and ℓ0/2 < |S| ≤ k0. Very

10



crudely, it follows from Lemma 5 and the fact that S ∪ N1(S) forms a connected set that
|S ∩ (SMALL ∪ ALTERED)| ≤ |S|/2. Thus,

P(∃S) ≤
k0∑

k=ℓ0/2

(
n

k

)2(
k∆1

m

)k logn/200

≤
k0∑

k=ℓ0/2

((
ke

m

)logn/200−2

·∆logn/200
1

)k

= o(1).

Case 3: k0 < k ≤ n/2. Suppose then that S ⊆ A, T ⊆ B and k0 < |S| = |T | ≤ n/2 and
N1(S) ⊆ T . By bounding the probability that S has no neighbours outside T , we have

P(∃S) ≤
n/2∑
k=k0

(
n

k

)2(
1− (k − |SMALL ∪ ALTERED|) log n

100m

)k logn/200

≤

n/2∑
k=k0

((ne
k

)2
· exp

{
− k log2 n

20000m

})k

= o(1),

since k0 = Ω(n) here.

It is easy to show by symmetry that the perfect matching M1 promised by the above can be
taken to be a uniform random perfect matching. Indeed, given D and a permutation π of
[n] we define πD = ([n], {(i, π(j)) : (i, j) ∈ E(D)}. Let π be a uniform random permutation
of B. Suppose that we check for a perfect matching in D by looking for a perfect matching
M in πD and then taking π−1M to be our perfect matching M1 in D. Note that π−1M
is uniformly random, no matter what value M takes. Finally note that πD has the same
distribution as D so that P(GD has a perfect matching) = P(GπD has a perfect matching).

2.3 Phase 2

We can from now on assume that cn does not tend to −∞, using the notation of Lemma 6.
There is nothing more to prove if cn → −∞. We can also assume that m ≤ (1+o(1))n log n,
for otherwise we can refer to [9]. So now let m = an log n where a ∈ [1/2 − o(1), 1 + o(1)],
and that M1 exists.

Let C1 be the cycle cover in D corresponding to M1. M1 being a uniform random perfect
matching implies that w.h.p. C1 has at most 2 log n cycles. In this phase we transform C1
into a cycle cover in which each cycle has size at least n/ log1/2 n. We do this using the edges
E2. See Section 2.4 for a description of how this is done.

Let Y1 be the set of indices i such that i appears at most log n/100 times in the sequence
y1, y2, . . . , yn logn/5.

Lemma 7. |Y1| ≤ n0.999 w.h.p.

11



Proof. Let W ′
i be the number of times i appears in x1, x3, . . . , xn logn/5 where x is cho-

sen randomly from Ω̂1, where Ω̂1 is defined in Case 1b, following (16) above. Let X ′
1 =

{i : W ′
i ≤ log n/100}. Then, with E ′ as in (7) and where m1 = n log n/5 and L = log n/100,

E(|X ′
1|) = n

∑
k≥1

P(Po(z) = k | E ′)
L∑

r=0

(
m1

r

)(
m−m1

k−r

)(
m
k

)
≤ n

P(Po(z) ≥ 10 log n)

P(E ′)
+ n

10 logn∑
k=1

P(Po(z) = k | E ′)
L∑

r=0

(
m1

r

)(
m−m1

k−r

)(
m
k

)
≤ o(n−1) + (1 + o(1))n

10 logn∑
k=1

P(Po(z) = k)
L∑

r=0

(
m1

r

)(
m−m1

k−r

)(
m
k

)
= o(n−1) + (1 + o(1))n

10 logn∑
k=1

P(Po(z) = k)
L∑

r=0

(
k

r

)(m1

m

)r (
1− m1

m

)k−r

= o(n−1) + (1 + o(1))n

10 logn∑
k=1

zk

(ez − 1)k!

L∑
r=0

(
k

r

)(
2

5

)r (
3

5

)k−r

= o(n−1) + n1/2+o(1)

10 logn∑
k=1

zk

k!

L∑
r=0

(
k

r

)(
2

5

)r (
3

5

)k−r

.

Now, z ∼ a log n, a ∈ [1/2− o(1), 1 + o(1)] (see (6)) and so

a logn/2∑
k=1

zk

k!
≤ 2

(
2e1+o(1)z

a log n

)a logn/2

≤ n9/10. (18)

Furthermore, if k ≥ a log n/2 then the Chernoff bounds imply that

L∑
r=0

(
k

r

)(
2

5

)r (
3

5

)k−r

≤ exp

{
−1

2

(
49

50

)2
2k

5

}
≤ e−k/11.

Therefore

10 logn∑
k=a logn/2

zk

k!

L∑
r=0

(
k

r

)(
2

5

)r (
3

5

)k−r

≤
∑

k≥a logn/2

zk

k!
e−k/11 ≤ exp

{
ze−1/11

}
≤ n0.46. (19)

The Markov inequality and (18) and (19) imply that |X ′
1| ≤ n0.99 w.h.p.

To finish the proof we use |Y1| ≤ |X1| + |ALTERED|, where X1 = X ′
1 ∪ X ′′

1 and X ′′
2 is

defined w.r.t. even indices. We note that |ALTERED| = O(log4 n) which follows from
Lemma 12(b)(g) below.

It follows that w.h.p.

|E2 ∪ E3| ≥ (1 + o(1))n log n/2− n log n/5− n0.999 log n/100 ≥ n log n/3.

12



Furthermore, if we fix the degrees of the digraph induced by E2∪E3 then the actual edges are
randomly distributed. We can construct E2∪E3 by only checking that vertices x2j−1, x2j, j ≤
n log n/5 have appeared log n/100 times before, without actually identifying them.

Let Y2(k) be the set of indices i /∈ Y1 such that i occurs at most k + log n/100 times as an
odd index in the sequence yn logn/5+1, . . . , yn logn/3 or at most k + log n/100 times as an even
index. Note that we have ordered E2, E3 so that E3 follows E2 after index n log n/5.

Lemma 8. Let L = log log n. Then

(a) |Y2(L)| ≤ n15/16 w.h.p.

(b) W.h.p. every connected set of vertices in Gi, i = 2, 3 of size at most L contains at most
20 members of Y2(L).

(c) No member of Y2(L) lies on a cycle in Gy of length at most L. (Here Gy is the graph
induced by the sequence y.)

Proof. (a) We have

E(|Y2(L)|) ≤ 2nP(Bin(|E1 ∪ E2|, 1/n) < L+ log n/100)

≤ 2n

(
2n log n/15

L+ log n/100

)
n−L−logn/100

(
1− 1

n

)2n logn/15−L−logn/100

≤ n14/15.

So the Markov inequality implies that |Y2(L)| ≤ n15/16 w.h.p.

(b) The probability that there exists such a set can be bounded by

2
L∑

ℓ=20

(
n

ℓ

)(
2n log n/15

ℓ− 1

)
ℓℓ−22ℓ(ℓ− 1)!n−2ℓ+2×L+logn/100∑

i=0

(
2n log n/15

i

)
n−i

(
1− 1

n

)2n logn/15−i
ℓ

≤ 2
L∑

ℓ=20

n2+o(1) × n−ℓ/8 = o(1).

Explanation:
(
n
ℓ

)
counts the number of choices for the vertices in our connected set S of

size ℓ.
(
2n logn/15

ℓ−1

)
counts the number of choices for the positions of the ℓ− 1 edges of a tree

T contained in S in the ordering of Ei. There are ℓℓ−2 choices for T , 2ℓ(ℓ − 1)! choices for
the ordering of the edges in the sequence y and probability n−2ℓ+2 that the edges are the
ones defining T . The large bracketed term bounds the probability that the ℓ chosen vertices
are in Y2(L).

(c) The probability that we can find such a cycle can be bounded by

L∑
ℓ=3

ℓℓ!

(
n

ℓ

)(
m

ℓ

)(
∆1

m

)2ℓ

×

13



P([ℓ] ∩ ALTERED ̸= ∅) +
L+logn/100∑

i=1

P

(
dx(1) = i

∣∣∣∣ n∑
i=1

Z ′
i =

n∑
i=1

Z ′′
i

) = o(1).

Explanation: we choose the vertices of the cycle C in
(
n
ℓ

)
ways and choose a vertex of C

in ℓ ways and an ordering of the vertices of C in ℓ! ways. Then we choose the places of the

edges of the cycle in x in
(
m
ℓ

)
ways. Then

(
∆1

m

)ℓ
bounds the probability that these places in

the sequence contain the claimed edges. recall that ∆1 = 6 log n is a bound on the maximum
degree in x. If C ∩ ALTERED = ∅ then we can replace x by y.

We now show that the log n/100 cores C2, C3 of G2, G3 are large.

Lemma 9. C2, C3 ⊇ ([n] \ Y2(L)) w.h.p

Proof. Let Si, i ≥ 0 denote the set of vertices stripped off in the ith round of the core finding
process. Here S0 = Y2(0) and we argue by induction that v ∈ Si implies that v ∈ Y2(L) and
that v has at most 20 neighbours in Si−1. This is true for i = 1 by Lemma 8(b). This is also
true for i > 1 for the same reason, given the inductive assumption. But then if S(21) ̸= ∅,
there is a path of length 21 consisting of vertices in Y2(L). So, S(i) ⊆ Y2(L) for i ≥ 0.

Thus w.h.p. Ei, i = 2, 3 contains a set Ki of n−n0.999 vertices that induces a subgraph with
minimum degree at least log n/100. We now show how to use E(K2) to increase the minimum
cycle size of our perfect matching to at least n0 = n/ log1/2 n. Note that n0.999 = o(n0). Thus,
the vertices not in Ki can only represent a small part of each large cycle.

2.4 Elimination of Small Cycles

We partition the cycles C1 associated withM1 into small cycles C, |C| < n0 and large |C| ≥ n0

respectively. We define a Near Permutation Digraph (NPD) to be a digraph obtained from
a Permutation Digraph (PD) (cycle cover) by removing one edge. Thus an NPD Γ consists
of a path P (Γ) plus a permutation digraph PD(Γ) which covers [n] \ V (P (Γ)).

In a random permutation the expected number of vertices on cycles of length at most s is pre-
cisely s ([13]). Thus, by the Markov inequality, w.h.p. Γ0 contains at most n log log n/ log1/2 n
vertices on small cycles. Condition on this event and refer to it asM.

We now give an informal description of a process which removes a small cycle C from a
current PD Π. We start by choosing an (arbitrary) edge (v0, u0) of C and then delete it to
obtain an NPD Γ0 with P0 = P (Γ0) ∈ P(u0, v0), where P(x, y) denotes the set of paths from
x to y in D. The aim of the process is to produce a large set S of NPD’s such that for each
Γ ∈ S, (i) P (Γ) has at least n0 edges and (ii) the small cycles of PD(Γ) are a subset of the
small cycles of Π. We will show that w.h.p. the endpoints of one of the P (Γ)’s can be joined
by an edge to create a permutation digraph with (at least) one less small cycle.
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The Out-Phase consists of a sequence of basic steps. In a basic step of the Out-Phase
we have an NPD Γ where P (Γ) is a path from u0 to another vertex v. We examine the
edges of the core C2 leaving v i.e. the edges going out from the end of the path. Let w
be the terminal vertex of such an edge and assume that Γ contains an edge (x,w). Then
Γ′ = Γ ∪ {(v, w)} \ {(x,w)} is also an NPD. Γ′ is acceptable if (i) P (Γ′) contains at least n0

edges and (ii) any new cycle created (i.e. in Γ′ and not Γ) also has at least n0 edges.

If Γ contains no edge (x,w) then w = u0. We accept the edge if P has at least n0 edges.
This would (prematurely) end an iteration, although it is unlikely to occur.

We do not want to look at very many edges of E(K2) in this construction and we build a
tree T0 of NPD’s in a natural breadth-first fashion where each non-leaf vertex Γ gives rise
to NPD children Γ′ as described above. The construction of T0 ends when we first have
ν = n1/2 log n leaves. The construction of T0 constitutes an Out-Phase of our procedure to
eliminate small cycles. Having constructed T0 we need to do a further In-Phase, which is
similar to a set of Out-Phases.

Then w.h.p. we close at least one of the paths P (Γ) to a cycle of length at least n0. If
|C| ≥ 4 and this process fails then we try again with a different independent edge of C in
place of (u0, v0).

We now increase the formality of our description. We start Phase 2 with a PD Π0, say, and
a general iteration of Phase 2 starts with a PD Π whose small cycles are a subset of those
in Π0. Iterations continue until there are no more small cycles. At the start of an iteration
we choose some small cycle C of Π. There then follows an Out-Phase in which we construct
a tree T0 = T0(Π, C) of NPD’s as follows: the root of T0 is Γ0 which is obtained by deleting
an edge (v0, u0) of C.

We grow T0 to a depth at most i0 = ⌈1.5 log n⌉. The set of nodes at depth t is denoted by
St.
Let Γ ∈ St and P = P (Γ) ∈ P(u0, v). The potential children Γ′ of Γ, at depth t + 1 are
defined as follows.

Let w be the terminal vertex of an edge directed from v in E(K2).
Case 1. w is a vertex of a cycle C ′ ∈ PD(Γ) with edge (x,w) ∈ C ′.
Let Γ′ = Γ ∪ {(v, w)} \ {(x,w)}, thus extending the path P .
Case 2. w is a vertex of P (Γ).
Either w = u0, or (x,w) is an edge of P . In the former case Γ ∪ {(v, w)} is a PD Π′ and in
the latter case we let Γ′ = Γ ∪ {(v, w)} \ {(x,w)}, making a cycle and a shorter path.

In fact we only admit to St+1 those Γ
′ which satisfy the following conditions C(i) and C(ii).

C(i) The new cycle formed (Case 2 only) must have at least n0 vertices, and the path formed
(both cases) must either be empty or have at least n0 = n/ log1/2 n vertices. When the path
formed is empty we close the iteration and if necessary start the next with Π′.
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We denote the the Ei-out-neighbors of v ∈ K2 by out(v). We define a set W of used vertices.
Initially all vertices in K2 are unused i.e. W = ∅. Whenever we examine an edge (v, w), we
add both v and w to W . So if v ̸∈ W then it has at least log n/100 random choices out(v) of
neighbours to make in K2. Furthermore these choices are almost uniform in that no vertex
has a more than 600/n chance of being chosen. This is because the in-degrees in C2 vary
between log n/100 and ∆1 = 6 log n. We do not allow |W | to exceed n3/4.

C (ii) x,w ̸∈ W .

An edge (v, w) which satisfies the above conditions is described as acceptable.

Lemma 10. Let C be small, i.e. |C| ≤ n0 = n/ log1/2 n. Let t0 ∼ logn
2 log logn

be the smallest

integer such that (log n/100)t ≥ ν = n1/2 log n then

P(∃t ≤ t0 such that |St| ∈ [ν,∆1ν]) = 1− o(n−2).

Proof. We assume we stop an iteration, in mid-phase if necessary, when |St| ∈ [ν, 3ν]. Let
us consider a generic construction in the growth of T0. Thus suppose we are extending from
Γ and P (Γ) ∈ P(u0, v).

We consider St+1 to be constructed in the following manner: we first examine out(v), v ∈ St

in the order that these vertices were placed in St to see if they produce acceptable edges.
We then add in those vertices x ̸∈ W which arise from (x,w) with v = in(w) ∈ St, w ̸∈ W .
(Here in(w) is defined analogously to out(v).)

Let Z(v) be the number of acceptable vertices in out(v). If w ∈ out(v) is unacceptable then
either (i) w lies on P (Γ) and is too close to an endpoint; this has probability bounded above
by 600/ log1/2 n, or (ii) the corresponding vertex x is in W ; this has probability bounded
above by 600n−1/4, or (iii) w lies on a small cycle. Thus Z(v) stochastically dominates
B(log n/100, p) where p = 1 − 600 log logn

log1/2 n
, regardless of the history of the process. Here we

use the fact that we have conditioned onM at the start.

Now S0 = {v0} and suppose that St = {v0, v1, . . . , vk} and that we expose out(vi) in the
order 1, 2, . . . , k and update W as we go. Then as long as |W | ≤ n3/4, we find that |St+1|
stochastically dominates Bin(|St| log n/100, p). Thus first considering S1, we have

P
(
|S1| ≤

log n

200

)
≤ P

(
Bin

(
log n

100
, 1− p

)
≥ log n

200

)
≤
(
1200e log log n

log1/2 n

)logn/200

= o(n−2),

and in general we have

P
(
∃ 2 ≤ i ≤ i0 : |Si| ≤

|Si−1| log n
100

)
= o(n−2).

2

The total number of vertices added to W in this way throughout the whole of Phase 2 is
O(n1/2 log3 n) = o(n3/4). (As we see later, we try this process once for each small C.)
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Let t∗ ≤ i0 = ⌈1.5 log n⌉ denote the value of t when we stop the growth of T0. At this stage T0

has leaves Γi, for i = 1, . . . , ν, each with a path of length at least n0, (unless we have already
successfully made a cycle). We now execute an In-Phase. This involves the construction of
trees Ti, i = 1, 2, . . . ν. Assume that P (Γi) is a path from u0 to vi. We start with Γi and
build Ti in a similar way to T0 except that here all paths generated end with vi. This is
done as follows: if a current NPD Γ has P (Γ) ∈ P(u, vi) then we consider adding an edge
(w, u) ∈ E(K2) and deleting an edge (w, x) ∈ Γ. Thus our trees are grown by considering
edges directed into the start vertex of each P (Γ) rather than directed out of the end vertex.
Some technical changes are necessary however.

We consider the construction of our ν In-Phase trees in two stages. First of all we grow
the trees only enforcing condition C (ii) of success and thus allow the formation of small
cycles and paths. We try to grow them to depth t0. The growth of the ν trees can naturally
be considered to occur simultaneously. Let Li,ℓ denote the set of start vertices of the paths
associated with the nodes at depth ℓ of the i’th tree, i = 1, 2 . . . , ν, ℓ = 0, 1, . . . , t0. Thus
Li,0 = {u0} for all i. We prove inductively that Li,ℓ = L1,ℓ for all i, ℓ. In fact if Li,ℓ = L1,ℓ

then the acceptable E(K2) edges have the same set of initial vertices and since all of the
deleted edges are E(K2)-edges (enforced by C (ii)) we have Li,ℓ+1 = L1,ℓ+1. The fact that
Li,ℓ = L1,ℓ gives us some control over the set of new vertices exposed in the In-Phase.

The probability that we succeed in constructing trees T1, T2, . . . Tν is, by the analysis of
Lemma 10, 1− o(n−2). Note that the number of nodes in each tree is O(∆i0

1 ) = O(n1/2+o(1)).

We now consider the fact that in some of the trees some of the leaves may have been
constructed in violation of C (i). We imagine that we prune the trees T1, T2, . . . Tν by
disallowing any node that was constructed in violation of C (i). Let a tree be BAD if after
pruning it has less than ν leaves and GOOD otherwise. Now an individual pruned tree has
been constructed in the same manner as the tree T0 obtained in the Out-Phase. Thus

Pr(T1 is BAD) = O(n−2+o(1)) and P(∃ a BAD tree) = o(1).

Thus with probability 1-O(n−2+o(1)) we end up with ν sets of ν paths, each of length at least
n/ log1/2 n where the i’th set of paths all terminate in vi. The sets in(vi) have not yet been
exposed by the process and hence

P(no E(K2) edge closes one of these paths) ≤
(
1− ν log n

100m

)ν

= o(n−2).

Consequently the probability that we fail to eliminate a particular small cycle C after break-
ing an edge is o(n−2) and so w.h.p. we remove all small cycles. Thus we have shown that at
the end of Phase 2 we have a PD Π∗ in which the minimum cycle length is at least n0.

2.5 Phase 3. Patching Π∗ to a Hamilton cycle

We begin this phase with a cycle cover of O(log1/2 n) cycles, each of size at least n/ log1/2 n.
We use the edges of E(C3) to patch these cycles into a Hamilton cycle. Suppose at some stage
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of the patching process we have cycles L1, L2, . . . , Lk, k ≥ 2 where L1 is a largest cycle and L2

is a second largest cycle. We look for edges (i, j) ∈ L1, (k, l) ∈ L2 such that (ai, bl), (ak, bj) ∈
E(C3) and then replace L1, L2 by the cycle L1 + L2 + (i, l) + (k, j) − (i, j) − (k, l). Given
that the degrees of vertices in C3 are at least log n/100, the probability we cannot find two
such edges is at most(

1−
(
log2 n

104m

))((1−o(1))n/ log1/2 n)2

≤ n−ε, ε = 10−9.

This is true regardless of previous patches because all the added edges have one end in L2

and the vertices of the second lexicographically largest cycle L2 at one stage are disjoint from
lexicographically largest cycle at any other stage, the former having been absorbed into L1.

Thus the probability we fail to create a Hamilton cycle is O(n−ε log1/2 n) = o(1). This
completes the proof of Theorem 1.

3 Conclusion

As already mentioned, we feel that the above analysis can be extended to get k edge disjoint
Hamilton cycles if we condition on minimum in- and out-degree at least k, as long as we
have ∼ 1

2
n log n edges. This is not to say that there might not be unforeseen technicalities

and so we will not formally claim this.

It is even more challenging to adapt the analysis to the case where we have a linear number
of edges and minimum degree k ≥ 2. This is where the focus of research on this problem
should now be.
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Appendix A: Proof of Lemma 2

Proof. Let

S =
{
d ∈ [n]n

∣∣∣ ∑
1≤j≤n

dj = m and ∀j, dj ≥ 1
}
.
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Fix ξ ∈ S. Then, by the definition of x and dx,

P(dx = ξ) =

(
m!

ξ1!ξ2! . . . ξn!

)/(∑
x∈S

m!

x1!x2! . . . xn!

)
.

On the other hand, if Z = (Z1, Z2, . . . , Zn) where the Zi are independent copies of the
truncated Poisson random variable Z, then

P

(
Z = ξ

∣∣∣∣ ∑
1≤j≤n

Zj = m

)
=

( ∏
1≤j≤n

zξj

(ez − 1)ξj!

)/(∑
x∈S

∏
1≤j≤n

zxj

(ez − 1)xj!

)

=

(
(ez − 1)−nzm

ξ1!ξ2! . . . ξn!

)/(∑
x∈S

(ez − 1)−nzm

x1!x2! . . . xn!

)
= P(dx = ξ).

Appendix B: Proof of Claim 3

We repeat the claim:

Claim 11. Suppose that x is a random member of Ω1 and that |Lx| = k, |Mx| = ℓ. Then

after ℓ P -switches and k + 2ℓ random L-switches we obtain y ∈ Ω
(0,0)
1 such that (i) y is

almost uniform in Ω
(0,0)
1 and (ii) |Ω(0,0)

1 | = (1 − o(1))|Ω∗
1|. (By almost uniform in (i) we

mean the following: if z is any member of Ω
(0,0)
1 , then P(y = z) = (1 + o(1))|Ω(0,0)

1 |−1.)

We need to have sharp estimates of the probability that
∑

1≤j≤n Z
′
j,
∑

1≤j≤n Z
′′
j are close to

their mean m. Let σ be as in (5). Section A of [11] proves the following proposition:

Proposition 1.

P

(
n∑

j=1

Z ′
j = m

)
=

1

σ
√
2πn

(1 +O(n−1σ−2)) (20)

and, if in addition, k = O(n1/2σ)

P

(
n∑

j=2

Z ′
j = m− k

)
=

1

σ
√
2πn

(
1 +O((k2 + 1)n−1σ−2)

)
. (21)

Recall that ∆x = maxj(d
−
x (j) + d+x (j)). Let

S1 = S1(x) =
∑
i∈[n]

d+x (i)(d
+
x (i)− 1). (22)

We next bound the sizes of Lx,Mx.
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Lemma 12. Suppose that x is drawn uniformly from Ω1 and that z denotes one of the
sequences constructed as we transform x to y as in Claim 3. Assuming that 2

5
log n ≤

m/n ≤ log n, then w.h.p. throughout the construction,

(a) ∆z < ∆0 = log2 n, with probability 1− (log n)−Ω(log2 n),

(b) |Lz| ≤ 2e2 log4 n, with probability 1− (log n)−Ω(log3 n).

(c) No two loops are adjacent in z, w.h.p.

(d) No edge is repeated more than twice in z, w.h.p.

(e) No two pairs of parallel edges share a vertex in z, w.h.p.

(f) No loop lies on a vertex that is also on a parallel edge in z, w.h.p.

(g) |Mz| ≤ e2 log4 n, with probability 1− (log n)−Ω(log4 n).

(h) |S1 −mz| ≤ n2/3, with probability at least 1− (log n)−Ω(log3 n), where S1 is given by (22).

Proof. We first observe that the function f(z) = zez/(ez − 1) is monotone increasing.

z

ρ
= 1− e−z and so ρ ≥ 2

5
log n implies that z ∼ ρ ≥ 2

5
log n. (23)

(a) Using our assumptions on m and (23) we see that σ2 ∼ z ∼ ρ. Then, We have

P(d+x (1) ≥ ∆0/2) ≤
P(Z ′

1 ≥ ∆0/2)

P
(∑n

j=1 Z
′
j = m

) ≤ ∑
j≥∆0/2

zj

j!(ez−1)

(1− o(1))/(σ
√
2πn)

≤

n1/2

(
2e

∆0

)∆0/2

= (log n)−Ω(log2 n). (24)

This upper bound holds for z too, as the total degree of a vertex does not change.

(b) Suppose that k = O(logO(1) n). Then, assuming

E
((
|Lx|
k

))
≤
(
m

k

)
P(x2j−1 = x2j, j = 1, 2, . . . , k)

P
(∑n

j=1 Z
′
j = m

)
P
(∑n

j=1 Z
′′
j = m

)
≤
(me

k

)k
σ2n

(
∆0

m

)k

= σ2n

(
e log2 n

k

)k

.

Then for t > 0 we have

P(|Lx| ≥ t) = P
((
|Lx|
k

)
≥
(
t

k

))
≤

E
((|Lx|

k

))(
t
k

) ≤ σ2n

(
e log2 n

t

)k

.
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Putting t = k = log3 n yields |Lx| ≤ log3 n with the required probability. Now |Lz| ≤
|Lx|+ 2|Mx| and so (b) will follow, once we verify (g) below.

(d) For this and (c) and (e) we need only prove the result for x. This is because under
the claimed circumstance, switches will preserve these properties. We rule out an edge
appearing at least three times. Let E1 be the event {x1 = x3 = x5 = 1} and let E2 be the
event {x2 = x4 = x6 = 2} and note that P(Ei) ≤ (∆0/m)3 for i = 1, 2.

P(¬(d)) ≤
(
m

3

)
n2 · P

(
E1
∣∣∣∣ n∑
j=1

Z ′
j = m

)
P

(
E2
∣∣∣∣ n∑
j=1

Z ′
j = m

)

=

(
m

3

)
n2 ·

P
(∑n

j=1 Z
′
j = m | E1

)
P(E1)

P
(∑n

j=1 Z
′
j = m

) ·
P
(∑n

j=1 Z
′′
j = m | E2

)
P(E2)

P
(∑n

j=1 Z
′′
j = m

)
≤ m3n2∆6

0

m6
·
P
(∑n

j=1 Z
′
j = m | E1

)
P
(∑n

j=1 Z
′
j = m

) ·
P
(∑n

j=1 Z
′′
j = m | E2

)
P
(∑n

j=1 Z
′′
j = m

) .

Now,

P

(
n∑

j=1

Z ′
j = m | E1

)
=

∆0∑
k=3

P

(
n∑

j=2

Z ′
j = m− k | E1, Z ′

1 = k

)
+ (log n)−Ω(log2 n)

=

∆0∑
k=3

P

(
n∑

j=2

Z ′
j = m− k

)
+ (log n)−Ω(log2 n)

∼ P

(
n∑

j=1

Z ′
j = m

)
, using (20) and (21).

Thus

P(¬(d)) ≤ 2m3n2∆6
0

n6
= o(1).

(e) In a similar vein,

P(¬(e)) ≤ (1 + o(1))

(
m

4

)
n3

(
∆0

m

)8

= o(1).

(c) In a similar vein,

P(¬(c)) ≤ (1 + o(1))

(
m

2

)
n

(
∆0

m

)4

= o(1).

(f) In a similar vein,

P(¬(f)) ≤ (1 + o(1))

(
m

3

)
n2

(
∆0

n

)6

= o(1).
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(g) Given (d), we can assume that Mx consists of pairs of repeated edges. Then, as in (b),

E
((
|Mx|
k

))
≤
(
m

2k

)
P(x2j−1 = x1, x2j = x2, j = 2, 3, . . . , k)

P
(∑n

j=1 Z
′
j = m

)
P
(∑n

j=1 Z
′′
j = m

)
≤ n2k

(
m

2k

)
P(x2j−1 = j − 1, x2j = j, j = 1, 2, . . . , k)

P
(∑n

j=1 Z
′
j = m

)
P
(∑n

j=1 Z
′′
j = m

)
≤ 4

(me

2k

)2k
n log2 n

(
∆0

m

)2k

= 4n1/2 log n

(
e log2 n

2k

)2k

.

And so for t > 0,

P(|Mx| ≥ t) = P
((
|Mx|
k

)
≥
(
t

k

))
≤

E
((|Mx|

k

))(
t
k

) ≤ 4n log2 n

(
e log2 n

4t1/2

)2k

.

Putting t = k = log4 n yields (f).

(h) Let Xj = Z ′
j(Z

′
j − 1)− E(Z ′

j(Z
′
j − 1)) = Z ′

j(Z
′
j − 1)−mz/n for j ∈ [n]. Let A = log6 n.

P(Xj ≥ A) ≤ P(Z ′
j ≥ log3 n) =

∑
j≥log3 n

zj

j!(ez − 1)
≤
(

e

log2 n

)log3 n

.

Putting X ′
j = min {Xj, A} we see that

P(|S1 −mz| ≥ n2/3) = P

(∣∣∣∣∣
n∑

j=1

Z ′
j(Z

′
j − 1)−mz

∣∣∣∣∣ ≥ n2/3

∣∣∣∣ n∑
j=1

Z ′
j = m

)

≤b (n
1/2 log n)P

(∣∣∣∣∣
n∑

j=1

Z ′
j(Z

′
j − 1)−mz

∣∣∣∣∣ ≥ n2/3

)

= (n1/2 log n)P

(∣∣∣∣∣
n∑

j=1

Xj

∣∣∣∣∣ ≥ n2/3

)

≤ (n1/2 log n)P

(∣∣∣∣∣
n∑

j=1

X ′
j

∣∣∣∣∣ ≥ n2/3

)
+ P(∃j : Xj ≥ A).

Now − log2 n ≤ X ′
j ≤ A and so by Hoeffding’s theorem

P(|S1(x)−mz| ≥ n2/3/2) ≤ (n1/2 log n) exp

{
− n4/3

2n(A2 + log2 n)

}
+ n

(
e

log2 n

)log3 n

.

Now |S1(z)− S1(x)| = O(log10 n) and this completes the proof of (h).
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Recall the definition of Ω
(k,ℓ)
1 = {x ∈ Ω1 : |Lx| = k, |Mx| = ℓ and P} where we define P =

P1 ∪ P2 where P1 is the property that the high probability events described in Lemma
12(a),(b),(g),(h) hold and P2 is similar, with reference to (c),(d),(e),(f). We note that
P(¬P1 = O((log n)− log2 n).

We define two bipartite graphs Γ1,Γ2. Firstly we define Γ1 = Γ1(k, ℓ) with bipartition

Ω
(k,ℓ)
1 ,Ω

(k+2,ℓ−1)
1 . Join x ∈ Ω

(k,ℓ)
1 to y ∈ Ω

(k+2,ℓ−1)
1 by an edge in Γ1 if y can be obtained from

x by a P -switch. Thus there are i, j ∈ Mx such that (i) y2i = x2i−1 and y2j−1 = x2i and (ii)
yt = xt for t /∈ {2i, 2j − 1}.

Lemma 13. Let d1 denote degree in Γ1.

(a) x ∈ Ω
(k,ℓ)
1 implies that d1(x) = ℓ.

(b) y ∈ Ω
(k+2,ℓ−1)
1 implies that d1(y) = (k + 1)(k + 2).

Proof. (a) Each pair of parallel edges in x yields two loops that are not adjacent because
Lemma 12 (d) holds.
(b) Each pair of loops in y yields two pairs of parallel edges, but does not create a triple
edge because Lemma 12 (c) holds.

We define Γ2 = Γ2(k) with bipartition Ω
(k,0)
1 ,Ω

(k−1,0)
1 . Join x ∈ Ω

(k,0)
1 to y ∈ Ω

(k−1,0)
1 by an

edge in Γ2 if y can be obtained from x by an L-switch. Thus there are i ∈ Lx and j /∈ Lx

such that (i) y2i = x2j−1, y2j−1 = x2i and (ii) yt = xt for t /∈ {2i, 2j − 1}.

Lemma 14. Let d2 denote degree in Γ2.

(a) x ∈ Ω
(k,0)
1 implies that k(m− k + 1−∆0) ≤ d2(x) ≤ k(m− k + 1).

(b) y ∈ Ω
(k−1,0)
1 implies that S1(y)− 2∆0 ≤ d2(y) ≤ S1(y).

Proof. (a) The upper bound is clear, we choose a loop and another non-loop and replace them
by two edges incident with vertex containing the loop. For the lower bound, we subtract
those j that would lead to a parallel edge containing vertex x2i−1.

(b) The degree of y ∈ Ω
(k−1,0)
1 in Γ2(k) is between S1(y)−2∆0 and S1(y). The upper bound is

clear, we choose a vertex v of y and two out-neighbours w1, w2 and replace (v, w1), (v, w2) by
(v, v), (w1, w2). For the lower bound, we subtract those choices that would create a parallel
edge.

Corollary 15. Assume that m ∼ 1
2
n log n and that k, ℓ ≤ 20e2 log2 n, then

|Ω(k,ℓ)
1 | =

(
1 +O

(
log4 n

n

))
θk+2ℓ

k!ℓ!
|Ω(0,0)

1 |,
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where θ = E(S1(x))/m, and by Lemma 12 (h), θ ∼ z. (Here the expectation of S1(x) is
over a random x from Ω1. Although it might seem necessary to define it over a random x in
Ω

(k,ℓ)
1 , S1 changes by a small enough amount as we make changes and so it suffices to stick

with the current definition.)

Proof. Applying Lemma 13 repeatedly, we see that for k, ℓ ≤ 20e2 log2 n, we have

|Ω(k,ℓ)
1 | = (k + 2ℓ)!

k!ℓ!
|Ω(k+2ℓ,0)

1 |. (25)

Then applying Lemma 14 repeatedly, we see that

|Ω(k+2ℓ,0)
1 | =

(
1 +O

(
(k + 2ℓ)∆0

(
1

E(S1)
+

1

m

)))
(E(S1))

k+2ℓ

(k + 2ℓ)!mk+2ℓ
|Ω(0,0)

1 |. (26)

Thus,

|Ω(k,ℓ)
1 | =

(
1 +O

(
log4 n

n

))
(E(S1))

k+2ℓ

k!ℓ!mk+2ℓ
|Ω(0,0)

1 |.

We can now complete the proof of Claim 3 as follows: we can write,

Ω1 =
⋃

k,ℓ≤20e2 log2 n

Ω
(k,ℓ)
1 ∪X,

where

X =
{
x ∈ Ω1 : (max {k, ℓ} > 20e2 log2 n) ∨ ((k, ℓ) ≤ 20e2 log2 n and ¬P)

}
.

So, ∑
k,ℓ≤20e2 log2 n

|Ω(k,ℓ)
1 | ≤ |Ω1| ≤

∑
k,ℓ≤20e2 log2 n

|Ω(k,ℓ)
1 |+|

{
x ∈ Ω1 : (max {k, ℓ} > 20e2 log2 n) ∨ ¬P

}
|.

Therefore, from Lemma 12 and Corollary 15,

∑
k,ℓ≤20e2 log2 n

θk+2ℓ

k!ℓ!
|Ω(0,0)

1 | ≤
(
1 +O

(
log4 n

n

))
|Ω1| ≤(

1 +O

(
log4 n

n

)) ∑
k,ℓ≤20e2 log2 n

θk+2ℓ

k!ℓ!
|Ω(0,0)

1 |+ |Ω1|(log n)−Ω(log2 n).

Now θ = O(log n) and so
∑

k,ℓ≤20e2 log2 n
θk+2ℓ

k!ℓ!
= eθ(θ+1)(1−O((log n)−Ω(log2 n))).

Now
Ω

(0,0)
1 ⊆ Ω∗

1 = {x ∈ Ω1 : Lx = Mx = ∅} ⊆ Ω
(0,0)
1 ∪ {x ∈ Ω1 : ¬P1} .
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Therefore,
|Ω(0,0)

1 | ≤ |Ω∗
1| ≤ |Ω

(0,0)
1 |+ |Ω1|(log n)− log2 n.

Because |Ω(0,0)
1 | ∼ e−θ(θ+1)|Ω1| and θ = O(log n), this implies that

|Ω∗
1| ∼ |Ω

(0,0)
1 | ∼ e−θ(θ+1)|Ω1| (27)

This completes the proof of Claim 3(ii). The above analysis also proves Claim 3(i). It shows

that choosing random switches leads to a near uniform member of Ω
(0,0)
1 , which is almost all

of Ω∗
1. Suppose we start with x chosen uniformly from Ω1 and that x ∈ Ω

(k,ℓ)
1 and that we

construct a sequence y1,y2, . . . ,yk+2ℓ where yk+2ℓ ∈ Ω
(0,0)
1 . Then for any y ∈ Ω

(0,0)
1 , we have

P(yk+2ℓ = y) =

(
1 +O

(
log4 n

m

))
1

|Ω1|

ℓ∏
i=1

(k + 2i− 1)(k + 2i)

i

k+2ℓ∏
j=1

E(S1)

jm

=

(
1 +O

(
log4 n

m

))
1

|Ω1|
E(S1)

k+2ℓ

k!ℓ!mk+2ℓ
.

The RHS is independent of the choice of x. This completes the proof of Claim 3.

Appendix C: Proof of Theorem 4

We observe that for an y > 0,

|Ω1| = (m![xm](ex − 1)n)2 =

(
m!(ey − 1)n

ym
[xm]

(
exy − 1

ey − 1

)n)2

. (28)

Notice that py(x) =
exy−1
ey−1

is the probability generating function of the random variable Z(y).
It then follows from (28) that

|Ω1| =
(
m!(ey − 1)n

ym
P(X1 +X2 + · · ·+Xn = m)

)2

(29)

where X1, X2, . . . , Xn are independent copies of Z(y). We choose y = z so that the proba-
bility in (29) is large. To finish we use (4) and (20) and (27). 2
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