
O(1) Insertion for Random Walk d-ary Cuckoo Hashing
up to the Load Threshold

Tolson Bell* and Alan Frieze�

Department of Mathematical Sciences
Carnegie Mellon University

Pittsburgh, PA 15213
U.S.A.

January 25, 2024

Abstract

The random walk d-ary cuckoo hashing algorithm was defined by Fotakis, Pagh,
Sanders, and Spirakis to generalize and improve upon the standard cuckoo hashing
algorithm of Pagh and Rodler. Random walk d-ary cuckoo hashing has low space
overhead, guaranteed fast access, and fast in practice insertion time. In this paper,
we give a theoretical insertion time bound for this algorithm. More precisely, for every
d ≥ 3 hashes, let c∗d be the sharp threshold for the load factor at which a valid assignment
of cm objects to a hash table of size m likely exists. We show that for any d ≥ 4 hashes
and load factor c < c∗d, the expectation of the random walk insertion time is O(1), that
is, a constant depending only on d and c but not m.

1 Introduction

1.1 Random Walk d-ary Cuckoo Hashing

In random walk d-ary cuckoo hashing, the goal is to store objects X in a hash table Y given
d hash functions f1, . . . , fd : X → Y . Following previous literature, we will take each hash
function to be a uniformly random function from X to Y . When a new object x is inserted,
a random i ∈ [d] is chosen, and x is placed into position hi(x). If hi(x) was already occupied,
we remove its previous occupant, x2, and reinsert x2 by the same algorithm (choosing a new
i2 ∈ [d] and putting x2 into hi2(x2)). This iterative algorithm terminates when we insert an
object into an empty slot.

An object x is accessed by checking h1(x), . . . , hd(x), which takes constant time for con-
stant d. If we want to remove x, we simply delete it from its slot in the hash table. Thus
access and deletion are both guaranteed to be fast.

Let n = |X| and m = |Y |. We represent the hash functions as a bipartite graph with
vertex set (X, Y), and for each x ∈ X, edges from x to h1(x), . . . , hd(x). For a set W ⊆ X, we

*thbell@cmu.edu. Research supported in part by NSF Graduate Research Fellowship grant DGE 2140739.
�frieze@cmu.edu. Research supported in part by NSF grant DMS 1952285

1

let N(W) denotes its set of neighbors in Y . An analogous definition is assumed for Z ⊆ Y .
Finally, we replace N({u}) by N(u) for singleton sets.

For this insertion to terminate, it must be true that there is an assignment of every object
to a slot such that no slot has more than one object and every object x is assigned to hi(x)
for some 1 ≤ i ≤ d. This can be represented as a matching of size n in the bipartite graph.
We know by Hall’s Theorem that such a matching exists if and only if |N(W)| ≥ |W | for
every W ⊆ X.

All asymptotics in this paper are written for m,n → ∞ as n = cm for fixed d ∈ N and
fixed load factor c ∈ (0, 1). There is a sharp threshold c∗d, called the load threshold, for a
matching of size n to exist in the bipartite graph; that is, there is a constant c∗d such that as
n,m → ∞ with n = cm, if c < c∗d then the probability of such a matching goes to 1, and if
c > c∗d then the probability of such a matching goes to 0. Our result is the following:

Theorem 1.1. Assume that we have d ≥ 4, c < c∗d, and n = cm. Then with high probability
over the random hash functions, we have that the expected insertion time for the random walk
insertion process is O(1).
Additionally, under the same conditions, there is a constant C = Θ(1) such that for suffi-
ciently high n and all ` ∈ N, the probability of the random walk taking more than ` steps is
at most Ce−`

.009
.

In other words, our main result is that the expected insertion time is a constant depending
only on d and c but not n or m. We did not try to optimize the constant. Our result is also
true beginning with any arbitrary assignment of objects to slots in the hash table.

Note that we are required to take our statement to only hold with high probability over
the choices of hash functions, as there is a non-zero chance that the hash functions will not
have any valid assignment of objects to slots (will fail Hall’s condition) and thus will have
infinite insertion time.

The second part of Theorem 1.1 gives super-polynomial tail bounds on the insertion time.
The exponent 0.009 can be made to tend towards 1 as d→∞.

1.2 Applications and Relation to Previous Literature

Standard cuckoo hashing was invented by Pagh and Rodler in 2001 [23], and has been widely
used in both theory and practice. Their formulation, though originally phrased with two
hash tables, is essentially equivalent to the case d = 2 of the algorithm described here. They
showed that for all c < c∗2 = 0.5, one can get O(1) expected insertion time, an analysis that
was extended by Devroye and Morin [4, 23].

d-ary cuckoo hashing was invented by Fotakis, Pagh, Sanders, and Spirakis in 2003 [9].
The main advantage of increasing d above 2 is that the load threshold increases. Even going
from d = 2 to d = 3, the threshold c∗d goes from 0.5 to ≈ 0.918, that is, with just one
more hash function, we can utilize 91% of the hash table instead of 49%. The corresponding
tradeoff is that the access time increases linearly with d. d-ary cuckoo hashing, also called
generalized cuckoo hashing or improved cuckoo hashing, “has been widely used in real-world
applications” [24].

The exact value for c∗d for all d ≥ 3 was discovered in 2009 via independent works by a
number of authors [5, 11, 15]. This combinatorial problem of finding the matching threshold

2

in these random bipartite graphs (which can also be viewed as d-uniform hypergraphs) is
directly related to other problems like d-XORSAT [5] and load balancing [10, 17].

The primary insertion algorithm analyzed by Fotakis, Pagh, Sanders, and Spirakis was not
random walk insertion, but rather was BFS insertion. In BFS insertion, instead of selecting
a random i ∈ [d] and hashing x to hi(x), the algorithm finds the insertion path minimizing
the number of rehashes, that is, chooses the “shortest” insertion path instead of a random
one. That is, i1, . . . , i` ∈ [d] are chosen such that ` is minimized, where x is to be hashed
to hi1(x), the removed object x2 is to be hashed to hi2(x2), and so on until hi`(x`) is an
empty slot. While BFS insertion requires more overhead to compute, it is easier to analyze
theoretically than random walk insertion. Fotakis, Pagh, Sanders, and Spirakis proved that
BFS insertion is O(1) for load factor c when d ≥ 5 + 3 log(1/c) [9]. Though not explicitly
stated, the results of Fountoulakis, Panagiotou, and Steger imply that this result extends to
all d ≥ 3 and c < c∗d [12].

Fotakis, Pagh, Sanders, and Spirakis also introduced the insertion algorithm we study,
random walk insertion, describing it as “a variant that looks promising in practice”, since they
did not theoretically bound its insertion time but saw from experiments that its insertion time
was fast [9]. Random walk insertion requires no extra space overhead or precomputation: very
important for the use case of d-ary cuckoo hashing, situations requiring high load factor. In
a 2009 survey on cuckoo hashing, Mitzenmacher raised the importance of proving theoretical
bounds for random walk insertion, calling random walk insertion “much more amenable to
practical implementation” and “usually much faster” than BFS insertion [21]. Other insertion
algorithms than random walk or BFS have been proposed, which have provable O(1) insertion
[18] or more evenly distributed memory usage [7] while having lower memory overhead than
BFS insertion. However, random walk insertion “is currently the state-of-art method and so
far considered to be the fastest algorithm” [18].

For load factors somewhat below the load threshold and d ≥ 8, the random walk insertion
time was proven to be polylogarithmic by Frieze, Melsted and Mitzenmacher in 2009 [14].
Fountoulakis, Panagiotou, and Steger then were able to show polylogarithmic insertion time
for all d ≥ 3 and c < c∗d. The exponent of their logarithm was anything greater than 1 + bd,

where bd = d+log(d−1)
(d−1) log(d−1)

[12]. Our proof uses some techniques and lemmas of these two papers.

The first O(1) random walk insertion bound was proven by Frieze and Johansson, who
showed that for any load factor c, there exists some d such that there is O(1) insertion time
for d hashes at load factor c [13]. However, their bounds only hold for large d and load factors
significantly less than the load threshold, specifically, c = 1 − O(log(d)/d), while we know
that c∗d = 1− e−d − o(e−d).

For lower d, Walzer used entirely different techniques to prove O(1) random walk insertion
up to the “peeling threshold”. The strongest result here is in the case d = 3, where Walzer
gets O(1) insertion up to load factor c = .818, compared to the optimal value c∗3 = .918.
Walzer pointed out that there was no d ≥ 3 for which O(1) insertion was known up to the
load threshold, saying, “Given the widespread use of cuckoo hashing to implement compact
dictionaries and Bloom filter alternatives, closing this gap is an important open problem for
theoreticians” [25].

Theorem 1.1 is the first result to get O(1) insertion up to the load threshold for any d ≥ 3,
and works for all d ≥ 4. The state of the art results are summarized in the tables below:

3

d c∗d Maximal load factor Insertion time
for O(1) insertion at c = (1− ε)c∗d

2 10.5 10.5 1O(1)
3 20.918 30.818 4O(log3.664(n))
4 20.977 30.772 4O(log2.547(n))
5 20.992 30.702 4O(log2.152(n))
6 20.997 30.637 4O(log1.946(n))
7 20.999 30.582 4O(log1.818(n))

Large 21− e−d − o(e−d) 51−O(log d
d

) 4O(log1+(log d)−1+O(1/d)(n))

Bounds from prior work: 1[23, 4] 2[5, 11, 15] 3[25] 4[12] 5[13]

d c∗d Maximal load factor Insertion time
for O(1) insertion at c = (1− ε)c∗d

2 10.5 10.5 1O(1)
3 20.918 30.818 7O(log2.509(n))
4 20.977 60.977 6O(1)
5 20.992 60.992 6O(1)
6 20.997 60.997 6O(1)
7 20.999 60.999 6O(1)

Large 21− e−d − o(e−d) 61− e−d − o(e−d) 6O(1)

Bounds after our work: 6Theorem 1.1 and 7Also given in our proof

1.3 Future Work

The central open question is to remove the restriction d ≥ 4 from Theorem 1.1, that is, to
get O(1) insertion up to the load threshold for d = 3. We are hopeful that the techniques in
our paper can be extended to finish this final case.

The super-polynomial tail bounds on the insertion time in Theorem 1.1 can be made
to tend towards being exponential tail bounds as d → ∞. It would be interesting to show
exponential tail bounds, as well as O(1) insertion, for all d ≥ 3.

It would also be interesting to give a stronger bound on the o(1) term in our “with high
probability” statements. A careful analysis of our and previous works ([11, 12]) shows that
this probability could currently be taken to be O(n−β) for some small β = Θ(1). By a union
bound, the failure probability also implies that the O(1) expected insertion time is robust to
O(nβ) non-hash-dependent deletions and insertions, as long as the load factor stays below c.

Now that we have an insertion time independent of n, another avenue for future study is
to optimize the insertion time in terms of d, c, and absolute constants.

It has been shown under some previous models of cuckoo hashing that the assumption of
uniformly random hash functions can be relaxed to families of efficiently computable hash
functions while retaining the theoretical insertion time guarantees [1, 3]. As our proof relies

4

on similar “expansion-like” properties of the bipartite graph to previous work, we believe
that Theorem 1.1 should still hold under practically computable hash families.

A different model for generalizing cuckoo hashing, proposed in 2007, gives a capacity
greater than one to each hash table slot (element of Y), instead of (or in addition to) addi-
tional hash functions [6]. The load thresholds for this model are known for both two hashes
[2, 8] and d ≥ 3 hashes [10]. As in our model, O(1) expected time for random walk insertion
has been shown for some values below the load threshold [16, 25], but it remains open for
any capacities greater than one to prove O(1) insertion up to the load thresholds.

In general, it would be nice to extend our random walk insertion time guarantees to other
modifications of cuckoo hashing, such as those that get good load factors with somewhat
fewer hashes [26] or those that deal with the situation where a valid matching fails to exist
[19, 20].

2 Determining the “Bad” Sets

Our techniques to prove Theorem 1.1 build off the techniques of Fountoulakis, Panagiotou,
and Steger [12], who showed expansion-like properties of the bipartite hashing graph that
hold with high probability. The main new ingredient is the introduction of specifically defined
“bad” sets B1 ⊇ B2 ⊇ In this section, we will give the definition of these bad sets and
explain the overall proof structure. The main idea is that these Bi are complements of good
sets Gi, and we will show in this section that a random walk starting from a vertex in Gi

has at least a specified probability of finishing (reaching an unoccupied slot) in the next O(i)
steps.

Our most technical section, Section 5, shows that the size of these Bi decline exponentially
in i. In Section 3, we will show that reaching a small set is unlikely, and thus the probability
of a random walk reaching Bi declines sufficiently rapidly with i. In Section 4, we will explain
how our proof also gives the second part of Theorem 1.1, which bounds the tail probabilities,
not just the expectation, of the insertion time.

2.1 The Matching and BFS Distance

We will study the form of the random walk where at each object removal, we choose a random
one of the (d − 1) other hashes for the object that was just kicked out (not returning it to
the spot it was just kicked out of). Proving the expected run time of this is O(1) also proves
the same of the run time of choosing a random one of the d hashes each time (including the
one it was just kicked from), as this just adds a delay of twice a Geom((d − 1)/d) random
variable at each step in the previous random walk, which then just multiplies the expectation
by 2/(d− 1).

We will only consider the insertion of one element into the hash table. As the only “with
high probability” statements in our proof are about the structure of the bipartite graph, this
implies O(n) time with high probability to build the hash table of n elements online. Let
Mt be the assignment/matching of objects to slots at time t in the random walk. That is,
Mt is a matching of size n − 1, with the one currently swapping element unassigned, and
M0 is the starting matching of size n− 1 just before we insert the nth element. Let U ⊆ Y

5

be the set of open spots in the hash table, which stays the same at each time step while the
algorithm is running (as the algorithm terminates when it hits an open slot).

Our proof only relies on expansion-like properties of the bipartite graph on (X, Y) that
hold with high probability. In particular, given the random bipartite graph, our result holds
for any arbitrary starting matching M0 of objects to slots.

Let W
(t)
i (x) ⊆ X be the set of all possible endpoints of a walk of length at most i starting

from x and the matching Mt (so |W (t)
i (x)| ≤

∑i
j=0(d− 1)j ≤ (d− 1)i+1).

The BFS distance of an object w from an object x under Mt is the minimal i such that

w ∈ W (t)
i (x). We can define BFS distances involving sets in the natural way, by minimizing

over elements of those sets. We can similarly define the BFS distance of a slot y from an
object x as 1 plus the BFS distance between x and N(y).

For every u ∈ U that is at BFS distance j from x for some j ≤ i, count u1, . . . , u(d−1)i−j

as distinct elements of W
(t)
i (x). Let U (t)

i then be the multiset of the u ∈ U ∩W (t)
i (x) with

these multiplicities. We also have W
(t)
0 (x) = {x} and x ∈ W (t)

i (x) ∀ i ∈ N. For S ⊆ X, we

can similarly define W
(t)
i (S) = ∪x∈SW (t)

i (x).

Lemma 2.1 (Corollary 2.3 of [12]). Assume n = cm for c < c∗d. Then with high probability,
we have that for any matching M and any α = Θ(1) > 0, there exists M = Θ(1) such that
for the unoccupied vertices U of Y , we have that at most αn of the vertices of X are at BFS
distance > M from U .

(Lemma 2.1 had initially been proven by the inventors of d-ary cuckoo hashing under the
weaker condition d ≥ 5 + 3 log(c/(1 − c)) for n = cm [9]. Note that all logarithms in our
paper are natural.)

Let α > 0 be sufficiently small (but still Θ(1), to be set later) and take the corresponding
M = Θ(1) as in Lemma 2.1. For any Mt, let G(t) be all vertices of X of BFS distance at
most M from U . Whenever we are at a vertex g ∈ G(t), we have at least a d−M chance that
our random walk will finish in at most M more steps. (That is, there is at least a d−M chance
that our random walk will be the BFS path.) Therefore, the expected length on a random
walk that stays inside G(t) at every time t is at most dM +M = Θ(1). This shows intuitively
that it suffices to only focus on the “worst” αn vertices for some α = Θ(1) > 0.

2.2 Definition of B
(t)
i

We will split up the bad set X \G(t) into further worse and worse subsets defined based on
G(t).

From any x ∈ X, there are (d−1)i equally likely walks of length i ∈ N, given that we have

U (t)
i with proper multiplicities. Note that we are referring to a walk of length i throughout to

refer to i reassignments, but really this is a walk of length 2i in the bipartite graph (X, Y).
Take C0 = Θ(1) to be fixed later. For any i ∈ N, we define

G
(t)
i =

{
x ∈ X : |W (t)

i (x) ∩ (G(t) ∪ U (t)
i)| ≥ (d− 1)i

C0i.99

}
(We define G

(t)
0 = G(t).) The definition of G

(t)
i is useful for the following reason: if we have a

random walk starting at some x ∈ G(t)
i , we have at least a (C0)−1i−.99 chance that the random

6

walk will be in G(t+j) after some j ≤ i steps, as for each w ∈ W
(t)
i (x), there is at least a

(d−1)−j ≥ (d−1)−i chance we are at w after j ≤ i steps. (And note that G(t) = G(t+j) for all
j ≤ i while we have not yet reached G(t), as the BFS paths within G(t) remain unchanged.)

Therefore, for a random walk starting at some x ∈ G(t)
i , we have at least a d−MC−1

0 i−.99

chance that the random walk will finish in at most i + M steps, by reaching G(t+j) in j ≤ i
steps and then taking the BFS path from there. This shows that the expected length of a
random walk that stays within ∪ij=0G

(t)
j at each time t is at most C0d

M i.99 + i + d: at each

step, we are in some G
(t)
j , and thus by the previous paragraph have at least a d−M(C0)−1i−.99

chance of finishing in at most j +M ≤ i+M further steps.
Now, define our bad sets to be the complement of these,

B
(t)
i = X \ (∪ij=0G

(t)
j).

So then we have X = B
(t)
−1 ⊇ B

(t)
0 ⊇ B

(t)
1 ⊇ By “reaching B

(t)
i ” we mean that at some

time step t we are in B
(t)
i . Then

E(|RW|) =
∞∑
i=0

E(|RW| : RW reaches B
(t)
i−1 but not B

(t)
i)P(RW reaches B

(t)
i−1 but not B

(t)
i)

≤
∞∑
i=0

(C0d
M i.99 + i+M)P(RW reaches B

(t)
i−1 but not B

(t)
i)

≤
∞∑
i=0

(C0d
M i.99 + i+M)P(RW reaches B

(t)
i−1)

Thus, to prove that the expected length of the random walk is O(1) as desired, it suffices to
prove that

∃ C = O(1) such that P(RW reaches B
(t)
i) ≤ Ci−3 for all i ∈ N, (1)

as then the above sum will be O(
∑∞

i=0 i
−2) = O(1). In fact, we will show the stronger bound

that the probability of reaching B
(t)
i decreases faster than any polynomial.

3 Probability of Reaching a Small Set

3.1 Neighbors of a Small Set

To show that reaching some bad set is unlikely, we want to upper bound the probability of
reaching some small set. To do this, we need to bound the number of neighbors that a small
set can have.

For Z ⊆ X ∪ Y , let recall that N(Z) refers to the neighbors of Z in the bipartite graph.

Lemma 3.1. With high probability, there is not a set Z ⊆ Y with |Z| ≤ n/12 such that

|N(Z)| ≥ 3d log
(

n
|Z|

)
|Z|.

7

Proof. First, imagine fixing Z ⊆ Y then randomly choosing the edges of our graph. Let
e(Z) be the number of edges incident to Z. Our bipartite graph has dn edges, and each
has an independent |Z|/m ≤ |Z|/n chance of landing in |Z|. Thus, we can assume e(Z) ∼
Bin(dn, |Z|/n) and E(e(Z)) = d|Z|. By standard Chernoff bounds,

P
(
e(Z) ≥ 3d log

(
n

|Z|

)
|Z|
)
≤
(

e

3 log(n/|Z|)

)3d|Z| log(n/|Z|)

≤ e−3d|Z| log(n/|Z|) =

(
|Z|
n

)3d|Z|

Then

P
(
∃ Z ⊆ Y s.t. |N(Z)| ≥ 3d log

(
n

|Z|

)
|Z|
)

≤
n/12∑
i=1

(
m

i

)(
i

n

)3di

≤
n/12∑
i=1

(
2en

i

)i(
i

n

)3di

=

n/12∑
i=1

(
2e

(
i

n

)3d−1
)i

≤
log2(n)∑
i=1

2e

(
log2(n)

n

)2

+

n/12∑
i=log2(n)

(
2e

(
1

12

)2
)log2(n)

= o(1/n).

Now, for x ∈ X and j ∈ N, let W
(t+j)
−j (x) = {w ∈ X : x ∈ W (t)

j (w)}.

Lemma 3.2. For any S ⊆ X, |S| ≤ n/12, and t ∈ N, we have |W (t+j)
−j (S)| ≤

(
3d log

(
n
|S|

))j
|S|.

Proof. We can prove this inductively as a corollary of the lemma above. We see that it is
true for j = 0. Then note that W

(t+j)
−j (S) = W

(t+1)
−1 (W

(t+j)
−j+1(S)) = N(Z) where Z ⊆ Y is the

spots occupied by W
(t+j)
−j+1(S), which thus has the same cardinality of W

(t+j)
−j+1(S).

So using Lemma 3.1 and recalling that S ⊆ W
(t+j)
−j+1, we have

|W (t+j)
−j (S)| ≤ 3d log

(
n

|W (t+j)
−j+1(S)|

)
|W (t+j)
−j+1(S)| ≤ 3d log

(
n

|S|

)
|W (t+j)
−j+1(S)|

≤
(

3d log

(
n

|S|

))j
|S|

as desired.
(Note that if we ever have |W (t+j)

−j+1(S)| ≥ n/12 (so Lemma 3.1 can’t be applied), then we

have |W (t+j)
−j (S)| ≤ 3d log

(
n
|S|

)
|W (t+j)
−j+1(S)| anyway, as the right side of the equation is then

more than n.)

3.2 Probability of reaching B
(t)
i

In Section 5, we will prove that the B
(t)
i have exponentially decreasing sizes, proving the

following lemma:

8

Lemma 3.3. With high probability over the choice of d ≥ 4 hashes, there is a C = Θ(1)

such that |B(t)
i | ≤ Cn2−i for any matching Mt and for all i ∈ N.

Because the proof of Lemma 3.3 is a bit more technical, we defer it to the end of our
paper. We finish our proof by putting Lemma 3.2 and Lemma 3.3 together to show that B

(t)
i

is unlikely to be reached:

Lemma 3.4. The probability that our random walk reaches B
(t)
i is at most C ′i−3 for some

constant C ′.

As discussed in Section 2, this proves O(1) insertion time.

Proof. The previous two sections put together give us that for all i, t ∈ N,

|W−t(B(t)
i)| ≤

(
3d log

(
n

|B(t)
i |

))t

|B(t)
i |

≤ C
(

3d log
(n

C2−in

))t
2−in ≤ C (3d(i− log(C)))t 2−in.

Then

P(Bi reached) ≤
C0dM i.999∑

t=0

P(step t of the RW is in B
(t)
i)

+ P(B
(t)
i reached on step t for some t > C0d

M i.999)

≤
C0dM i.999∑

t=0

P(RW starts in W
(t)
−t (B

(t)
i))

+ P(RW reaches B
(t)
i | RW walks in X \B(t)

i for ≥ C0d
M i.999 steps)

≤
C0dM i.999∑

t=0

|W (t)
−t (B

(t)
i)|

n

+ P(RW reaches B
(t)
i | RW walks in X \B(t)

i for ≥ C0d
M i.999 steps)

≤
C0dM i.999∑

t=0

|W (t)
−t (B

(t)
i)|

n
+ (1− (C0)−1d−M i−.99)C0dM i.999

(as at each step in X \B(t)
i there is a probability ≥ (C0)−1d−M i−.99 of

finishing in ≤ i+M further steps without ever hitting B
(t)
i)

≤
C0dM i.999∑

t=0

|W−t(B(t)
i)|

n
+ e−i

.009

≤ C0d
M i.999 (3d(i− log(C)))C0dM i.999 2−i + e−i

.009

= O(1.5−i) + e−i
.009

= O(e−i
.009

).

This proves (1) and completes the proof of O(1) insertion time (once Lemma 3.3 is proven
in Section 5).

9

4 Concentration Bounds

Our proof also shows that the tail bounds on the insertion time concentrate super-polynomially:

Lemma 4.1. Assume that we have d ≥ 4, c < c∗d, and n = cm. With high probability over
the choice of hash functions, there is a constant C = Θ(1) such that for sufficiently high n
and all ` ∈ N, the probability of the random walk taking more than ` steps is at most Ce−`

.009
.

Proof. Take i ∈ N. In order for the random walk to take at least C0d
M i.99 + i + M steps,

either we reach Bi in at most C0d
M i.99 steps, or we walk outside of Bi for at least C0d

M i.99

steps without choosing to finish in the next i+M steps. Section 3 shows that the probability
of the former is O(1.5−i) and the probability of the latter is O(e−i

.009
).

Thus, taking ` = C0d
M i.99 + i+M , the probability of the random walk lasting at least `

steps is O(e−i
.009

) = O(e−`
.009

), which is super-polynomially decreasing in `.

In fact, tracing through our proof, we see that .009 could be any value less than 1 − bd
for a bd ≤ (d−1)+log(d−1)

(d−1) log(d−1)
, and we have bd → 0 as d → ∞. So in other words, the tail bounds

tend towards being an exponential decrease as d→∞.

5 Bounding the sizes of B
(t)
i

The remaining task is to show that the sizes of the B
(t)
i decline like O(2−i). The results in

this section rely heavily on results of Fountoulakis, Panagiotou, and Steger [12].

Recall that for any Mt, we have W
(t)
1 (S) = ∪x∈SW (t)

1 (x), in other words, the set of all
w ∈ X that we could reach by one cuckoo iteration starting somewhere in S (and including

S ⊆ W1(S)). We also must have |W (t)
1 (S)| ≤ |S| + (d − 1)|S| = d|S|. The following lemma

shows that for small S, |W (t)
1 (S)| is close to its upper bound.

Lemma 5.1 (Proposition 2.4 of [12]). For any 1 ≤ s ≤ |X|/d, define

xs =

{
0 if |S| ≤ log log(n)
logd((d−1)ed)
log(|X|/|S|)−1

if log log(n) ≤ |S| ≤ |X|/d

With high probability, we have that for all S ⊆ X with |S| ≤ |X|/d that

|N(S)| ≥ (d− 1− x|S|)|S|.

Lemma 5.1 is good enough for our proof to go through for d ≥ 6. We defer the d ≤ 5
cases to the computation-heavy Subsection 5.2, where we will prove a form of Lemma 5.1
with stronger parameters.

5.1 Bounding |B(t)
i | for d ≥ 6

Let ad = (d−1)ed. Now, following [12], let s0 = 1 and inductively set si = (d−1−xsi−1
)si−1.

We cite another lemma from [12]:

10

Lemma 5.2 (Claim 4.5 of [12]). For every d ≥ 3 and γ > 0 there exists ε0 = ε0(γ, d) = Θ(1)
such that for all 0 < ε < ε0 and n sufficiently large the following is true. Set

T = logd−1(n) +

(
log(ad)

(d− 1) log(d− 1 + γ)

)
logd−1(logd−1(n)).

Then sT > εn.

Take γ = Θ(1) sufficiently small such that log(ad)
(d−1) log(d−1+γ)

< .98 (noting that log(ad)
(d−1) log(d−1)

<

.98 for d ≥ 6) and take the corresponding ε0 = Θ(1). In Lemma 2.1, take α ≤ ε0/(2(d− 1))).
Now, clearly there is some R such that 2αn ≤ sR ≤ ε0n, as we multiply si by at

most d − 1 at each step. Fix some such R and note logd−1(2αn) ≤ R ≤ logd−1(n) +(
log(ad)

(d−1) log(d−1+γ)

)
logd−1(logd−1(n)) by Lemma 5.2.

Lemma 5.3. Under any matching Mt, we have B
(t)
R = ∅.

Proof. Assume there were some x ∈ B(t)
R . Then we would inductively get that |W (t)

i (x)| ≥ si
(remembering to count the elements of U with proper multiplicities in U (t)

i), so in particular

|W (t)
R (x)| ≥ 2αn =⇒ |W (t)

R (x) ∩ (G(t) ∪ U (t)
i)| ≥ αn =⇒

(d− 1)−R|W (t)
R (x) ∩ (G(t) ∪ U (t)

i)| ≥
(

1

n log.98(n)

)
αn >

1

C0R.99

when assuming C0 > α−1. This, however, contradicts that we need by definition that

|W (t)
R (x) ∩ (G(t) ∪ U (t)

i)| ≤ (d−1)R

C0R.99
for all x ∈ B(t)

R .

So we have successfully shown that for i ≥ R, B
(t)
i is empty. To bound the sizes of lower

B
(t)
i , we need to look closer at the proof of Lemma 5.2 and use some additional lemmas of

[12].

Lemma 5.4 (Claim 4.4 of [12]). Let t ≥ logd−1(log(log(n))) + 1. For every ε > 0 sufficiently
small, if st ≤ εn, then for all 0 ≤ i ≤ t− logd−1(log(log(n)))− 1, we have

xst−i ≤
logd(ad)

i logd(d− 1− γ) + logd(1/ε)− 1

where γ = logd(ad)
logd(1/ε)−1

.

Recall that we have set ε small enough such that log(ad)
(d−1) log(d−1+γ)

< .98.

Lemma 5.5 (Proposition 4.1 of [12]). For any constants ζ, η > 0 we have that whenever
D = D(ζ, η) is sufficiently large then

i∏
k=1

(
1− ζ

kη +D

)
≥ i−ζ/η(ηD)−ζ/ηe−ζ

2/(ηD) for all i ≥ 2/η

11

The previous two lemmas combine to prove the following:

Lemma 5.6 ([12]). For all 1 ≤ i ≤ .99 logd−1(n), we have sR−i ≤ C0αn
2(d−1)i

i.99.

Proof. This is proved following the first half of the proof of Claim 4.5 of [12].
Because sR ≤ ε0n, we can use Lemma 5.4 and the definition si = (d − 1 − xsi−1

)si−1 to
get

sR−i ≤
εn∏i

k=1(d− 1− xsR−i)
≤ ε0n

(d− 1)i
∏i

k=1
logd(ad)/(d−1)

k logd(d−1−γ)+logd(1/ε0)−1

then using Lemma 5.5 with ζ = logd(ad)
d−1

and η = logd(d − 1 − γ) we get for all i ≥ 4 ≥ 2/η
that

sR−i ≤
ε0n

(d− 1)i
∏i

k=1
logd(ad)/(d−1)

k logd(d−1−γ)+logd(1/ε0)−1

≤ Cε0,d
ε0n

(d− 1)i

(
i

(
logd(ad)

(d−1) logd(d−1−γ)

))
,

which is less than the desired quantity as long as we take C0 > 4(d − 1)Cε0,d (recalling

α = ε0/(2(d− 1)) and we set γ such that log(ad)
(d−1) log(d−1−γ)

< .98). Assuming C0 > 4 then also
works for 1 ≤ i ≤ 3.

Lemma 5.7. |B(t)
i | ≤ C0

αn
(d−1)i

i.99 for any matching Mt and for all 1 ≤ i ≤ .9 logd−1(n).

Proof. Note that we have for every x ∈ B(t)
i that |W (t)

i (x)∩ (G(t) ∪U (t)
i)| ≤ (d−1)i

C0i.99
, so we also

know

|W (t)
i (S) ∩ (G(t) ∪ U (t)

i)| ≤ |S|(d− 1)i

C0i.99
for any S ⊆ B

(t)
i . (2)

Assume for contradiction that we had |B(t)
i | > C0

αn
(d−1)i

i.99 ≥ 2sR−i. Then in particular,

we could find a S ⊆ B
(t)
i with sR−i ≤ |S| ≤ 2sR−i. Then |W (t)

i (S)| ≥ sR ≥ 2αn, so

|W (t)
i (S) ∩ (G(t) ∪ U (t)

i)| ≥ αn =

(
C0

αn

(d− 1)i
i.99

)
(d− 1)i

C0i.99
≥ |S|(d− 1)i

C0i.99

contradicting (2).

So we now know by Lemma 5.7 that |B(t)
i | declines exponentially for 2 ≤ i ≤ .9 logd−1(n),

and we know by Lemma 5.3 thatB
(t)
i = 0 for i ≥ logd−1(n)+

(
log(ad)

(d−1) log(d−1+γ)

)
logd−1(logd−1(n)).

This, plus knowing that |B(t)
i | is monotone decreasing in i, gives us the result we want:

Lemma 3.3. There is a C = Θ(1) such that |B(t)
i | ≤ Cn2−i for any matching Mt and for

all i ∈ N.

Proof. First, we can take C1 = Θ(1) large enough such that

|B(t)
i | ≤ C0

αn

(d− 1)i
i.99 ≤ C1n2−i

for all 0 ≤ i ≤ .9 logd−1(n).

12

Then, for sufficiently large n, we have 2R ≤ 21.1 logd−1(n) = n1.1 logd−1(2) ≤ n0.7 for d ≥ 4, so
n2−R ≥ n0.3. Additionally, we have

αn

(d− 1).9 logd−1(n)
(logd−1(n)/2).99 = O(n0.2),

so we can take C2 = Θ(1) to be large enough such that for all .9 logd−1(n) ≤ i ≤ R,

|B(t)
i | ≤ |B

(t)
.9 logd−1(n)| ≤

αn

(d− 1).9 logd−1(n)
(.9 logd−1(n)).99 ≤ C2n2−R ≤ C2n2−i.

And as B
(t)
i = ∅ for all i ≥ R, C = max(C1, C2) works for all i ∈ N.

This completes the proof of Theorem 1.1 for all d ≥ 6.

5.2 Improved Expansion Properties for Smaller d

Just to get the d = 4 and d = 5 cases of Theorem 1.1 as well (and to improve the exponent
of the logarithm for d = 3), we need a more careful analysis. In this section, we will prove
the following stronger version of Lemma 5.1:

Lemma 5.8. There is a τ = Θ(1) such that the following holds. Let a3 = 8.1, a4 = 15,
a5 = 24, and ad = (d− 1)ed−1 for all d ≥ 6. For any 1 ≤ s ≤ τn, define

xs =

{
0 if |S| ≤ log(n)/(2d)

logd(ad)
logd(|X|/|S|)−1

if log(n)/(2d) ≤ |S| ≤ τn

With high probability, we have that for all S ⊆ X with |S| ≤ τn that

|N(S)| ≥ (d− 1− x|S|)|S|.

Then, note that the exact value of ad is never used in the proof of Lemma 5.2 and Lemma
5.4 in [12] and we can assume |S| ≤ τn by Lemma 2.1. Therefore, the proof in [12] goes

through to give insertion time O(log1+bd(n)) for all d ≥ 3. Let bd = log(ad)
(d−1) log(d−1)

. When
we have bd < .98, our proof in Subsection 5.1 goes through to prove Lemma 3.3 and finish
Theorem 1.1. We get bd < .98 for d ≥ 4, while we only get b3 ≤ 1.509.

To prove Lemma 5.8, need a more accurate count on the number of ways that |N(S)|
could take on a given value, and thus we use Stirling numbers of the second kind,

{
a
b

}
,

where b!
{
a
b

}
counts the number of labelled surjections from [a] into [b]. We use the following

approximation for Stirling numbers of the second kind due to Moser and Wyman:

Lemma 5.9 (Equation (5.1) of [22]). If a = bg for some constant g > 1, we have that

b!

{
a

b

}
=

(
1±O

(
1

a

))
a!(er − 1)b

2ra
√
hb

where r is the solution to r
1−e−r = g and h = πrer(er−1−r)

2(er−1)2
.

13

Let xs be as in Lemma 5.8. For S ⊆ X with |S| ≤ τn, we say that S is a failing set if
N(S) < (d− 1− xs)s.

Lemma 5.10. Let v3 = 7.266, v4 = 14.986, v5 = 25.5, and vd = (d − 1)ed−1 for all d ≥ 6.
There exists some τ, ζ = Θ(1) such that for all S ⊆ X with log log(n) ≤ |S| ≤ τn, for
sufficiently large n

P(S is a failing set) ≤ ζm−xss−ssxss+s(vd)
s.

Proof. Fix S ⊆ X with log log(n) ≤ |S| ≤ τn. Let s = |S| and let σ = b(d− 1− xs)sc. We
will assume that d ≤ 5, as for d ≥ 6 this follows from the proof of Lemma 5.1 (Proposition
2.4 of [12]). Then

P
(
|N(S)| < (d− 1− x|S|)|S|

)
=

σ∑
i=0

P
(
∃R ∈

(
Y

i

)
s.t. N(S) = R

)
= m−ds

σ∑
i=0

(
m

i

)
i!

{
ds

i

}
We will now show that the sum above is dominated by the i = σ term. Let a, b ∈ N

with a ≥ b+ 1 and let Θ(a, b) be the set of partitions of [a] into b unlabelled parts (we have
|Θ(a, b)| =

{
a
b

}
). We consider pairs (θ1, θ2) where the θ1 ∈ Θ(a, b), θ2 ∈ Θ(a, b + 1) and the

second partition is a refinement of the first, that is, is obtained from the first by splitting a
set. Now, for θ1 ∈ Θ(a, b), let dL(θ1) denote the number of times a partition θ occurs first
in such a pair and, analogously for θ2 ∈ Θ(a, b+ 1), let dR(θ2) denote the number of times a
partition occurs second in such a pair. Then

dL(θ1) ≥ min

{∑
j

2xj − 2 : x1 + · · ·xb = a

}
≥ b(2a/b − 2).

dR(θ2) ≤
(
b+ 1

2

)
Because

∑
θ1∈Θ(a,b) dL(θ1) =

∑
θ2∈Θ(a,b+1) dR(θ2), we have

b(2a/b − 2)

{
a

b

}
≤
(
b+ 1

2

){
a

b+ 1

}
.

Let ui =
(
m
i

)
i!
{
ds
i

}
for some 0 ≤ i ≤ σ. Then we have

ui+1

ui
≥ m− i

i+ 1
· (i+ 1) · i(2

ds/i − 2)(
i+1

2

) =
2(m− i)(2ds/i − 2)

i+ 1

≥ 2(m− (d− 1)τcm)(2d/(d−1) − 2)

(d− 1)τcm
as i ≤ (d− 1)s ≤ (d− 1)τcm

≥ 4(1− (d− 1)τc)(21/(d−1) − 1)

(d− 1)τc
> 1 if τ < 1/(8c) and d ≤ 5.

Thus
∑σ

i=0 ui ≤ ζus for some constant ζ > 0. So,

P
(
|N(S)| < (d− 1− x|S|)|S|

)
≤ ζm−ds

(
m

σ

)
σ!

{
ds

σ

}
14

Then d
d−1
− 0.00001 < ds

σ
< d

d−1
for sufficiently small τ (to get xτn < 0.00001). We now

use Lemma 5.9.
The numbers below are shown for d = 5. The proofs of d = 3 and d = 4 go through in

the same way. For d = 5, we get r ≈ 0.46421 and h ≈ 0.42061, so

σ!

{
5s

σ

}
≤ (5s)!(0.5908)σ

2(0.4642)5s
√
.4206t

≤ (1.84s)5s(0.5908)4s

(0.4642)5s
≤ s5s(119.22)s,

and

m−ds
(
m

σ

)
σ!

{
ds

σ

}
≤ m−5s

(em
σ

)σ
s5s(119.22)s

≤ m−xss−se4σ(3.999s)−σs5s(119.23)s

≤ m−xss−ssxss+s
[
119.23(e4)(3.999−3.999)

]s
≤ m−xss−ssxss+s [25.5]s .

The following table shows what some of the intermediate numbers are for 3 ≤ d ≤ 5:

d = 3 d = 4 d = 5
r .87422 .60586 .46421

er − 1 1.397 .8329 .5908
(d/e)d(er − 1)d−1r−d 3.9266 20.102 119.22

vd (previous # times ed−1(d− 1)−(d−1)) 7.266 14.986 25.5

Recall that for S ⊆ X with |S| ≤ τn, S is a failing set if N(S) < (d− 1− xs)s. Now, we
say that S is a minimal failing set if S is a failing set but for every R (S, R is not a failing
set.

Lemma 5.11. There exists some τ = Θ(1) such that for all S ⊆ X with log log(n) ≤ |S| ≤
τn, for sufficiently large n

P(S is a minimal failing set) ≤ P(S is a failing set)(qd)
|S|

for some qd where q3 ≤ .446, q4 ≤ .376, q5 ≤ .347, and qd ≤ 1
e

for all d ≥ 6.

Proof. We create the ds random hashes from S in two steps: first, we cast ds balls into m
bins. Then, we randomly assign the ds balls to the ds elements of S× [d]. Note that whether
or not S is a failing set only depends on the first step. Therefore, we just need to show that
if the first step creates a failing set, the second step will only create a minimal failing set
with probability ≤ (qd)

s.
Let x ∈ S. If S \ {x} is not a failing set but S is, we have that

|N(S\{x})| ≥ (d−1−xs−1)(s−1) ≥ (d−1−xs)(s−1) > |N(S)|−(d−1−xs) ≥ |N(S)|−(d−1).
(3)

In particular, this means that for S to possibly be a minimal failing set, we must have
|N(S)| ≥ |N(S \ {x})| ≥ (d − 1 − xs)(s − 1). So after casting the ds balls into the m bins,

15

and thus determining |N(S)|, we can assume that we have (d − 1 − xs)(s − 1) ≤ |N(S)| <
(d−1−xs)s, that is, it suffices to show that in this case, the probability of S being a minimal
failing set is ≤ (qd)

s, as in other cases S is not a minimal failing set.
Let A ⊆ [ds] be the set of balls that ended up in a bin with another ball.

|A| ≤ 2(ds− |N(S)|) ≤ 2(ds− (d− 1− xs)(s− 1)) = 2(1 + xs)(s− 1) + 2d ≤ 2.001s.

Now, we go about assigning A to a random subset A′ of S × [d]. If there is some x ∈ S
for which |(x× [d]) ∩ A′| < 2, then

|N(S \ {x})| ≤ N(S)− d+ |(x× [d]) ∩ A′| ≤ N(S)− d+ 1

which is a contradiction to Equation (3), that is, S \ {x} becomes a failing set.
Therefore, the probability that S is a minimal failing set is at most the probability that

|(x× [d]) ∩ A′| ≥ 2 for every x ∈ S. Clearly, this is impossible (probability 0) if |A| < 2|S|,
so it suffices to show that for every 2s ≤ |A| ≤ 2.001s, the probability of A′ satisfying
|(x× [d]) ∩ A′| ≥ 2 for every x ∈ S, conditioned on |A|, is at most (qd)

s.
Assume that we have thrown the balls and thus fixed A. The total number of equally

likely possibilities for A′ is, for d ≤ 4(
ds

|A|

)
≥
(

ds

2.001s

)
≥ 2dsH(2.001/d)(ds+ 1)−1

(where H(p) = −p log2(p)− (1− p) log2(1− p)) or, for d ≥ 5,(
ds

|A|

)
≥
(
ds

2s

)
≥ 2dsH(2/d)(ds+ 1)−1

The total number of possibilities for A′ that satisfy the condition |(x× [d]) ∩ A′| ≥ 2 for
every x ∈ S is at most(

d

2

)s(
ds

|A| − 2s

)
≤
(
d(d− 1)

2

)s(
ds

.001s

)
≤
[
d(d− 1)(1000ed).001

2

]s
Thus, for d ≤ 4,

P(S min. failing set)

P(S failing set)
≤
[
d(d− 1)(1000ed).001(ds+ 1)1/s

21+dH(2.001/d)

]s
and for d ≥ 5,

P(S min. failing set)

P(S failing set)
≤
[
d(d− 1)(1000ed).001(ds+ 1)1/s

21+dH(2/d)

]s
.

This expression is less than qd for all 3 ≤ d ≤ 10 and sufficiently large n. If we ignore the
(1000ed).001(ds+ 1)1/s term in the expression (which can be removed in the limit by making
τ depend on d), the limit of this expression as d→∞ is

(
2
e2

)s ≈ 0.271s.

Now, we have all the ingredients we need to prove our improved expansion lemma.

16

Proof of Lemma 5.8. For Lemma 5.8 to fail, there must be some S ⊆ X with |S| ≤ τn such
that S is a minimal failing set. Then

P(Lemma 5.8 fails) ≤
τn∑
s=1

P(∃ S ∈
(
X

s

)
s.t. S is a minimal failing set)

≤
log(n)/(2d)∑

s=1

P(∃ S ∈
(
X

s

)
s.t. S is a failing set)

+
τn∑

s=log(n)/(2d)

P(∃ S ∈
(
X

s

)
s.t. S is a minimal failing set)

≤
log(n)/(2d)∑

s=1

ds

n

(
c∗d(d− 1)ed

)s
+

τn∑
s=log(n)/(2d)

P(∃ S ∈
(
X

s

)
s.t. S is a minimal failing set)

(by the proof of Proposition 2.4, [12])

≤ O(n−1/5) +
τn∑

s=log(n)/(2d)

(
n

s

)
(qd)

sP(S is a failing set)

(by Lemma 5.11)

≤ O(n−1/5) +
τn∑

s=log(n)/(2d)

(
cm

s

)
(qd)

sζm−xss−sss+xss(vd)
s

(by Lemma 5.10)

≤ O(n−1/5) + ζ
τn∑

s=log(n)/(2d)

(c∗de)
smss−sm−xss−sss+xss(qdvd)

s

≤ O(n−1/5) + ζ
τn∑

s=log(n)/(2d)

[(s/m)xsc∗dqdvde]
s

≤ O(n−1/5) + ζ

τn∑
s=log(n)/(2d)

0.999s

= o(n−η) for some small η = Θ(1)

when we take xs = logm/s(ad) = logd(ad)
logd(m/s)

≤ logd(ad)
logd(|X|/|S|)−1

, noting that we have set ad >

c∗dqdvde/0.999.

References

[1] Martin Aumüller, Martin Dietzfelbinger, and Philipp Woelfel. Explicit and efficient hash
families suffice for cuckoo hashing with a stash. Algorithmica, 70:428–456, 2014.

17

[2] Julie Anne Cain, Peter Sanders, and Nick Wormald. The random graph threshold for
k-orientiability and a fast algorithm for optimal multiple-choice allocation. Proceed-

ings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), page
469–476, 2007.

[3] Jeffrey S. Cohen and Daniel M. Kane. Bounds on the independence required for cuckoo
hashing. 2009.

[4] Luc Devroye and Pat Morin. Cuckoo hashing: Further analysis. Information Processing

Letters, 86(4):215–219, 2003.

[5] Martin Dietzfelbinger, Andreas Goerdt, Michael Mitzenmacher, Andrea Montanari, Ras-
mus Pagh, and Michael Rink. Tight thresholds for cuckoo hashing via xorsat. Proceedings
of the 37th International Colloquium Conference on Automata, Languages and Programming

(ICALP), pages 213–225, 2010.

[6] Martin Dietzfelbinger and Christoph Weidling. Balanced allocation and dictionaries
with tightly packed constant size bins. Theoretical Computer Science, 380(1):47–68, 2007.

[7] David Eppstein, Michael T. Goodrich, Michael Mitzenmacher, and Pawe l Pszona. Wear
minimization for cuckoo hashing: How not to throw a lot of eggs into one basket.
Proceedings of the International Symposium on Experimental Algorithms (SEA), pages 162–
173, 2014.

[8] Daniel Fernholz and Vijaya Ramachandran. The k -orientability thresholds for Gn,p .
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 459–468, 2007.

[9] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G. Spirakis. Space efficient hash
tables with worst case constant access time. Proceedings of the 20th Annual Symposium on

Theoretical Aspects of Computer Science (STACS), page 271–282, 2003.

[10] Nikolaos Fountoulakis, Megha Khosla, and Konstantinos Panagiotou. The multiple-
orientability thresholds for random hypergraphs. Proceedings of the 2017 Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA), pages 1222–1236, 2011.

[11] Nikolaos Fountoulakis and Konstantinos Panagiotou. Orientability of random hyper-
graphs and the power of multiple choices. Proceedings of the 37th International Colloquium

Conference on Automata, Languages and Programming (ICALP), pages 348–359, 2010.

[12] Nikolaos Fountoulakis, Konstantinos Panagiotou, and Angelika Steger. On the insertion
time of cuckoo hashing. SIAM Journal on Computing, 42(6):2156–2181, 2013.

[13] Alan Frieze and Tony Johansson. On the insertion time of random walk cuckoo hash-
ing. Proceedings of the 2017 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1497–1502, 2017.

[14] Alan Frieze, Páll Melsted, and Michael Mitzenmacher. An analysis of random-walk
cuckoo hashing. Proceedings of the 2009 International Conference on Randomization and

Computation (RANDOM), 2009.

18

[15] Alan Frieze and Páll Melsted. Maximum matchings in random bipartite graphs and the
space utilization of cuckoo hash tables. Random Structures & Algorithms, 41(3):334–364,
2012.

[16] Alan Frieze and Samantha Petti. Balanced allocation through random walk. Information

Processing Letters, 131:39–43, 2018.

[17] Pu Gao and Nicholas C. Wormald. Load balancing and orientability thresholds for
random hypergraphs. Proceedings of the 42nd ACM Symposium on Theory of Computing

(STOC), pages 97–104, 2010.

[18] Megha Khosla and Avishek Anand. A faster algorithm for cuckoo insertion and bipartite
matching in large graphs. Algorithmica, 81(9):3707–3724, 2019.

[19] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. More robust hashing: Cuckoo
hashing with a stash. SIAM Journal on Computing, 39(4):1543–1561, 2009.

[20] Brice Minaud and Charalampos Papamanthou. Generalized cuckoo hashing with a stash,
revisited. Information Processing Letters, 181(106356), 2023.

[21] Michael Mitzenmacher. Some open questions related to cuckoo hashing. Proceedings of

the 17th Annual European Symposium on Algorithms (ESA), pages 1–10, 2009.

[22] L. Moser and M. Wyman. Stirling numbers of the second kind. Duke Mathematical

Journal, 25(1):29–43, 1958.

[23] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Proceedings of the 9th Annual

European Symposium on Algorithms (ESA), pages 121–133, 2001.

[24] Yuanyuan Sun, Yu Hua, Dan Feng, Ling Yang, Pengfei Zuo, Shunde Cao, and Yuncheng
Guo. A collision-mitigation cuckoo hashing scheme for large-scale storage systems. IEEE
Transactions on Parallel and Distributed Systems, 28(3):619–632, 2017.

[25] Stefan Walzer. Insertion time of random walk cuckoo hashing below the peeling thresh-
old. Embedded Systems and Applications, 2022.

[26] Kevin Yeo. Cuckoo hashing in cryptography: Optimal parameters, robustness and
applications. 43rd Annual International Cryptology Conference (CRYPTO), page 197–230,
2023.

19

	Introduction
	Random Walk d-ary Cuckoo Hashing
	Applications and Relation to Previous Literature
	Future Work

	Determining the ``Bad'' Sets
	The Matching and BFS Distance
	Definition of Bi(t)

	Probability of Reaching a Small Set
	Neighbors of a Small Set
	Probability of reaching Bi(t)

	Concentration Bounds
	Bounding the sizes of Bi(t)
	Bounding |Bi(t)| for d6
	Improved Expansion Properties for Smaller d

