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Abstract

1 Introduction

Diffusion limited aggregation. In the classical model of Diffusion Limited Aggregation
(DLA), introduced by Witten and Sander [10], [11], the process begins with a single particle
cluster placed at the origin of a space, and then, one-at-a-time, particles make a random
walk “from infinity” until they collide with, and stick to, the existing cluster. The process
is particularly natural in Euclidean space with particles making Brownian motion, or on
d–dimensional lattices. Simulations of DLA in two dimensions show tree-like figures with
long branches, and Kesten [6] proved that for lattices, if d = 2 the length of these arms
is at most order n2/3 and if d > 2, at most n2/d. A similar process, Reaction Limited
Aggregation (RLA), differs in that particles stick with probability less than one on each
collision. Indicative publications on RLA include Ball et al [2] or Meakin and Family [9].

A distinct but related process, Internal Diffusion Limited Aggregation (IDLA), was intro-
duced by Diaconis and Fulton [3], as a protocol for recursively building a random aggregate
of particles. In IDLA particles are added to the source vertex of an infinite graph, and make
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a random walk (over occupied vertices) until they visit an unoccupied vertex at which point
they halt. Thus the first particle occupies the source, and subsequent particles stick to the
outside of the component rooted at the source. Hence IDLA is the opposite of DLA, in
that the particles walk in the occupied vertices until they find a space, rather than walking
until they collide with the occupied component. The focus in IDLA has been on the limiting
shape of the component formed by the occupied vertices. The formative work by Lawler et
al [7], proved that, on d-dimensional lattices the limiting shape approaches a Euclidean ball;
a result subsequently refined in [1], [5] and [8], amongst others.

As pointed out by Kesten in Remark 3 of [6], the concept of releasing a particle ”from
infinity” is somewhat informal. In [6] this is circumvented by using the limiting distribution
of the first visit to the boundary of the current component from far away, conditional on
making such a visit. An alternative approach is to attach a source vertex to a large but finite
graph with a designated sink vertex. This analogue of DLA for finite graphs, was previously
studied by Frieze and Pegden [4] for the Boolean lattice B = {0, 1}n. In [4] the process
evolves at discrete time steps t = 0, 1, . . . ; each of which has an associated cluster Ct. The
initial cluster C0 consists of a single vertex 0 = (0, . . . , 0) ∈ B, the sink vertex. The cluster
Ct is produced from Ct−1 by choosing a random decreasing walk ρt from the source vertex
1 = (1, . . . , 1). Let v be the last vertex of the initial segment of ρt which is disjoint from
Ct−1, and set Ct = Ct−1 ∪ {v}. The process terminates at the first time tf when 1 ∈ Ctf .
The current paper continues this analysis of DLA on finite graphs by considering trees, and
other graphs with a layered structure.

The layers model. Let S0, S1, . . . , Sk, Sk+1 be disjoint sets of vertices, where Si is con-
nected to Si+1 by a complete bipartite graph, with edges directed from level i to level i+ 1,
to form a layered graph G. The set Si, at distance i from the source, forms layer i of G,
at level i. We assume S0 contains a single vertex v, the source vertex of the particles, and
Sk+1 contains a single vertex z the sink vertex of the particle cluster. Initially z is the only
occupied vertex. The sink vertex z is an artificial vertex added to ensure connectivity of Ct,
and to maintain compatibility with the hypercube model of [4].

Let Ni = |Si| be the size of set Si. For i = 1, . . . , k, the sizes of Si, are either taken to be the
same size, Ni = n/k (the equal layers model), growing geometrically so that Ni = di (the
growing layers model).

To simplify notation we assume that in the equal layers model G is an (n+ 1)–vertex graph
with layer sizes Ni = n/k for i = 1, .., k ; and that in the growing layers model, dk = n and
thus G is a (dk+1 − 1)/(d − 1)–vertex graph. Similarly for trees of height k and branching
factor d, we assume that the final level is of size dk = n.
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DLA in the layers model. Initially, at step t = 0 all vertices of G are unoccupied. A
step t consists of placing an active particle on the (unoccupied) source vertex and moving
the particle forward level by level according to a random walk ρt from source to sink until it
halts. To move forward from level i < k, the active particle currently at vertex u in level i
chooses a random neighbour w in level i + 1. If the neighbour w is unoccupied the particle
moves to w. If the neighbour w is occupied, the particle halts at vertex u in level i, occupies
that vertex and adds a directed edge (u,w) to the edge induced component Ct rooted at the
sink. As the sink z is occupied at the start, a particle reaching level i+ 1 = k halts there.

At any step, the component Ct is a rooted tree with edges directed towards the root, the
sink z. The process stops at a step tf , the finish time, when the source vertex v at level zero
is occupied by a halted particle. In which case there is a directed path connecting the source
v to the sink z, all of whose vertices are occupied by halted particles.

On deletion of the sink z, the digraph Dt = Ct\{z} consists of arborescences rooted at the
occupied vertices in level k. Let v = u0u1 · · ·ukuk+1 = z be the connecting path, the path
connecting source and sink at the end of the process. Perhaps the most surprising thing
is that in the digraph Dtf , with high probability the arborescence rooted at uk containing
the connecting path is precisely the connecting path v = u0u1 · · ·uk, and contains no other
vertices.

Theorem 1. Let v = u0u1 · · ·ukuk+1 = z be the path, connecting source and sink at the end
of the process. Let w = uk be the vertex at level k on this path. The following results hold
with high probability.

1. Equal layers model. For i = 1, ..., k let Ni = n/k.
Let

Tf = [(k + 1)!(n/k)k]1/(k+1) = nk/(k+1)γk

where γk = O(1) and γk → 1/e as k →∞.

Provided 1 ≤ k ≤
√

(log n)/(log log n), the finish time tf satisfies Tf/ω ≤ tf ≤ ωTf ,
where ω is any function tending to ∞.

2. Trees of branching factor d, and the growing layers model. For i = 0, ..., k let Ni = di.
Let

Tf =
√
k dk+3/2−

√
2k+2.

(a) Provided d → ∞, k → ∞, (and k � d for trees) the finish time tf satisfies

Tf/(ωd
O(1/

√
k)) ≤ tf ≤ ωTf .

(The extra term dO(1/
√
k) is there to deal with some rounding error in j∗.)

(b) At tf , levels i = 1, . . . , k − d
√

2k + 2 − 1e contain a single occupied vertex, the
vertex ui of the the connecting path.
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3. On termination, let v = u0u1, · · ·ukz be the path connecting source v and sink z in Ctf ,
and let Dtf = Ctf\{z}. In either model, with high probability, the vertices {u1, · · · , uk}
have in-degree one in Ctf . Thus the arborescence rooted at uk in Dtf is exactly this
connecting path.

The proof of Theorem 1 also gives an upper bound on the finish time of DLA for trees of
branching factor at least two.

Corollary 2. Let
T = dk+2−

√
2k+2+(1/2) log k.

For d ≥ 2, the expected finish time of DLA on a tree of branching factor d is O(T ).

Notation. We use An ∼ Bn to denote An = (1 + o(1))Bn and thus limn→∞An/Bn = 1.
We use ω to denote a quantity which tends to infinity with n more slowly than any other
variables in the given expression. The expression f(n) � g(n) indicates f(n) = o(g(n)).
The inequality A . B which stands for A ≤ (1 + o(1))B is used to unclutter notation in
some places.

2 Bounds on occupancy in the layers model

For t ≥ 0, let Li(t) be the number of particles halted in level i at the end of step t. Thus
Li(0) = 0 for all i ≤ k, and t =

∑k
i=0 Li(t). We refer to Li as the occupancy of level i. Note

that Lk(t) ≤ t, and Li(t) ≤ min(t, Ni).

The first step is to prove the following proposition.

Proposition 3. Let

µk−j(t) =
1

NkNk−1 · · ·Nk−j+1

tj+1

(j + 1)!
. (1)

Assume t < tf , and thus the process has not stopped. Provided µk−`(t) → ∞ for all ` ≤ j,
then Lk−j(t) ∼ µk−j(t) in all models.

Let H(t) = (L0(t), L1(t), . . . , Lk(t)) be the history of the process up to and including step t.

E (Li(t+ 1) | H(t)) = Li(t) +
Li+1(t)

Ni+1

i∏
j=0

(
1− Lj(t)

Nj

)
, i < k, (2)

E (Lk(t+ 1) | H(t)) = Lk(t) +
k∏
j=0

(
1− Lj(t)

Nj

)
. (3)
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Note that (3) follows from (2) as Lk+1(t)/Nk+1 = 1 for all t, and that if L0(t) = 1, the above
recurrences give Li(t+ 1) = Li(t).

To simplify matters for small t, we can condition on the event that Lk(s) = s for s ≤
√
Nk/ω,

an event of probability 1−1/ω, and use the fact that the evolution of (L0(t), L1(t), . . . , Lk(t))
is Markovian. Whatever happens, Li(t) is monotone non-decreasing in t.

2.1 Upper bound on occupancy at step t

The underlying random walk ρt, from source v to sink z defines a (v, z)-path given by
v = u0u1, ..., ukz = vk+1. Particle t follows this walk until halting at a vertex ui, where ui+1

is the first occupied vertex encountered on the path.

Let Bi(t) denote the occupied (blocked) vertices in level i at time t. We define an upper-

blocked process which we use to upper bound Li(t). This process gives rise to sets B̂i(t) ⊇
Bi(t) and random variables L̂i(t) = |B̂i(t)| ≥ Li(t). For every vertex uj, j ≤ k on the walk

ρt, if uj+1 is occupied add a vertex to B̂j(t) as follows. If uj 6∈ B̂j(t) add uj to B̂j(t+ 1). If

uj ∈ B̂j(t) add some other u′j ∈ Sj\B̂j(t) to B̂j(t+ 1).

In particular if particle t+1 halts at vertex ui in the DLA process, then either ui is added to
both Bi(t+ 1) and B̂i(t+ 1), or ui is already a member of B̂i(t). In either case Bi(t) ⊆ B̂i(t)

for all i and t ≥ 0. It follows (among other things) that Li(t) ≤ L̂i(t), and L̂k(t) = t. The

next lemma gives w.h.p. bounds for L̂i(t).

Lemma 4. Let µk−j(t) as be given by (1).

1. The expectations E L̂i(t) satisfy the recurrence

E (L̂i(t+ 1) | Ĥ(t)) = L̂i(t) +
L̂i+1(t)

Ni+1

. (4)

2. If j2/t = o(1) then E L̂k−j(t) ∼ µk−j(t).

3. If t ≥ tk−j(ω) as defined in (12) then w.h.p. L̂k−j(t) ∼ µk−j(t).

Proof. Equation (4) follows because the upper bound process increases the size of B̂j(t)

whenever the walk ρt contains a vertex of B̂j+1(t), this being true at all levels j = 0, ..., k.
We have

E (Li(t+ 1) | H(t)) ≤ Li(t) +
Li+1(t)

Ni+1

≤ L̂i(t) +
L̂i+1(t)

Ni+1

= E (L̂i+1(t+ 1) | Ĥ(t)).
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Iterating (4) backwards for 0 ≤ s ≤ t, and using L̂i(0) = 0, gives

E L̂i(t) =
1

Ni+1

t−1∑
s=0

E L̂i+1(s). (5)

We claim for j ≥ 0 that

1{t≥j}
(t− j)j+1

(j + 1)!
≤ (NkNk−1 · · ·Nk−j+1) E L̂k−j(t) ≤

tj+1

(j + 1)!
. (6)

For given t, the induction is backwards on k− j from j = 0. Now Nk+1 = 1 and L̂k+1(t) = 1

which implies that L̂k(s) = s for 0 ≤ s ≤ t. So, (6) is true when j = 0 and the first
non-trivial case is j = 1. From (5) we see that

E L̂k−1(t) =
1

Nk

t−1∑
s=0

s, (7)

which illustrates how (6) arises from bounding this sum.

For the general induction put i = k−(j+1), and multiply (5) by Mj−1 = NkNk−1 · · ·Nk−j+1.
Insert (6) with i+ 1 = k − j into this, to give

1

Nk−j

t−1∑
s=j

(s− j)j+1

(j + 1)!
≤Mj−1 E L̂k−(j+1)(t) ≤

1

Nk−j

t−1∑
s=1

sj+1

(j + 1)!
(8)

By comparison of the sum with the related integral we have that

(t− 1)m+1

m+ 1
≤ 1m + 2m + · · ·+ (t− 1)m ≤ tm+1

m+ 1
. (9)

Use (9) in (8) with m = j + 1, giving

1{t≥j+1}

Nk−j

(t− (j + 1))j+2

(j + 2)!
≤Mj E L̂k−(j+1)(t) ≤

1

Nk−j

tj+2

(j + 2)!
,

which completes the induction for (6). Moreover, provided j2/t = o(1),

E L̂k−j(t) =
1

NkNk−1 · · ·Nk−j+1

tj+1

(j + 1)!

(
1−O

(
j2/t

))
= µk−j(t)(1 + o(1)). (10)

This completes the proof of Lemma 4.(1) and Lemma 4.(2) . Note that tk−j(ω)� (n/k)1/k �
k2 for j ≥ 1, ensuring that j2/t = o(1) for j, t of interest.
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2.2 Concentration of L̂i(t) for sufficiently large t.

We now prove Lemma 4.(3) .

By definition, L̂k(t) = t = µk(t), establishing Lemma 4.(3) for j = 0.

We next consider L̂k−j(t) for 1 ≤ j ≤ k − 1. The random variable L̂k−j(t) is obtained by
choosing a random vertex u ∈ Sk−j irrespective of the current occupancy of u, and choosing

a random neighbour w ∈ Sk−j+1. If w is occupied then L̂k−j(t + 1) = L̂k−j(t) + 1. Thus,

L̂k−j(t+ 1) = L̂k−j(t) +Qk−j(t) where P(Qk−j(t) = 1) = (L̂k−j+1(t)/Nk−j) independently of
any previous outcomes.

In particular, EQk−1(t) = t/Nk, and by equation (7), E L̂k−1(t) = t(t− 1)/(2Nk) ∼ µk−1(t).
By Hoeffding’s Inequality,

P
(
L̂k−1(t) /∈ µk−1(t)

(
1± 1

ω

))
≤ 2 exp

{
−(1− o(1))t2

6ω2Nk

}
≤ 2e−ω (11)

if t ≥ 2ω3/2
√

2Nk.

For j ≥ 0 we proceed as follows: let t1 = t1(k− j) be such that µk−j(t1) = 1. Thus t1(k) = 1
and

t1(k − j) = [(j + 1)!NkNk−1 · · ·Nk−j+1]
1/(j+1).

The fact that t1(k−j+1)� t1(k−j) so that µk−j+1(t1(k−j)) is sufficiently large, is a model
dependent calculation given in subsequent sections. The statement of Lemma 4 assumes the
truth of this.

Let tk(ω) = 1, and for j ≥ 1, let tk−j(ω) = (4ω3)1/(j+1)t1(k − j) so that

tk−j(ω) = (4ω3)1/(j+1)[(j + 1)!NkNk−1 · · ·Nk−j+1]
1/(j+1), (12)

and µk−j(tk−j(ω)) = 4ω3.

Let Ej denote the event that L̂k−j(t) ∈ µk−j(t)(1 ± 1/ω) for t ≥ tk−j(ω). We claim that
P(Ej) ≥ 1− 2je−ω and we verify this by induction.

For j = 0, P(E0) = 1, and for j = 1, P(E1) ≥ 1− 2e−ω follows from equation (11). For j ≥ 2,
by Hoeffding’s inequality, we have that for t ≥ tk−j(ω),

P(¬Ej | Ej−1) ≤ 2 exp

{
−µk−j(t)

3ω2
(1− δ)

}
≤ 2 exp

{
−µ(tk−j(ω))

3ω2
(1− o(1))

}
≤ 2e−ω,

where δ = O(1/ω + j2/t), includes the correction from (10).

We complete the induction, on the assumption that log k � ω, via

P(¬Ej) ≤ P(¬Ej | Ej−1) + P(¬Ej−1) ≤ 2e−ω + 2(j − 1)e−ω = 2je−ω = o(1). (13)
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2.3 Lower bound on occupancy at step t

A lower bound L̃i(t) on Li(t) can be found as follows. We consider a process in which a

particle halts at level i whenever it chooses an out neighbour in B̂i+1(t). Let L∗j(t) bound

L̂j(t) from above w.h.p. Let L̃i(t) be obtained by replacing L by L∗ in in the bracketed terms

on the RHS of (2)–(3). Then L̃ ≤ L ≤ L̂ w.h.p., and we have the following recurrences.

E L̃i(t+ 1) = E L̃i(t) +
E L̃i+1(t)

Ni+1

i∏
j=0

(
1−

L∗j(t)

Nj

)
, (14)

E L̃k(t+ 1) = E L̃k(t) +
k∏
j=0

(
1−

L∗j(t)

Nj

)
. (15)

The solution to these recurrences is given in Section 3.2 for the equal layers model, and in
Section 4 for the growing layers model.

3 Analysis of DLA in the equal layers model

The first subsection below shows that provided k is not too large, then w.h.p. there exists a
large gap in the number of steps between the time for which E L̂k−j = 1 with all lower values

zero, and the time for which E L̂k−(j+1) = 1. This gap allows L̃k−j to increase and become
concentrated, whilst at the same time all lower values remain zero w.h.p. This allows us to
conclude that provided µi(t) is sufficiently large, Li(t) is concentrated around µi(t). We use
this to conclude that L0(t) = 0 until L1(t) → ∞ suitably fast, and thus estimate the finish
time of the DLA process in the equal layers model.

3.1 Evolution of the state vector L̂ in the equal layers model.

Let L̂ = (L̂0, L̂1, . . . , L̂k) be the state vector of the upper-blocked process. The entries in L̂

are non-negative integers, and if L̂i = 0, then L̂i−1 = 0. Let

Tf = [(k + 1)!N1 · · ·Nk]
1/(k+1) , (16)

where N1 = · · · = Nk = n/k. It will be shown below that Tf is asymptotically the expected
finish time. The following argument for t ≤ ωTf proves there is a large enough gap t′′ − t
between µk−j(t) = 1 and µk−(j+1)(t

′′) = 1 for L̂k−j(t
′′) to be concentrated.

Define β = βk = Nk/ωTf . As

[(k + 1)!]1/(k+1) = kΘ(1 + k3/2k) = kΘ(1),
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then

β =
Nk

ωTf
=

n/k

ω[(k + 1)!(n/k)k]1/(k+1)
= Θ(1)

1

ωk

(n
k

)1/(k+1)

. (17)

We can assume that β ≥ (log n)k/2. This will be true if ω ≤ log n since we assume that
k ≤

√
(log n)/ log log n.

We have for any t ≤ ωTf , using that Nk−j = Nk = n/k in the equal layers model, that

µk−(j+1)(t) =
t

(j + 2)Nk−j
· µk−j(t) ≤

1

jβ
µk−j(t), (18)

and similarly

µk−(j+`)(t) =
t

(j + `+ 1)Nk−`−1
· µk−(j+`)−1(t) ≤

1

(jβ)`
µk−j(t), for 1 ≤ ` ≤ k − j. (19)

Consider E L̂k−j(t). When µk−j(t) ∼ 1, then E L̂k−j(t) ∼ 1 and the Markov inequality implies

that w.h.p. L̂k−j(t) ∈ Iω = [0, 1, ..., ω]. From (18)–(19), when µk−j(t) ∼ 1,

µk−(j+`)(t) ≤
1 + o(1)

(jβ)`
, for 1 ≤ ` ≤ k − j, (20)

and thus w.h.p. L̂0 = 0, L̂1 = 0, . . . , L̂k−(j+1) = 0.

By arguments similar to that for (18), (19), we see that

µk−j+`(t) ≥ µk−j(t) j(j − 1) · · · (j − `+ 1) β` for ` ≤ j.

So if µk−j(t) ∼ 1 then for ` ≤ j, µk−j+`(t) → ∞ and L̂k−j+` is equal to (1 + o(1))E L̂k−j+`
w.h.p. (As already remarked at the end of Section 2.1, k2/t = o(1) for t of interest here and
we can invoke Lemma 4.) Thus at times t such that µk−j(t) ∼ 1 (implying that t ≤ ωTf ),

w.h.p., the state vector L̂ is such that µk−` →∞ for ` ≤ j − 1, and

L̂(t) = (0, . . . , 0, L̂k−j ∈ Iω, (1 + o(1))µk−j+1, (1 + o(1))µk−j+2, . . . , (1 + o(1))µk). (21)

Define t′ > t so that E L̂k−j(t′) ∼ µk−j(t
′) = ω where ω →∞ but ω � β. It follows from (1)

that t′ ∼ ω1/(j+1)t. Using Tf = γkn
k/(k+1) from Proposition 5.1, for j < k we have t′ ≤ ωTf

which follows from t′ = Θ(1)ω1/(j+1)N
j/(j+1)
k � ωTf for ω growing sufficiently slowly,

µk−(j+1)(t
′) =

t′

(j + 2)Nk

ω ≤ ω

β
, µk−j(t

′) = ω, µk−j+1(t
′) =

(j + 1)Nk

t′
ω ≥ ωβ.

Choosing log log n ≤ ω � β, we have that w.h.p. L̂k−(j+1)(t
′) = 0 as before and µk−j+1 ≥

ω log n. But now

L̂(t′) = (0, ..., 0, (1 + o(1))µk−j, (1 + o(1))µk−j+1, ..., (1 + o(1))µk). (22)
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This condition persists until t′′ such that µk−(j+1)(t
′′) ∼ 1. Equating µk−j(t) ∼ 1 ∼

µk−(j+1)(t
′′) and using t ≤ ωTf gives

(t′′)j+2 ∼ tj+1(j + 2)Nk =⇒ t′′ ≥ t

(
Nk

t

)1/(j+2)

≥ tβ1/k ≥ t(log n)1/2,

by our choice of β. We conclude that t′′ ≥ (log n)1/2t, so the claimed gap exists.

3.2 Lower bound on occupancy in the equal layers model.

Let L∗j(t) = ωµj(t). By (21), (22) of the previous section, this is a w.h.p. upper bound on

L̂j(t) for t ≤ ωTf . Referring to (14)–(15), we claim that

i∏
j=0

(
1−

L∗j(t)

Nj

)
≥ 1−

i∑
j=0

(
L∗j(t)

Nj

)
≥ 1− iL∗i (t)

Ni

= 1− o(1). (23)

Note first that as Tf = O(knk/(k+1)) and Nk = n/k, then provided k ≤
√

log n/ log log n and
ω grows sufficiently slowly,

kω2Tf
Nk

= O

(
ω2k2+1/(k+1)

n1/(k+1)

)
= o(1); (24)

and as Nk−j+1 = Nk and µk−j(t)/µk−j+1(t) = t/(j + 1)Nk−j+1 = o(1) by (24), it follows that

µk−j(t)/Nk−j ≤ t/Nk. (25)

Thus (23) follows from (24), (25) and

jL∗j(t)

Nj

=
jωµj(ωTf )

Nj

≤ kωµk(ωTf )

Nk

≤ kω2Tf
Nk

= o(1). (26)

Let ti(ω) be given by (12). For those i ≤ k, and t ≥ ti(ω), so that µi(t)→∞ suitably fast,

we obtain that E L̃i(t) ∼ µi(t) ∼ E L̂i(t) and thus w.h.p.,

ELk−j(t+ 1) ∼ E L̂k−j(t+ 1) ∼ tj+1

(j + 1)!

1

NkNk−1 · · ·Nk−j+1

. (27)

As Li(t) ≤ L̂i(t) by construction, and w.h.p. L̂i(t) ≤ (1 + o(1))E L̂i(t), this implies Li(t) ≤
(1 + o(1))µi(t) w.h.p., if µi(t)→∞.
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At step t+ 1, equation (23) implies that, in the DLA-process, particle t+ 1 arrives at level i
with probability (1 − o(1)). It halts at this level with probability Li+1(t)/Ni+1 = o(1), (see
(2), (25)), and thus w.h.p. all but t(1− o(1)) particles arrive at level k, the o(1) term being
given in (26).

It is an induction on ` = k − 1, . . . , i in that order, that provided t ≥ t`(ω), then µ`(t) →
∞ sufficiently fast, the values Lk(t), Lk−1(t), . . . , Li(t) are concentrated in the lower tail,
according to the arguments in Section 2.2. Thus Li(t) ∼ µi+1(t) w.h.p..

In the case that E L̂i(t) = o(1) then a fortiori Li(t) = 0 w.h.p., and if E L̂i(t) = O(1) then
w.h.p. Li(t) ≤ ωµi(t). We can thus argue that a gap theorem similar to that in Section 3.1
holds for the state vector L = (L0, L1, . . . , Lk).

In particular, and most importantly, let t1 = t1(0) be such that µ0(t1) = 1, and thus t1∼Tf .
Let t′ = t1/ω. Then w.h.p., L0(t

′) = O(1/ω) and EL1(t
′) ≥ β/ω where β is given in (17). It

follows that for t ≥ t′, L1(t) is concentrated around µ1(t).

This completes the proof of Proposition 3 for the equal layers model.

3.3 Finish time of DLA in the equal layers model.

Proposition 5. For k ≥ 2, let G be an equal layers graph with level sizes Ni = n/k,
i = 1, ..., k. Let Tf be given by (16), then

1. Tf = nk/(k+1)e−1(1 +O(log k/k))

2. With high probability, the finish time tf of the DLA process in G satisfies
Tf/ω ≤ tf ≤ ωTf , where ω →∞ arbitrarily slowly.

Proof. Note that

(k + 1)!

kk
∼ 1

kk

√
2πe−(k+1)kk+3/2(1 + 1/k)k+3/2 = e−(k+1) Θk,

where Θk ∼ (e1−1/k+O(1/k2)
√

2πk3/2). Thus

Tf = [(k + 1)!N1 · · ·Nk]
1/(k+1) =

(
(k + 1)!

kk
nk
)1/(k+1)

= n
k

k+1 e−1(Θk)
1/(k+1), (28)

where (Θk)
1/k+1 = eO(log k/k) is bounded for k ≥ 2 and tends to one as k →∞.

The choice of Tf is such that E L̂0(Tf ) ∼ 1, indeed from (10)

E L̂0(Tf ) = 1 +O

(
k2

Tf

)
= 1 +O

(
k2

nk/(k+1)

)
, (29)
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which is 1 + o(1), provided k = o(
√
n) say. Moreover E L̂0(Tf/ω) ∼ 1/ωk+1 proving that

tf = Ω(Tf ) w.h.p.

The value of E L̂k−j(t) is monotone decreasing with increasing j. This follows from (18)
because Tf = o(Nk), making β large, see (28). We next investigate the concentration of
L1(Tf ), which continues the discussion in the last paragraph of the previous section.

EL1(Tf ) ∼ µ1(Tf ) ∼
(Tf )

k

k!(n/k)k−1
=

1

k!
[(k + 1)!)k(n/k)]

1
k+1 = Θ(n1/(k+1)k−3/2(k+1)). (30)

For concentration of L̂1(Tf ) we require EL1(Tf )→∞, which occurs whenever k = o(log n).

At this point in the process, even if L0(Tf ) = 0, the expected waiting time for a particle to
hit L1(Tf ) is O(nk/(k+1)/k) = O(Tf ), so w.h.p. this will occur by time ωTf , completing the
proof of Proposition 5, and hence Theorem 1.1.

3.4 Existence of a unique connecting path component.

We regard occupied vertices as coloured either red or blue, with all occupied vertices in level
k coloured blue.

A particle halts at vertex u in level i, if it chooses an edge uw to an occupied neighbour w in
level i+ 1. We consider this edge uw as being directed from u to w in the component rooted
at the sink. If u is the first in-neighbour of w then u is coloured blue. If however w already
has an in-neighbour u′, then u, u′ and all other in-neighbours are (re)coloured red. At any
step, the red vertices in a level are those with siblings, and the blue ones are the unique
in-neighbour of some vertex in the next level. The process halts when there is a directed
path of occupied vertices v = u0u1 · · ·uk from the source to level k.

Lemma 6. With high probability, the path v = u0u1 · · ·uk = w from the source to level
k is blue and thus the in-arborescence of halted particles rooted at w = uk is exactly this
(v, w)-path.

Proof. As before, let Bi be the set of occupied vertices in level i, where Li = |Bi|. As each
u ∈ Bi has a unique out-neighbour, the subset Out(Bi) of Bi+1 with at least one in-neighbour
has size at most Li.

Let 1{k−j,s} be the indicator that particle s halts in level k − j and is coloured red due to a
pre-existing sibling. In this case particle s has chosen an out-neighbour in the existing set
Out(Bk−j) ⊆ Bk−j+1, and thus

E 1{k−j,s} ≤
E L̂k−j(s)

(n/k)
∼ µk−j(s)

(n/k)
.
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If Zk−j(t) is the number of red vertices in level k − j, then

EZk−j(t) . 2
t∑

s=1

µk−j(s)

(n/k)
=

2

(n/k)

t∑
s=1

sj+1

(j + 1)!(n/k)j

∼ 2
tj+2

(j + 2)!(n/k)j+1
= 2µk−(j+1)(t). (31)

The factor 2 covers the case where the pre-existing sibling was blue but is recoloured red.

Define a random variable Ẑk−j(t) = Zk−j(t) + Qk−j(t) ≥ Zk−j(t), where Qk−j is Bernoulii

Be(pk−j), with pk−j = (L̂k−j − |Out(Bk−j)|)/(n/k). As µi →∞ at tf for all i ≥ 1, for i ≥ 2,

Ẑi(tf ) = (1 + o(1))E Ẑi(tf ) w.h.p., since Zi(tf ) ≤ Ẑi(tf ) ≤ L̂i(tf ). On the other hand, by

definition EL0(Tf ) = 1, so by the Markov Inequality Z1(tf ) ≤ Ẑ1(tf ) ≤ ω.

Consider the colour of the path v = u0u1u2 · · ·uk at t ≤ tf . Vertex v is blue as it is the first
neighbour of u1. Let Ri(s) be the red vertices in level i at step s. Vertex u1 was chosen u.a.r.
so, as µ0(Tf ) ∼ 1 (see (29)), µ1(Tf ) = Θ(1)n1/(k+1) (see (30)), and tf ≥ Tf/ω,

P(u1 ∈ R1(t)) =
Z1(t)

L1(t)
≤ ω

µ1(t)
≤ ω2

n1/(k+1)
. (32)

Let s1 be the step at which u1 = u1(s1) was occupied by a halted particle. This happened
because s1 chose an occupied out-neighbour u2 = u2(s2), where s2 < s1. If u2 is red at step
t, then either it became red before step s1, or at some later step. As u2 was chosen u.a.r. by
the particle s1 at u1 from among the L2(s1) occupied vertices in level 2,

P(u2 ∈ R2(s1)) =
Z2(s1)

L2(s1)
. 2ω

µ1(s1)

µ2(s1)
=

2ωs1
k(n/k)

=
2ωs1
n

.

The factor of 2 is from (31) and ω covers lack of concentration of Ẑ2 or L2, if s1 is early. If
u3 is the chosen out-neighbour of u2,

P(u2 ∈ R2(t)\R2(s1)) ≤
1

(n/k)

t∑
τ=s1+1

E 1{u3 chosen at τ} =
t− s1
(n/k)

.

Thus

P(u2 ∈ R2(t)) ≤
ωkt

n
,

and similarly for u3, . . . , uk−1. Thus

P((v, uk)–path is blue) ≥
k−1∏
i=1

(
1− ωkt

n

)
= 1−O

(
ωk2t

n

)
,
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where t ≤ tf ≤ ωnk/(k+1). Provided ωk2/n1/(k+1) = o(1), which holds for 3k log k ≤ n, the
path from the source to vertex w = uk level k is blue, and thus the in-arborescence root at
w is exactly this path.

4 Analysis of DLA in the growing layers model

Proposition 7. Let G be a growing layers graph with level sizes Ni = di, for i = 0, ..., k.
Let

Tf =
√
k dk+3/2−

√
2k+2. (33)

Let j = max{i : (2k + 2) ≥ i(i + 1)}, and let j∗ =
√

2k + 2 − 1 be the solution to 2k + 2 =
i(i+ 1).

1. Provided d → ∞, k → ∞, and j = j∗ the finish time tf satisfies Tf/ω ≤ tf ≤ ωTf ,
where ω →∞ arbitrarily slowly.

2. If j 6= j∗ the error in finish time tf above introduced by ignoring rounding is d−O(1/
√
k),

and thus Tfd
−O(1/

√
k)/ω ≤ tf ≤ ωTf .

3. At tf , levels i = 1, . . . , k − d
√

2k + 2 − 1e contain a single occupied vertex, the vertex
ui of the the connecting path.

Proof. The size Ni of layer i is defined as di. It follows that the product of the set sizes in
the denominator of µk−j(t) in (1) is given by

NkNk−1 · · ·Nk−j+1 = dkdk−1 · · · dk−j+1 = dkj−j(j−1)/2,

and thus (1) becomes

µk−j(t) =
tj+1

(j + 1)! dkj−j(j−1)/2
. (34)

Assume d is sufficiently large. The upper bound E L̂k−j is obtained in Section 2. However,
a problem can arise in the growing layers model in the upper bound calculations. The
value of µk−j can decrease with increasing j and then (anomalously) increase again. This
is presumably because the recurrence used to establish it assumes µk−` → ∞ for all ` < j,
which is not the case.

Let t be such that µk−j(t) = 1, and let t1 = t1(k − j) be dte, so that µk−j(t) ∼ 1 at step t1.
From (34),

µk−j(t1) =
tj+1
1

(j + 1)! dkj−j(j−1)/2
∼ 1 =⇒ t1 ∼ [(j + 1)!]1/(j+1) d

2kj−j(j−1)
2(j+1) . (35)
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From (1)
µk−j+1(t)

µk−j(t)
=

(j + 1)dk−j+1

t
,

so setting µk−j(t1(k − j)) ∼ 1 gives

µk−j+1(t1) ∼
j + 1

[(j + 1)!]1/j+1
dk−j+1− 2kj−j(j−1)

2(j+1)

∼ e

(2π(j + 1))1/2(j+1)
d

2k+2−j(j+1)
2(j+1) . (36)

The leading term on the RHS is bounded, and the exponent of d on the RHS is positive
provided 2k + 2 > j(j + 1), which ensures that E L̂k−j+1(t) is sufficiently large close to
t1(k − j).
What value of k − j maximizes the step t1 = t1(k − j) at which µk−j(t) ∼ 1? Write the
exponent of d on the RHS of (35) as f(j)/2 where

f(j) =
2kj − j(j − 1)

(j + 1)
= (2k + 2)− j − 2k + 2

j + 1
.

The maximum of f(j) occurs when (j∗ + 1)2 = (2k + 2), giving f(j∗) = (j∗)2. The (not
necessarily integer) value of j∗, k − j∗ and df(j

∗)/2 are

j∗ =
√

2k + 2− 1, k − j∗ = k + 1−
√

2k + 2, df(j
∗)/2 = dk+3/2−

√
2k+2. (37)

Integer solutions to (j∗+1)2 = (2k+2) exist for some values of k. Let a be a positive integer,
and put j∗ + 1 = 2a so that k = 2a2 − 1; this holds for example for k = 1, 5, 17, 31. In the
case that j∗ is not integer, we address the rounding error at the end of this section.

Ignoring rounding for now, we evaluate t1 = t1(k − j), at j = j∗ where f(j) = j2, to find

t1 ∼ [(j + 1)!]1/(j+1) df(j)/2

∼ e−1(
√

2π)1/(j+1) (j + 1)1+1/2(j+1) dj
2/2

= Ck−j
√

2k + 2 dk+3/2−
√
2k+2, (38)

where Ck−j = O(1). Note that t1 = Θ(Tf ). From (34),

µk−(j+1)(t)

µk−j(t)
=

t

(j + 2)dk−j

so that at t1, for some C, C ′ = O(1),

µk−j∗(t1) ∼ 1, µk−(j∗−1)(t1) = Cd1/2, µk−(j∗+1)(t1) = C ′d1/2.
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At first this seems confusing, as one would expect to have µk−(j∗−1)(t1) = Cd1/2 = o(1) here.

But assuming d1/2 →∞, E L̂k−j∗+1 = C ′′d1/2, which is the last value at which the condition
µk−j+1 →∞ is valid in the recurrence from k − j + 1 to k − j; and is where the assumption
in Proposition 3 breaks down.

Note that at t1/ω, µk−j∗(t1/ω) = O(ω−(j
∗+1)) from the definition of t1(k − j∗). Thus w.h.p.

L̂k−j∗(t1/ω) = o(1) in the upper process. Consequently all levels k − `, ` ≥ j∗, are zero,
w.h.p. in both the upper and the DLA process. In which case, as occupancy is monotone
non-decreasing, this holds in the state vector L(t) of the DLA process, for all t ≤ t1/ω and
all ` ≥ j∗.

For ` < j∗, as in the equal layers model we will use (23) to obtain (27). To do this we check
conditions (24) and (25) for t ≤ tf . Provided k →∞, but k = o((log n/ log log n)2),

kω2Tf
Nk

=
ω2k3/2dk+3/2−

√
2k+2

dk
= ω2k3/2d3/2−

√
2k+2 = o(1); (39)

and as Nk−j = dk−j, and j∗ + 1 =
√

2k + 2,

µk−`(t)

µk−`+1(t)
=

t

(`+ 1)dk−`+1
≤ ω
√
kd1/2−

√
2k+2+` ≤ ω

√
kd1/2−

√
2k+2+j∗−1 = ω

√
kd−3/2,

provided t ≤ ωTf . Thus provided d > kω2,

µk−`(t)

Nk−`
≤ ω
√
k

d3/2
µk−`+1(t)

Nk−`
=
ω
√
k

d1/2
µk−`+1(t)

Nk−`+1

≤ µk−`+1(t)

Nk−`+1

.

As µk(t) = t, it follows that
µk−j(t)/Nk−j ≤ t/Nk, (40)

and thus (26) holds. As before, let ti(ω) be given by (12). For those i ≤ k, and t ≥ ti(ω),

so that µi(t) → ∞ suitably fast, we obtain that E L̃i(t) ∼ µi(t) ∼ E L̂i(t), and we have

Lk−`(t) ∼ L̂k−`(t) ∼ µk−`(t).

Let t0 be the first step at which Lk−j∗(t) = 1. Then either t0 ≤ t1, or, as the probability a
particle halts at level k − j∗ is

φ =
Lk−(j∗−1)(t1)

Nk−(j∗−1)
∼ Cd1/2

dk−j∗+1
=

C

dk+3/2−
√
2k+2

;

the probability this does not occur in a further t1 steps is, see (38),

(1− φ)t1 ≤ e−t1φ = e−(1+o(1))C
√
2k+2 = o(1),
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assuming k →∞. As L̂k−j∗(max(t0, t1)) ≤ ω, w.h.p.; we assume that Lk−j∗(max(t0, t1)) ≤ ω,
and for ` > j∗, Lk−` = 0.

Let u be the vertex in level k−j∗ containing the unique particle halted at t0. Construct a path
back from u to the source as follows. Wait until a particle halts at wk−j∗−1 in level k− j∗−1
by choosing edge wk−j∗−1u. The expected time for this is dk−j

∗
. In a further expected time

dk−j
∗−1, the path will extend backwards, as a particle will halt in level k− j∗−2 by choosing

edge to wk−j∗−1 etc. Thus in a further

T = dk−j
∗

+ dk−j
∗−1 + · · ·+ d = dk−j

∗
(

1− 1/dk−j
∗

1− 1/d

)
= Θ(dk−j

∗
) = Θ(dk+1−

√
2k+2)

expected steps there will be a path vw1 · · ·wk−j∗−1u of halted particles extending from the
source v to vertex u thus stopping the DLA process (if it has not already halted). This path
should be unique, as the expected time for it to branch backwards at any level i is di � di−1

if d→∞.

On the other hand the time to create another halted particle in level k − j∗ has expected
value

1

φ
= Θ(dk+3/2−

√
2k+2) = Θ(Td1/2).

On the assumption that d → ∞, in at most ω(t1 + T ) steps the process has halted w.h.p.,
as claimed.

The effect of rounding error in j∗. In the case that j∗ is not integer, we require the
maximum j such that 2k + 2 > j(j + 1). Clearly j = bj∗c satisfies 2k + 2 > j(j + 1), but
what about j = dj∗e? Put j = j∗ + ε. Further analysis, not given here, shows that the
condition 2k + 2 ≥ j(j + 1), is satisfied by j = dj∗e up to some ε ∈ (1/2, 1).

Let j = max{i : (2k + 2) ≥ i(i + 1)} and suppose that j = bj∗c so that j∗ = j + ε. Let
TM = Θ(t1(k − j)) be given by

TM =
√
kd

1
2
(2k+2−j−(2k+2)/(j+1)),

be a revised estimate of the order of the halting time, where TM ≤ Tf as j∗ maximizes Tf .

As j∗ =
√

2k + 2− 1, Tf =
√
kd(j

∗2/2), see (37), and 2k + 2− j∗ − (j∗)2 =
√

2k + 2,

TM
Tf

=d
1
2((2k+2)−j∗+ε− 2k+2

j∗+1−ε
−(j∗)2 )

=d
1
2

(√
2k+2−

√
2k+2

1−ε/(
√
2k+2)

+ε
)

=d
− ε2

2
√
2k+2

(1+O(1/
√
k))
.

Choosing j = dj∗e = j∗ + ε gives the same result. Thus the effect of rounding is to alter Tf
by Θ(1)d−O(1/

√
k).
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Existence of a unique connecting path component. Finally, we prove that the ar-
borescence rooted at level k containing the connecting path from source to sink, consists
uniquely of that path. The proof is similar to Lemma 6 for the equal layers model. At tf ,
w.h.p. there is a unique path from level k − j∗ to level zero, so that level k − j∗ + 1 plays
the role of level one. By analogy with (30),

P(uk−j∗+1 ∈ Rk−j∗+1(t)) =
Zk−j∗+1(t)

Lk−j∗+1(t)
≤ ω

µk−j∗+1(t)
≤ O

(
ω2

d1/2

)
,

where we used an earlier result that µk−(j∗−1)(t1) = Cd1/2.

Thus as tf ≤ ωt1(j
∗), where j∗ =

√
2k + 2− 1 and t1(k − j∗) is given by (38)

P((v, uk)–path is blue) ≥
(

1− ω2

d1/2

) j∗−2∏
j=1

(
1− ωtf

dk−j

)
= 1−O

(
ω2

d1/2

)
−O

(
ω
√
k

d3/2

)
.

5 DLA on trees with large branching factor

Let G be a labelled tree with branching factor d and final level k, such that dk = n. As
before, the source of the particles is the unique vertex v at level zero, an artificial sink vertex
z at level k + 1 is attached to the vertices at level k, and Si is the set of vertices in level i.

Let j∗ =
√

2k + 2− 1, and let Tf be given by

Tf =
√
k dk+3/2−

√
2k+2. (41)

The average number of particles arriving at a vertex x at level k−j∗ by step Tf is order
√
kd,

and the distance j∗ to level k is less than this. However, the average number of particles
passing through a vertex w at level k − j∗ + 1 by step Tf is

Tf
dk−j

=

√
k

d
= o(1), (42)

provided k � d, which we assume to be true. Thus the event that j∗ particles have arrived
at w is an upper tail event. There should be few vertices w with a path to level k consisting
of j∗ such halted particles. We assume henceforth that j ≤ j∗ − 1, and look for such paths.

Let Xw = Xw(k−j, `, t) be the indicator for the event that exactly ` particles reach vertex w
in level k− j at or before step t. On the assumption that all levels i < k− j are unoccupied
at t,

EXw =

(
t

`

)(
1

dk−j

)`(
1− 1

dk−j

)t−`
. (43)
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Let X =
∑

w∈Sk−j
Xw be the number of vertices at level k − j which have exactly ` = j + 1

particles reaching them. Thus EX = dk−jEXw, and

EX(X − 1) =(dk−j)(dk−j − 1)

(
t

2`

)(
2`

`

)(
1

dk−j

)`(
1

dk−j − 1

)`(
1− 2

dk−j

)t−2`
=

(
1 +O

(
`

dk−j

))
(EX)2.

Thus, as X ≤ tf/` deterministically,

VarX = EX +O

(
`

dk−j

)
(EX)2 = (1 +O(

√
k/d) EX = (1 + o(1))EX. (44)

Let ` = j+1. The probability the particles arriving at w form a path w = w0w1w2 · · ·wj = u
of halted particles from level k − j to level k is obtained as follows. Let 1 ≤ s0 ≤ s1 ≤ s2 ≤
· · · ≤ sj ≤ t be the steps (and particle labels) of the halted particles forming this path. Thus
s0 reaches wj = u an event of probability 1/dj, s1 reaches wj−1 and picks u as a neighbour,
an event also of probability 1/dj and so on, and finally sj picks w1 as a neighbour and halts
at w, an event of probability 1/d. Thus

P(path w0w1 · · ·wj | (j + 1) arrivals at w) =
1

dj
1

dd2 · · · dj
.

We call such a path exact if the halted particles on the path are the only particles in the
sub-tree from level k − j to level k rooted at w. Let Yw be the number of exact paths from
w to level k at step t. As there are dj choices for u given w, we have

EYw =dj
1

dj
1

dd2 · · · dj

(
t

j + 1

)(
1

dk−j

)j+1(
1− 1

dk−j

)t−(j+1)

=(1−O(j2/t))
1

dk · · · dk−j
tj+1

(j + 1)!
e−t/d

k−j

(45)

∼ tj+1

(j + 1)!

1

dk · · · dk−j
=
µk−j(t)

dk−j
, (46)

where µk−j(t) is given by (34), and we used the assumption (42) that j ≤ j∗ − 1. Let
Y (k− j, j+ 1, t) =

∑
Yw be the number of exact paths from level k− j to k at step t. There

are dk−j choices for w, so EY ∼ µk−j(t).

The value t1(k − j∗) from (38) satisfies t1 = Θ(Tf ) where Tf is from (33). Using (36) and
(37) we obtain that

µk−j∗+1(Tf ) = Θ(d1/2),
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so EY (k − j∗ + 1, j + 1, t1(k − j∗) ∼ µk−j∗+1(t1) = Θ(d1/2).

Comparing (43) and (46), we see that EY = EX/dj(j+1)/2, and thus EX = Θ(d1/2+j(j+1)/2).
By the Chebychev inequality, w.h.p. X ∼ EX(k − j, j + 1, t), see (44). The events of exact
path construction at vertices w,w′ of level k−j are independent, given exactly j+1 particles
arrive at each of w,w′. As EY (k− j, j + 1, t) = Θ(d1/2) where d→∞, then, for some small
ε > 0, w.h.p. (1− ε)EY ≤ Y ≤ (1 + ε)EY . Conditional on this, Y = Θ(d1/2).

Next consider that ` ≥ j + 2 particles reach vertex w, so that the path is not exact, as at
least one other halted particle occupies the sub-tree rooted at w. Let Q(k − j, `, t) be the
number of these events. Then, provided (42) holds,

∑
`≥j+2

EQ(k − j, `, t) = Θ(1)
t

dk−j
EY = O(1)

√
k

d
EY = o(EY ).

From Section 4, at time t1(k− j∗)/ω, µk−j∗(t1(k− j∗)/ω) = (1/ω)j
∗+1 and we assume levels

1, ..., k−j∗ are empty. At t1 there are Θ(d1/2) paths from k−j to level k, of which o(d1/2) are
not exact. Either one of these paths has extended back to some x in k− j∗ or level k− j∗ is
currently unoccupied. In the latter case, any particles which passed via x in between times
t1/ω and t1 must have chosen some out neighbour of x other than w. The probability a given
particle extends some exact path from level k − j∗ + 1 to k − j∗ is order d1/2/dk−j

∗+1. Let
T (hit) be the time for the first such extension to happen. Then

ET (hit) = dk−j
∗+1/2 = dk+3/2−

√
2k+2 = O(Tf ).

By analogy with the analysis in Section 4, w.h.p. this selected exact path of occupied vertices
from k − j∗ to k will extend back to the source v, in

T = O(dk−j
∗
) = O(dk+1−

√
2k+2) = O

(
ET (hit)√

d

)
expected steps; whereas the expected wait for a second exact path to extend is ET (hit).
This completes the proof of Theorem 1 for trees.

5.1 An upper bound on finish time for trees with any d ≥ 2

Proposition 8. Let
T = dk+3/2−

√
2k+2+1/2 logd k.

Then ωd1/2T is a w.h.p. upper bound on the finish time of DLA in any tree with branching
factor d ≥ 2, and height k.
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Let j be such that dk−j ≥ T so that e−T/d
k−j

= Θ(1) in the calculation of EY (see (45)).
Let h be integer such that

k − j = k − j∗ + h ≥ k + 1−
√

2k + 2 + h ≥ k + 3/2−
√

2k + 2 + (1/2) logd k

so that h = d1/2 + 1/2 logd ke. In Section 5 we assumed that k � d so that h = 1. At
T ∼ t1(k − j∗) from the growing layers model

µk−j∗+h
µk−j∗

= Θ(1)2h/2dh
2/2.

This ratio is ω(1), as either d→∞ or if d is constant, then logd k = logd logd n. Either some
path of halted particles already extends to a level i where i < k − j∗ + h, or all vertices in
these levels are unoccupied, and w.h.p. there exists a (not necessarily exact) path of length
j∗−h+ 1. Pick the longest path P (w), where w in level k − j∗ + ` is the final vertex on this
path. It takes at most Θ(dk−j

∗+h) expected steps to extend P (w) back to the source. Failing
this either the path from w to v is now blocked internally in this time by some longer path,
or some other disjoint path P ′ has become longer. Either way, w.h.p. the process has halted
in a further ωdk−j∗+h = ωd1/2T steps.
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