
O(1) Insertion for Random Walk d-ary Cuckoo Hashing

up to the Load Threshold∗

Tolson Bell† and Alan Frieze‡

Department of Mathematical Sciences
Carnegie Mellon University

Pittsburgh, PA 15213
U.S.A.

December 3, 2025

Abstract

The random walk d-ary cuckoo hashing algorithm was defined by Fotakis,
Pagh, Sanders, and Spirakis to generalize and improve upon the standard cuckoo
hashing algorithm of Pagh and Rodler. Random walk d-ary cuckoo hashing has
low space overhead, guaranteed fast access, and fast in practice insertion time.
In this paper, we give a theoretical insertion time bound for this algorithm. More
precisely, for every d ≥ 3 random hashes, let c∗d be the sharp threshold for the
load factor at which a valid assignment of cm objects to a hash table of size m
exists with high probability. We show that for any d ≥ 3 hashes and load factor
c < c∗d, the expectation of the random walk insertion time is O(1), that is, a
constant depending only on d and c but not m.

∗A preliminary version of this paper appeared in the proceedings of the Foundations of Computer Science (FOCS)
2024 Conference.

†thbell@cmu.edu. Research supported in part by NSF Graduate Research Fellowship grant DGE 2140739.
‡frieze@cmu.edu. Research supported in part by NSF grant DMS 1952285

1 Introduction

1.1 Problem Statement and Theorem

In random walk d-ary cuckoo hashing, the goal is to store a set of objects X where X ⊆ U for a
universe of elements U in a hash table with table slots Y given d hash functions h1, . . . , hd : U → Y .
Following previous literature, we will take each hash function to be chosen independently and
uniformly at random from all functions from X to Y . When a new object x1 is inserted, a
uniformly random i1 ∈ [d] is chosen, and x1 is placed into position hi1(x1). If hi1(x1) was already
occupied, we remove its previous occupant, x2, and reinsert x2 by the same algorithm (choosing a
new i2 ∈ [d] and putting x2 into hi2(x2)). This iterative algorithm terminates when we insert an
object into an empty slot.

An object x is queried by checking h1(x), . . . , hd(x), which takes constant time for constant
d. If we want to remove x, we simply delete it from its slot in the hash table. Thus access and
deletion are both guaranteed to be fast.

Let n = |X| and m = |Y |. We represent the hash functions as a bipartite graph with vertex
set (X,Y), and for each x ∈ X, edges from x to h1(x), . . . , hd(x). For a set W ⊆ X, we let N(W)
denote its set of neighbors in Y . An analogous definition is assumed for Z ⊆ Y . Finally, we replace
N({u}) by N(u) for singleton sets.

For the insertion process to terminate, it must be true that there is an assignment of every
object to a slot such that no slot has more than one object assigned to it and every object x is
assigned to hi(x) for some 1 ≤ i ≤ d. This can be represented as a matching of size n in the bipartite
graph. We know by Hall’s Theorem that such a matching exists if and only if |N(W)| ≥ |W | for
every W ⊆ X.

Unless explicitly noted otherwise, all asymptotics in this paper are written for n → ∞ (or
equivalently, m → ∞) with n = cm for fixed d ∈ N and fixed constant load factor c ∈ (0, 1). For
instance, one could say that access and deletion need to query Θ(1) slots in the worst case, as our
asymptotics suppress all factors depending on c and d. We use “with high probability” to mean
with probability 1−o(1) as m,n → ∞ for fixed d and c. When we refer to “with high probability”
events, we are always talking about things that happen with high probability over the choice of
the random hash function on the already inserted objects. That is, we do not use this phrase to
refer to the likelihood of events dependent on the initial hash of the newly inserted object or on
the progression of the random walk.

There is a sharp threshold c∗d, called the load threshold, for a matching of size n to exist in
the bipartite graph; that is, there is a constant c∗d such that if c < c∗d then there exists a matching
with high probability and if c > c∗d then there with high probability does not exist a matching
[DGM+10, FP10, FM12].

Our result, which will stated more precisely in Section 2, is the following:

Theorem 1.1. Assume that we have d ≥ 3, c < c∗d, and n = cm. Then with high probability over
the random hash functions, we have that the expected insertion time for the random walk insertion
process is O(1).
Additionally, under the same conditions, for any constant C ≥ 0, there is a constant C ′ =
C ′(C, c, d) = Θ(1) such that for sufficiently large n and all ℓ ∈ N, the probability of the random
walk insertion process taking more than ℓ steps is at most C ′ℓ−C .

In other words, our main result is that the expected insertion time is a constant depending
only on d and c but not n or m. Throughout the paper, we will use Θ(1) to denote constants that
may depend on d or c but do not depend on n or m. We did not try to optimize the constant

1

in Theorem 1.1. By insertion time, we mean the number of reassignments, that is, the number of
times we move an object to a different one of its hash functions during the insertion .

We do not explicitly consider deletions in this paper (consider building the hash table only), but,
as explained in Section 11, our results are robust to any sequence of nβ oblivious (not adaptive
to the hash values) deletions and insertions of new elements (excluding re-insertions of deleted
elements) for some small β = Θ(1).

Note that we are required to take our statement to only hold with high probability over the
choices of hash functions, as there is a non-zero chance that the hash functions will not have any
valid assignment of objects to slots (will fail Hall’s condition) and thus will have infinite insertion
time. Our “with high probability” statements are true with high probability over not just one
element’s insertion but over the entire process of building a cuckoo hash table of cn elements for
c < c∗d. Therefore, we do get that with high probability the expected time to build a cuckoo hash
table of cn elements for c < c∗d is O(n).

1.2 Applications and Relation to Previous Literature

Standard cuckoo hashing was invented by Pagh and Rodler in 2001 [PR01] and has been widely
used in both theory and practice. Their formulation, though originally phrased with two hash
tables, is essentially equivalent to the case d = 2 of the algorithm described here. They showed
that for all c < c∗2 = 0.5, one can get O(1) expected insertion time, an analysis that was extended
by Devroye and Morin [PR01, DM03]. Thus, cuckoo hashing is a data structure with O(1) average-
case insertion, O(1) worst-case access and deletion, and only twice the amount of space that the
elements themselves take up.

Cuckoo hashing can be seen as the “average-case” or “random graph” version of the “online
bipartite matching with replacements” problem, with BFS insertion corresponding to the “shortest
augmenting path” algorithm. Take any bipartite graph with V = (X,Y) that contains a matching
of size |X|. If elements of X and their incident edges arrive online, the amortized BFS insertion
time was proven to be O(log2(n)) [BHR18]. The lower bound is Ω(log(n)) [GKKV95], which is
matched if the vertex arrival order is randomized [CDKL09]. The previous paragraph shows that
if the graph itself is random rather than worst-case, this Ω(log(n)) amortized insertion time bound
is with high probability reduced to Θ(1).

d-ary cuckoo hashing was invented by Fotakis, Pagh, Sanders, and Spirakis in 2003 [FPSS03].
The main advantage of increasing d above 2 is that the load threshold increases. Even going from
d = 2 to d = 3, the threshold c∗d goes from 0.5 to ≈ 0.918, that is, with just one more hash function,
we can utilize 91% of the hash table instead of 49%. The corresponding tradeoff is that the access
time increases linearly with d. d-ary cuckoo hashing, also called generalized cuckoo hashing or
improved cuckoo hashing, “has been widely used in real-world applications” [SHF+17].

The exact value for c∗d for all d ≥ 3 was discovered via independent works by a number of
authors [DGM+10, FP10, FM12]. This combinatorial problem of finding the matching threshold
in these random bipartite graphs (which can also be viewed as random d-uniform hypergraphs) is
directly related to other problems like d-XORSAT [DGM+10] and load balancing [GW10, FKP11].

The primary insertion algorithm analyzed by Fotakis, Pagh, Sanders, and Spirakis was not
random walk insertion, but rather was BFS insertion. In BFS insertion, instead of selecting a
random i1 ∈ [d] and hashing x1 to hi1(x1), the algorithm finds the insertion path minimizing the
number of reassignments. In other words, i1, . . . , iℓ ∈ [d] are chosen such that ℓ is minimized,
where x1 is to be hashed to hi1(x1), the removed object x2 is to be hashed to hi2(x2), and so
on until hiℓ(xℓ) is an empty slot. While BFS insertion requires more overhead to compute in
practice, it is easier to analyze theoretically than random walk insertion. Fotakis, Pagh, Sanders,

2

and Spirakis proved that BFS insertion only requires O(1) expected reassignments for load factor
c when d ≥ 5+3 log(c/(1−c)) [FPSS03]. Our Corollary 10.2 (which on its own has a shorter proof
than Theorem 1.1) shows that this result extends to all d ≥ 3 and c < c∗d.

Fotakis, Pagh, Sanders, and Spirakis also introduced the insertion algorithm we study, random
walk insertion, describing it as “a variant that looks promising in practice”, since they did not
theoretically bound its insertion time but saw its strong performance in experiments [FPSS03].
Random walk insertion requires no extra space overhead or precomputation. In a 2009 survey on
cuckoo hashing, Mitzenmacher’s first open question was to prove theoretical bounds for random
walk insertion, calling random walk insertion “much more amenable to practical implementation”
and “usually much faster” than BFS insertion [Mit09]. Insertion algorithms other than random
walk or BFS have also been proposed, which have proven O(n) total insertion time for O(n) ele-
ments with high probability [KA19] or more evenly distributed memory usage [EGMP14]. However,
random walk insertion “is currently the state-of-art method” [KA19].

For load factors somewhat below the load threshold and d ≥ 8, the random walk expected
insertion time was proven to with high probability be polylogarithmic by Frieze, Melsted and
Mitzenmacher in 2009 [FMM09]. Fountoulakis, Panagiotou, and Steger then extended this result
to show polylogarithmic expected insertion time holds with high probability for all d ≥ 3 and
c < c∗d. The exponent of their logarithm is anything greater than 1 + bd, where bd = d+log(d−1)

(d−1) log(d−1)

[FPS13]. Our proof uses techniques and lemmas from these two papers.
The average-case insertion time for hash tables is expected to be O(1), however, not poly-

logarithmic. The first O(1) random walk insertion bound was proven by Frieze and Johansson,
who showed that for any load factor c, there exists some d such that there is O(1) expected insertion
time with high probability for d hashes at load factor c [FJ17]. However, their bounds only hold
for large d and load factors significantly less than the load threshold, c = 1 − Od→∞(log(d)/d),
while it had been shown that c∗d = 1 − (1 + od→∞(1))(e−d) [DGM+10, FP10, FM12].

To obtain a result that works for lower d, Walzer used entirely different techniques to prove
O(1) expected random walk insertion time with high probability up to the “peeling threshold”, a
load factor that is a lower number than the load threshold for any d ≥ 3. The strongest result
here is in the case d = 3, where Walzer gets O(1) expected insertion up to load factor c = .818,
compared to the optimal value c∗3 = .918. Walzer pointed out that there was no d ≥ 3 for which
O(1) insertion was known up to the load threshold, saying, “Given the widespread use of cuckoo
hashing to implement compact dictionaries and Bloom filter alternatives, closing this gap is an
important open problem for theoreticians” [Wal22].

Theorem 1.1 is the first result to get O(1) expected random walk insertion with high probability
up to the load threshold for any d ≥ 3, and works for all d ≥ 3. The state of the art results are
summarized in the tables below:

d c∗d O(1) expected insertion Insertion time at
up to load factor. . . c = (1 − ϵ)c∗d ∀ ϵ > 0

2 10.5 10.5 1O(1)
3 20.918 30.818 5O(log3.664(n))
4 20.977 30.772 5O(log2.547(n))
5 20.992 30.702 5O(log2.152(n))
6 20.997 30.637 5O(log1.946(n))

Large 21 − (1 + od→∞(1))(e−d) 41 −Od→∞(log dd) 5O(log1+(log d)−1+Od→∞(1/d)(n))

Prior work: 1[PR01, DM03] 2[DGM+10, FP10, FM12] 3[Wal22] 4[FJ17] 5[FPS13]

3

d c∗d O(1) expected insertion Insertion time at
up to load factor. . . c = (1 − ϵ)c∗d ∀ ϵ > 0

2 10.5 10.5 1O(1)
3 20.918 60.918 6O(1)
4 20.977 60.977 6O(1)
5 20.992 60.992 6O(1)
6 20.997 60.997 6O(1)

Large 21 − (1 + od→∞(1))(e−d) 61 − (1 + od→∞(1))(e−d) 6O(1)

Bounds after our work: 6Theorem 1.1

2 Preliminaries

Our techniques to prove Theorem 1.1 build off the techniques of Fountoulakis, Panagiotou, and
Steger [FPS13], who showed expansion-like properties of the bipartite hashing graph that hold
with high probability. The main new ingredient is the introduction of recursively defined “bad”
sets Bi for i ∈ N. In this section, we will give some intuition for the overall proof structure and
will more precisely state our results.

2.1 The Bipartite Graph and Matchings

We will study the form of the random walk where at each object removal, we choose a random
one of the d − 1 other hashes for the object that was just evicted (not returning it to the spot it
was just evicted from). In Section 10, we will show that proving the expected run time of this
non-backtracking random walk is O(1) also proves the same of the random walk that chooses any
one of the d hashes each time (including the one it was just removed from). Section 10 will also
show an O(1) expected insertion time for the BFS insertion for all d ≥ 3 and all c < c∗d.

Let M be the starting matching of size n − 1 just before we insert the nth element. We can
think of M as turning the bipartite graph into a directed graph, where an edge between object x
and slot y is oriented y → x if x is matched to slot y, while it is oriented x → y if x is not matched
to slot y. The cuckoo hashing procedure can be thought of as a random walk on this directed
graph (with the random walk also changing the directions of some edges as it progresses).

Let U ⊆ Y be the set of open spots in the hash table, which stays the same at each time step
while the algorithm is running (as the algorithm terminates when it hits an open slot).

Our proof only relies on expansion-like properties of the bipartite graph on (X,Y) that hold
with high probability. In particular, given the random bipartite graph, our result holds for any
arbitrary starting matching M of objects to slots. As our expectation is over the hash values of
the object being inserted, one fact we do need is that the hash values of this object being inserted
are random among all slots in Y , after M is determined.

In other words, our theorem could be stated in more detail as follows:

Theorem 1.1. Assume that we have d ≥ 3, c < c∗d, and n = cm. There exists an event A related
to the hashes of the n objects that occurs with probability 1 − o(1) over uniformly random hash
functions. Let i ≤ n and let x ∈ X be the i-th element being inserted. If A occurs, then for any
matching M of the first i − 1 elements to slots of the hash table that is independent of the hash
values of x, we have that the expectation (over the hash values of x and the choices of the random
walk) of the insertion time for the random walk insertion process on x is O(1).

Corollary 9.1 tells us that furthermore, if A occurs, then for any constant C6 ≥ 0, there is a
constant C7 = C7(C6, c, d) such that for sufficiently large n and all ℓ ∈ N, the probability (over

4

the hash values of x) of the random walk insertion process taking more than ℓ steps is at most
C7ℓ

−C6 .
For convenience, we will consider inserting the n-th element throughout the paper, which we

imagine inserting into a random slot in Y before determining the rest of its hash values. A can
be taken to be one event over all n insertions; or, in other words, every “with high probability”
statement in our proof is about bipartite graph structures that persist when elements are removed
from X (in Lemmas 2.1, 3.1, 4.3, 5.1, and 7.1). Thus, our result implies an O(n) expected time to
build the hash table of n elements online.

Starting from some x ∈ X, we will use the convention that a walk of length i means that we
do i reassignments, which corresponds to a walk of length 2i in the bipartite graph (X,Y). Let
W ′

+i(x) ⊆ X be the set of all possible endpoints of a walk of length i starting from x under a
particular matching M. Therefore, |W ′

+i(x)| ≤ (d− 1)i, as we have d− 1 choices of assignment at
each step (at the first step, x is banned from choosing the slot that it is matched to under M).

The Bi will be defined based on counting the number of “good” elements in W ′
+i(x). If we are

considering a walk of length i from x, and there is some walk from x that lands on an unoccupied
slot (u ∈ U) on the jth reassignment for some 1 ≤ j ≤ i, that is extremely good, so we want to
properly account for this. Intuitively, we want to imagine that the walk continues for i − j more
steps after it hits u, so u should count (d− 1)i−j times as a good element of W ′

+i(x). For instance,
if x has one neighbor u ∈ U , we want u to contribute (d − 1)i−1 dummy elements to W ′

+i(x). If
there were also a different walk from x that hit that same u on the jth reassignment for some
1 ≤ j ≤ i, then the same u would also contribute (d − 1)i−j additional dummy elements, and so
on.

Formally, we accomplish this as follows: for every i ∈ N and x ∈ X, let the set Ui(x) be a set
of dummy elements (newly-introduced elements that are not in X), with

|Ui(x)| =
i∑

j=1

(#walks from x that hit U on the jth reassignment)(d− 1)i−j .

Then we define W+i(x) = W ′
+i(x) ⊔ Ui(x). For S ⊆ X, we can similarly define W+i(S) =⋃

x∈S W+i(x). We also define W+≤i(x) =
⋃i

j=0W+j(x) and W+≤i(S) analogously for S ⊆ X.

Similarly, for x ∈ X and j ∈ N, let W−j(x) be defined to equal {w ∈ X : x ∈ ∪j
k=0W+k(w)},

that is, the set of elements that could reach x in at most j steps.
The BFS distance, or distance, of an object w ∈ X from an object x ∈ X under M is the

minimal i such that w ∈ W+i(x). We can define BFS distances involving sets in the natural way,
by minimizing over elements of those sets. We can similarly define the BFS distance of a slot y ∈ Y
from an object x ∈ X as 1 plus the BFS distance from x to N(y). For example, {h1(x), . . . , hd(x)}
is exactly the set of slots at BFS distance 1 from x. Slots with no hash functions to them (isolated
vertices in the bipartite graph) can be assumed to have infinite distance.

Lemma 2.1 (Corollary 2.3 of [FPS13]). Let d ≥ 3 and assume n = cm for c < c∗d. Then with high
probability, we have that for any matching M and any α = Θ(1) > 0, there exists M = Θ(1) such
that for the unoccupied vertices U of Y , we have that at most αn of the vertices of X have BFS
distance > M to U .

Lemma 2.1 was first proven by the inventors of d-ary cuckoo hashing, but only under the
weaker condition d ≥ 5 + 3 log(c/(1 − c)) for n = cm [FPSS03]. (Note logarithms are natural
unless denoted otherwise.) Corollary 2.3 of [FPS13] extended this lemma to all d ≥ 3 and c < c∗d.
Some intuition for Lemma 2.1 will be given in Section 4.

5

Let α > 0 be sufficiently small (but still Θ(1), to be set later) and take the corresponding
M = Θ(1) as in Lemma 2.1. For our starting matching M, let G be all vertices of X of BFS
distance at most M from U . When we start at a vertex g ∈ G, we have at least a (d − 1)−M

chance that our random walk will finish in at most M more steps. (That is, there is at least a
(d−1)−M chance that our random walk will be the BFS path, which has length ≤ M .) Intuitively,
this gives that the expected length on a random walk that stays inside G at every time t is at most
M(d − 1)M + M = Θ(1) (though some technicalities arise due to the changing matching as the
walk progresses). This shows intuitively that it suffices to only focus on the “worst” αn vertices
for some small α = Θ(1) > 0.

2.2 Paper Outline

In Section 3, we will show an upper bound on the number of hashes that any set of slots receives.
Iterating this will prove in Lemma 3.2 that, with high probability, for any j ∈ N and any S ⊆ X
with |S| ≤ n/12, we have

|W−j(S)| ≤
(

3d log

(
n

|S|

))j

|S|.

As the random walk progresses, the matching of objects to slots changes as we perform evictions.
Section 4 explains why this does not present a problem for our analysis.

Section 5 is our longest and most technical section. It begins by giving a lower bound on the
number of distinct slots hashed to by a set of objects in Lemma 5.1. Applying Lemma 5.1 gives
lower bounds on |W+j(S)| that hold for any S ⊆ X. This lemma proves to be a keystone of our
proof, as the lower bounds on |W+j(S)| can be iteratively built up to give bounds on the likelihood
of ending up in one set when starting from another. Intuitively, if |W+j(S)| is near its upper bound
of (d−1)j |S|, then the random walks starting in S do not concentrate on any small set of vertices,
which helps our analysis.

In Section 6, we define the sets Bi, where we iteratively define

Bi = {x ∈ X : at least 2(d− 1)ii−1.5 paths of length i from x end in Bi−1}.

In other words, if we are outside of Bi, we have at least 1 − 2i−1.5 probability that in i steps we
will be outside of Bi−1. So, if the random walk begins outside of Bi, it is likely to iteratively
progress from X \ Bi to X \ Bi−1, and so on, to eventually reach the G of Lemma 2.1. The fact
that

∑∞
i=1 2i−1.5 converges means that we can achieve an arbitrarily small constant probability of

this progression failing on any step.
Lemma 5.7 from Section 5 quickly implies that |Bi| ≤ (d − 1)−i2/4n. Section 6 continues on

to show that walks starting “sufficiently far” from Bi have probability at least 0.97 of finishing in
O(i2) steps.

Section 7 directly improves Lemma 3.2, with a more technical proof giving a stronger bound
on |W−j(S)|. This was not needed for anything before Section 7, but is needed in Section 8, which
finishes the proof of O(1) insertion by improving the “with probability at least 0.97” statement to
an expected insertion time. Roughly, we can show that if a walk starting in X \ Bi fails to finish
in O(i2) steps, then we are still likely to be outside of X \B9i and can attempt another run.

Section 9 proves stronger tail bounds on the insertion time of the random walk, that is, an
upper bound on the probability that the random walk will take at least ℓ steps.

Section 10 extends our work to show O(1) insertion for BFS insertion, as well as the random
walk procedure that chooses a random one of the d hashes each time rather than excluding the
one hash from which the object was just evicted.

Finally, Section 11 discusses possible future improvements on our results.

6

3 Bounding the Number of Paths to any Set

To show that reaching some bad set is unlikely, we want to upper bound the probability of reaching
some small set, which we can later combine with a proof of bad sets being small. To accomplish
this, we need to bound the number of neighbors that a small set can have.

Lemma 3.1. For any d ≥ 3 and c < c∗d, we have with high probability that there is not a set

Z ⊆ Y with |Z| ≤ n/12 such that |N(Z)| ≥ 3d log
(

n
|Z|

)
|Z|.

Proof. First, imagine fixing Z ⊆ Y , then randomly choosing the edges of our graph. Let e(Z) be
the number of edges incident to Z. Our bipartite graph has dn edges, and each has an independent
|Z|/m ≤ |Z|/n chance of landing in |Z|. Thus, e(Z) is stochastically dominated by the binomial
random variable Bin(dn, |Z|/n), and so
E(e(Z)) ≤ d|Z|. By standard Chernoff bounds,

P
(
e(Z) ≥ 3d log

(
n

|Z|

)
|Z|
)

≤
(

e

3 log(n/|Z|)

)3d|Z| log(n/|Z|)
≤ e−3d|Z| log(n/|Z|) =

(
|Z|
n

)3d|Z|
.

Then

P
(
∃ Z ⊆ Y s.t. |N(Z)| ≥ 3d log

(
n

|Z|

)
|Z|
)

≤
n/12∑
i=1

(
m

i

)(
i

n

)3di

≤
n/12∑
i=1

(
2en

i

)i(i

n

)3di

=

n/12∑
i=1

(
2e

(
i

n

)3d−1
)i

≤
log2(n)∑
i=1

2e

(
log2(n)

n

)2

+

n/12∑
i=log2(n)

(
2e

(
1

12

)2
)log2(n)

= o(1/n).

Now, for x ∈ X and j ∈ N, let W−j(x) be defined to equal {w ∈ X : x ∈ ∪j
k=0W+k(w)}, that

is, the set of elements that could reach x in at most j steps.

Lemma 3.2. For any d ≥ 3 and c < c∗d, we have with high probability that for any matching M

for any j ∈ N and any S ⊆ X with |S| ≤ n/12, we have |W−j(S)| ≤
(

3d log
(

n
|S|

))j
|S|.

Proof. We will assume that the conclusion of Lemma 3.1 holds, as it does with high probability.
We can then prove this lemma inductively as a corollary of Lemma 3.1.

We see that Lemma 3.2 is true for j = 0. Then note that W−j(S) = W−1(W−(j−1)(S)) =
N(Z) where Z ⊆ Y is the spots occupied by W−(j−1)(S), which thus has the same cardinality of
W−(j−1)(S).

So using Lemma 3.1, we have

|W−j(S)| ≤ 3d log

(
n

|W−(j−1)(S)|

)
|W−(j−1)(S)| ≤ 3d log

(
n

|S|

)
|W−(j−1)(S)|

≤
(

3d log

(
n

|S|

))j

|S|,

as desired.

7

Note that if we ever have |W−(j−1)(S)| ≥ n/12 (so Lemma 3.1 can’t be applied), then we have

|W−j(S)| ≤ 3d log
(

n
|S|

)
|W−(j−1)(S)| anyway, as the right side of the equation is then more than

n.

Lemma 3.2 will be strong enough for our work in the next few sections, including the technical
Section 5. After Section 5, in Section 7 we will prove Lemma 7.1, which is a more technical
improvement on Lemma 3.2 needed for our final proof.

4 The Changing Matching

As we noted above, Fountoulakis, Panagiotou, and Steger proved the following lemma, which we
will use as a black box:

Lemma 2.1 (Corollary 2.3 of [FPS13]). Let d ≥ 3 and assume n = cm for c < c∗d. Then with high
probability, we have that for any matching M and any α = Θ(1) > 0, there exists M = Θ(1) such
that for the unoccupied vertices U of Y , we have that at most αn of the vertices of X have BFS
distance > M to U .

The above lemma comes as a corollary of their following theorem:

Lemma 4.1 (Theorem 2.2 of [FPS13]). Let d ≥ 3 and assume n = cm for c < c∗d. Then with
high probability, there exists a δ > 0 such that for every R ⊆ Y , we have |{x ∈ X : N(x) ⊆ R}| <
(1 − δ)|R|.

Note for comparison that |{x ∈ X : N(x) ⊆ R}| ≤ |R| for every R ⊆ Y is exactly the
requirement for a matching to exist. This is essentially saying that for c < c∗d, we beat Hall’s
bound by a constant factor for all sets as n → ∞.

In other words, you could consider the parameter of the graph ξ = maxR⊆Y
|{x∈X:N(X)⊆R}|

|R| .

The definition of c∗d tells us that for any c > c∗d, we with high probability have ξ > 1, while for any
c < c∗d, we with high probability have ξ ≤ 1. The theorem above says that for any c < c∗d, there
exists an ϵ′ = ϵ′(c) such that we with high probability have ξ ≤ 1 − ϵ′.

When we first start our random walk by inserting the n-th element, it is inserted into a random
slot in Y , independent of any previous hashes or actions taken by the cuckoo hashing process when
inserting the previous elements. This fact is critical to our proof. Interestingly, the paper of [FPS13]
does not use this fact; their result would hold true even if the initial hash of the element were
adversarially chosen:

Theorem 4.2 (Theorem 1.2; Lemma 2.7 of [FPS13]). Assume that we have d ≥ 3, c < c∗d, and
n = cm. Then with high probability over the random hash functions, we have that the expected
insertion time for the random walk insertion process is O(log1+bd(n)), where bd = d+log(d−1)

(d−1) log(d−1) .

It is useful for us to use as a black-box that we can have O(poly log n) insertion time even
when starting from an arbitrary starting hash in the graph. In other words, at any point in the
insertion process, conditioned on any prior events in the insertion process (and still assuming the
“with high probability” facts about the underlying graph), the expected time from that time until
the random walk finishes is O(log1+bd(n)). bd ≤ 3 for all d ≥ 3, so this is O(log4(n)).

This proof that O(log n) expected insertion time from a given step holds conditioned on any
prior events also can be shown to follow from our work here: Lemma 6.1 will show that with
high probability it is true that for any matching (even one that might have been changed over the

8

course of the walk) that our bad set Bi has that Bi = ∅ when i = C ′√log n with a sufficiently high
constant C ′. It is more notationally convenient to explain away the changes to the matching now,
so we can hereafter treat the matching as fixed.

As the random walk progresses, the matching changes from M, as some elements are moved
to different spots. Again picturing M as assigning directions to the edges of the bipartite graph,
as we only change the direction of edges that we move along, we see that the only time that the
change in the matching may affect our random walk might need to worry about the changing
matching is if the walk cycles; that is, if an object x ∈ X is reached twice by the random walk.

For this purpose, we will define a special set C ⊆ X, which we can think of as the vertices near
cycles significantly shorter than log(n). Formally, let z = (10 log(n))0.9 and let SCyc ⊆ X be the
set of vertices who are on a cycle of length z or less. Then we define C = W−z(SCyc).

Lemma 4.3. For any d ≥ 3 and c < c∗d, we have with high probability over the choice of random
hashes that |C| < n0.3.

Before proving this lemma, we will explain how it allows us to deal with changes to M. If we
start inside C, we will simply use the O(poly log n) bound. Since the probability of starting in C is
at most n−0.7, this adds an O(1) factor to our expected run time.

Similarly, we will show in Corollary 9.1 that, conditioned on staying outside of SCyc, the
probability of taking more than z steps is O(z−5) ≤ O((log n)−4) as well. So, if the random walk
starting outside of C reaches z steps in length, then we can again revert to the O(log4 n) bound
while only adding an O(1) factor to the expected run time.

Therefore, this subsection shows that we do not need to worry about any changes to the
matching from M, as the cases that remain to be proven only include cases that do not involve
any cycling in the random walk. So, for the rest of this paper, we can consider the cuckoo hashing
insertion procedure to be a random walk on the fixed directed graph given by M.

Proof of Lemma 4.3. Fix ℓ ∈ N and consider the cycles of length 2ℓ in the bipartite graph. Each
has the form (x1, y1, x2, y2, . . . , xℓ, yℓ) for some x1, . . . , xℓ ∈ X and y1, . . . , yℓ ∈ Y , where xi hashes
to both yi and yi−1 (with x1 also hashing to yℓ). There are at most nℓmℓ ordered sets of ver-
tices (x1, y1, x2, y2, . . . , xℓ, yℓ). The probability that all required hashes will be chosen is at most(
d(d−1)
m2

)ℓ
≤ d2ℓm−2ℓ. Thus, the expected number of cycles of length 2ℓ in the bipartite graph is

at most nℓmℓd2ℓm−2ℓ < d2ℓ.
Then the number of cycles of length at most z is at most∑z/2

ℓ=1 d
2ℓ ≤ dz+1 = o(dlog(n)/(100d)) = o(n0.1). Markov’s inequality gives that with high probability

there are less than n0.1 cycles of length at most z.
Each of these cycles has at most z vertices on it, so |SCyc| < n0.1z < n0.2 for sufficiently large

n.
Then we apply Lemma 3.2 to say that

|C| ≤
(

3d log

(
n

|SCyc|

))z

|SCyc| < (3d log(n))z n0.2 < n0.3.

5 Expansion from any vertex set

5.1 Lower bounds on |W+j(S)|

The following lemma was proven by Fountoulakis, Panagiotou, and Steger:

9

Lemma 5.1 (Proposition 2.4 of [FPS13]). Let d ≥ 3 and c < c∗d. For any 1 ≤ s < |X|/d, define

ps =

{
0 if s ≤ log log(n)
logd((d−1)ed)
logd(|X|/(ds)) if log log(n) ≤ s ≤ |X|/d

With high probability, we have that for all S ⊆ X with |S| < |X|/d that

|N(S)| ≥ (d− 1 − p|S|)|S|.

Some facts to note here are that ps ≥ 0 and ps is monotonically increasing with s. Also, for
s ≤ |X|/(e1000d), which we will generally be able to assume by Lemma 2.1, we have ps < 0.01.

Fountoulakis, Panagiotou, and Steger applied Lemma 5.1 iteratively, and the term in the
numerator of Lemma 5.1 ended up becoming the exponent of the logarithm in their O(poly log n)
run-time bound.

Because it is so critical for our paper, we provide a proof of Lemma 5.1 here, reproducing the
proof of Fountoulakis, Panagiotou, and Steger [FPS13].

Proof. For a given S ⊆ X and T ⊆ Y , we have that

P(N(S) ⊆ T) =

(
|T |
m

)d|S|
.

Fix an s such that 1 ≤ s ≤ n. For there to be an S ⊆ X with |S| = s that fails the lemma, it must
have N(S) ⊆ T for a T with |T | = (d− 1 − ps)s. So, for s ≥ log log(n), we have

P(∃ S ⊆ X with |S| = s failing the lemma) ≤
(
n

s

)(
m

(d− 1 − ps)s

)(
(d− 1 − ps)s

m

)ds

≤
(ne

s

)s(em

(d− 1 − ps)s

)(d−1−ps)s((d− 1 − ps)s

m

)ds

≤

(
cspse(d−ps)(d− 1 − ps)

(1+ps)

mps

)s

≤
((

s(d− 1)

em

)ps

(ced(d− 1))

)s

≤ cs,

where we recall that the load factor c satisfies c < c∗d < 1. For s ≤ log(m)/(d2), we can note that
for S to fail the lemma we must in fact have |T | < (d − 1)s, so as (d − 1)s is an integer we need
|T | ≤ (d− 1)s− 1 = (d− 1− 1/s)s. So, applying the above process with 1/s in the place of ps, we
have for s ≤ log(m)/(d2) that

P(∃ S ⊆ X with |S| = s failing the lemma) ≤
(
n

s

)(
m

(d− 1 − 1/s)s

)(
(d− 1 − 1/s)s

m

)ds

≤

((
s(d− 1)

em

)1/s

(ced(d− 1))

)s

≤
(

log(m)

edm

)(
ced(d− 1)

)log(m)/(d2)

10

≤
(

log(m)(d− 1)

em

)
2log(m)

≤ o(m−0.2)

Then summing over all s, the probability that there exists some S ⊆ X that fails our lemma is at
most

log(m)/(d2)∑
s=1

o(m−0.2) +
cm∑

s=log(m)/(d2)

cs ≤ o(m−0.19) + O(mlog(c)/(d2)).

So, with high probability there is no such S, as desired.

For our purposes, we want to give a lower bound on |W+j(S)| using this lemma. Note that we
have a natural upper bound of |W+j(S)| ≤ (d− 1)|W+(j−1)(S)| ≤ (d− 1)j |S|.

Lemma 5.2. Let d ≥ 3, c < c∗d, and ps be defined as in Lemma 5.1. With high probability, for
every matching M and any S ⊆ X and j ∈ N with |S| < (d − 1)−jn, we have that |W+j(S)| ≥
(d− 1 − p(d−1)j |S|)

j−1(d− 2 − p(d−1)j |S|)|S|

Proof. Note that |W+≤j(S)| = |N(W+≤j−1(S))|, as W+≤j(S) ⊆ X is exactly the set of elements
that fill the slots in Y that are neighbors of W+≤j−1(S) ⊆ X. Therefore, we can apply Lemma 5.1
to say that

|W+≤j(S)| = |N(W+≤j−1(S))| ≥ (d− 1 − p|W+≤j−1(S)|)|W+≤j−1(S)|.

Applying this inductively gives

|W+≤j(S)| ≥ |S|
j−1∏
k=0

(d− 1 − p(d−1)k+1|S|) ≥ (d− 1 − p(d−1)j |S|)
j |S|,

using that ps is monotonically increasing with s. Then,

|W+j(S)| ≥ |W+≤j(S)| − |W+≤j−1(S)|
≥ (d− 1 − p(d−1)j |S|)|W+≤j−1(S)| − |W+≤j−1(S)|
≥ (d− 2 − p(d−1)j |S|)|W+≤j−1(S)| (1)

≥ (d− 2 − p(d−1)j |S|)(d− 1 − p(d−1)j−1|S|)
j−1|S|

≥ (d− 2 − p(d−1)j |S|)(d− 1 − p(d−1)j |S|)
j−1|S|

as desired.

Lemma 5.2 essentially gives that |W+j(S)| is within a constant factor, d−2
d−1 , of the upper bound

of |W+j(S)| ≤ (d − 1)j |S|. Lemma 5.3 essentially shows that relatively little of this loss appears
at higher j.

Lemma 5.3. Let ps be defined as in Lemma 5.1. For any S ⊆ X and any j ∈ N with |S| <
(d− 1)−jn/e1000d, we have that

|W+j(S)| ≥ (d− 1)|W+(j−1)(S)| − |S| − 2.1p(d−1)j |S||W+(j−1)(S)|.

11

Proof. As in the proof of Lemma 5.2, we start from

|W+≤j(S)| = |N(W+≤j−1(S))| ≥ (d− 1 − p|W+≤j−1(S)|)|W+≤j−1(S)|.

In other words, this means that if you take any ordering of the d|W+≤j−1(S)| hashes leaving
W+≤j−1(S), there are at most (1 + p|W+≤j−1(S)|)|W+≤j−1(S)| hashes that hit a table slot already
hit by another hash in W+≤j−1(S), which we could call repeat hashes.

Considering ordering the hashes where the ones from S come first, then the ones from W+1(S),
and so on until W+(j−1)(S). We see that for every 1 ≤ k < j − 1, by the definition of W+k(S),
every object in W+k(S) sends at least one of its d hashes into a slot occupied by an element
of W+(k−1)(S), giving a repeat at every element in W+k(S). That shows that from W+1(S) to
W+(j−2)(S) we have

≥
j−2⋃
k=1

|W+k(S)| ≥ |W+≤j−1(S)| − |W+(j−1)(S)| − |S|

repeats.
Therefore, the number of the d|W+(j−1)(S)| hash functions from W+(j−1)(S) that can go to a

slot already hashed to is at most the number of repeats remaining, which is at most

(1 + p|W+≤j−1(S)|)|W+≤j−1(S)| − (|W+≤j−1(S)| − |W+(j−1)(S)| − |S|)
= |W+(j−1)(S)| + |S| + p|W+≤j−1(S)||W+≤j−1(S)|.

Each new slot that is hashed to gives a corresponding element of W+j(S), so

|W+j(S)| ≥ d|W+(j−1)(S)| − (|W+(j−1)(S)| + |S| + p|W+≤j−1(S)||W+≤j−1(S)|)
≥ (d− 1)|W+(j−1)(S)| − |S| − p|W+≤j−1(S)||W+≤j−1(S)|
≥ (d− 1)|W+(j−1)(S)| − |S| − p(d−1)j |S||W+≤j−1(S)|
≥ (d− 1)|W+(j−1)(S)| − |S| − p(d−1)j |S|(|W+(j−1)(S)| + |W+≤j−2(S)|)

≥ (d− 1)|W+(j−1)(S)| − |S| − p(d−1)j |S|

(
|W+(j−1)(S)| +

|W+(j−1)(S)|
d− 2 − p(d−1)j−1|S|

)
, using (1)

≥ (d− 1)|W+(j−1)(S)| − |S| − p(d−1)j |S|

(
|W+(j−1)(S)| +

|W+(j−1)(S)|
d− 2.01

)
,

using |W+(j−1)(S)| ≤ (d− 1)j−1|S| < |X|/(e1000d)

≥ (d− 1)|W+(j−1)(S)| − |S| − 2.1p(d−1)j |S||W+(j−1)(S)|

as desired.

5.2 Avoiding small sets through expansion

Now that we have proven lower bounds on |W+j(S)| for any set, we will now use these bounds to
go in a different direction and show that for a set S, relatively few elements will have many paths
to S. In other words, we create sets Bj(S), which consist of elements x ∈ X from which we have
a high likelihood of being in S after j steps.

Unlike bounding |W−j(S)|, which includes all objects that have at least one path of length
j to S, we will only include objects which have at least some fraction of their paths of length j

12

reaching S. Correspondingly, while |W−j(S)| must grow with j, when we set the parameters here,
we will see that |Bj(S)| will actually shrink with j; if j is large, there are very few objects that,
as a start point, have a high likelihood of being in S after a j steps. You can imagine this as
saying something about the mixing of our random walk, as it shows the random walk is unlikely
to concentrate on a small set after a while.

A sketch of the basic argument goes like this: if you take a set Q, the lemmas in the previ-
ous section show that |W+j(Q)| is large. In particular, this means that there are many distinct
endpoints for a walk of length j starting in Q. Only |S| of the distinct endpoints are in S, so if
|W+j(Q)| ≫ |S|, then it is unlikely for a walk of length j starting in Q to end up in S. For this to
work, it is also necessary to know how many of the walks could concentrate on the same endpoints.

The next four lemmas will iteratively bootstrap off each other to get better bounds on the

likelihood of ending in S, with new definitions for B
(1)
j (S), B

(2)
j (S), B

(3)
j (S), and B

(4)
j (S).

Formally now: for any set S ⊆ X and a given matching M, define B
(1)
i (S) ⊆ X as follows. An

object x is in B
(1)
i (S) if and only if at least 1/4 of the (d− 1)log

2(i) paths of length log2(i) from x

end in an object z ∈ W+ log2(i)(x) such that at least 150
i proportion of the (d− 1)i−log2(i) paths of

length i− log2(i) starting at z end in S.
In other words, we define

S′
1 = {z ∈ X :≥ 150(d− 1)i−log2(i)/i paths of length i− log2(i) from x end in S}

and then

B
(1)
i (S) = {x ∈ X :≥ (d− 1)log

2(i)/4 paths of length log2(i) from x end in S′
1}.

Lemma 5.4. For any d ≥ 3 and c < c∗d, we have the following with high probability that for any

matching M: for any S ⊆ X and i ∈ N with i ≥ C1 for some C1 = Θ(1) and |S| ≤ (d− 1)−i2/5n,

we have that |B(1)
i (S)| < (d− 1)−.9i|S|.

Proof. Let Q ⊆ X such that |Q| = (d − 1)−.9i|S|. We will prove that there must exist some

x ∈ Q such that x /∈ B
(1)
i (S), therefore proving that no such Q can equal B

(1)
i (S) and thus

|B(1)
i (S)| < (d− 1)−.9i|S|.
In fact, we will show this by showing that, starting from a uniformly random point in x ∈ Q,

there is at least probability ≥ 1
4 that after log2(i) steps, we are at a point z such that more than

1 − 150
i proportion of the (d− 1)i−log2(i) paths of length i− log2(i) do not end in S.

First, we note that

|W+ log2(i)(Q)| ≥ (d− 1 − p
(d−1)log

2(i)|Q|)
log2(i)−1(d− 2 − p(d−1)log(i)|Q|)|Q| by Lemma 5.2

≥
(
d− 1 − logd((d− 1)ed)

logd((d− 1)i2/5/d)

)log2(i)−1(
d− 2 − logd((d− 1)ed)

logd((d− 1)i2/5/d)

)
|Q|,

as log2(i)|Q| < |S| ≤ (d− 1)−i2/5n

≥
(
d− 1 − 15(d− 1)

i2

)log2(i)−1

(d− 2 − 0.1) |Q|,

using 15(d− 1) ≥ 5 logd((d− 1)ed)

logd(d− 1)
for all d ≥ 3

≥ (d− 1)log
2(i)

(
d− 2.1

d− 1

)(
1 − 15(log2(i) − 1)

i2

)
|Q|

13

≥ (d− 1)log
2(i)|Q|/3.

Then, from here we note that for every log2(i) ≤ j ≤ i, we have that

|W+j(Q)| ≥ (d− 1)|W+(j−1)(Q)| − |Q| − 2.1p(d−1)j |Q||W+(j−1)(Q)| By Lemma 5.3

≥ (d− 1)|W+(j−1)(Q)| −
3|W+ log2(i)(Q)|

(d− 1)log
2(i)

− 2.1p
(d−1)i−i2/5n

|W+(j−1)(Q)|

≥ (d− 1)|W+(j−1)(Q)| −
|W+(j−1)(Q)|

i2
− 2.1

logd((d− 1)ed)

(i2/5 − i) logd(d− 1) − 1
|W+(j−1)(Q)|

≥
(
d− 1 − 2.1(15(d− 1))

i2

)
|W+(j−1)(Q)|,

again using that 15(d− 1) > 5 logd((d−1)ed)
logd(d−1) for all d ≥ 3.

Applying this iteratively, we get that

|W+i(Q)| ≥
(
d− 1 − 32(d− 1)

i2

)i−log2(i)

|W+ log2(i)(Q)|

≥ (d− 1)i−log2(i)

(
1 − 32

i2

)i

|W+ log2(i)(Q)| ≥ (d− 1)i−log2(i)

(
1 − 32

i

)
|W+ log2(i)(Q)|

This tells us that for any ordering of the (d − 1)i−log2(i)|W+ log2(i)(Q)| walks of length i − log2(i)
leaving Q, at most 32/i proportion of them end at an object that was also the endpoint of a

previous path, that is, there are at most (d− 1)i−log2(i)
(
32
i

)
|W+ log2(i)(Q)| repeats. Now,

|S| = (d− 1)0.9i|Q| ≤ (d− 1)−.05i(d− 1)i−log2(i)|Q|.

This implies that of the (d− 1)i−log2(i)|W+ log2(i)(Q)| paths of length i− log2(i) from W+ log2(i)(Q),

at most a
(
32
i + (d− 1)−0.5i

)
≤ 33

i proportion end in S, as if we order these paths we can have at
most |S| ones hit S for the first time, plus the repeats. Then, the Markov inequality tells us that
less than 1

4 of the elements in W+ log2(i)(Q) have at least a 150
i proportion of their paths ending in

S, and thus (recalling the definition of S′
1 before the start of Lemma 5.4),

|S′
1 ∩W+ log2(i)(Q)| < |W+ log2(i)(Q)|/4

so then
|W+ log2(i)(Q) ∩ (X \ S′

1)| > (3/4)|W+ log2(i)(Q)| ≥ (d− 1)log
2(i)|Q|/4.

This finishes the proof, as it then must be true that more than 1/4 of the (d− 1)log
2(i)|Q| paths of

length log2(i) leaving Q must not end up in S′
1, meaning that Q cannot be B

(1)
i (S).

Now, we proceed to the second of four lemmas, where we can replace the two step “constant
probability of having 150

i probability of being in S” with a pure 200
i probability of being in S.

For any set S ⊆ X, define B
(2)
i (S) ⊆ X under a given matching M as follows. An object x is

in B
(2)
i (S) if and only if at least 200

i of the (d− 1)i paths of length i starting at x end in S.
In other words, you could define

B
(2)
i (S) = {x ∈ X :≥ 200(d− 1)i/i paths of length i from x end in S}.

14

Lemma 5.5. For any d ≥ 3 and c < c∗d, we have the following with high probability that
for any matching M: for any S ⊆ X and i ∈ N with i ≥ C2 for some C2 = Θ(1) and

(d− 1)−i10n < |S| < (d− 1)−i2/4.5n, we have that |B(2)
i (S)| < (d− 1)−.8i|S|.

Proof. We claim that B
(2)
i (S) ⊆ W− log4(i)(B

(1)

i−log4(i)
(W− log4(i)(S))). We first show that this suffices

to complete the proof, as we show |W− log4(i)(B
(1)

i−log4(i)
(W− log4(i)(S)))| < (d− 1)−.8i|S|. First note

that

|W− log4(i)(S)| ≤
(

3d log

(
n

|S|

))log4(i)

|S| ≤
(
3di10

)log4(i)
(d− 1)−i2/4.5n ≤ (d− 1)−i2/5n

for i ≥ C2, by Lemma 3.2. So

|B(1)

i−log4(i)
(W− log4(i)(S)))| ≤ (d− 1)−0.9(i−log4(i))|W− log4(i)(S)| by Lemma 5.4

≤ (d− 1)−0.85i

(
3d log

(
n

|S|

))log4(i)

|S| by Lemma 3.2

≤ (d− 1)−0.85i
(
3di10 log(d− 1)

)log4(i) |S| as (d− 1)−i10n < |S|
≤ (d− 1)−0.82i|S|

and thus

|W− log(i)4(B
(1)

i−log4(i)
(W− log4(i)(S)))|

≤

3d log

 n

|B(1)

i−log4(i)
(W− log4(i)(S))|

log4(i)

|B(1)

i−log4(i)
(W− log4(i)(S))|, by Lemma 3.2

≤
(

3d log

(
n

(d− 1)−0.82i|S|

))log4(i)

(d− 1)−0.82i|S|

≤
(
3d(i10 + 0.82i) log(d− 1)

)log4(i)
(d− 1)−0.82i|S|

≤ (d− 1)−0.8i|S|

as desired.
Now, let x /∈ W− log4(i)(B

(1)

i−log4(i)
(W− log4(i)(S))), and we will prove that x /∈ B

(2)
i (S).

Let x2 be the position that we reach after log2(i− log4(i)) steps. Because

x /∈ B
(1)

i−log4(i)
(W− log4(i)(S)), there is at least a 1/4 chance that x has the property that there is at

least 1 − 150/i chance that we will be outside of W− log4(i)(S) in a further (i− log4(i)) − log2(i−
log4(i)) steps.

Also, because x /∈ W− log4(i)(B
(1)

i−log4(i)
(W− log4(i)(S))), we know for sure that

x2 /∈ W−(log4(i)−log2(i−log4(i)))(B
(1)

i−log4(i)
(W− log4(i)(S))). Then if the 1/4 probability event does not

occur, we still have that after a further log2(i − log4(i)) steps from x2, there is again at least a
1/4 chance that we are at a point x3 such that with probability 1 − 150/i we will be outside of
W− log4(i)(S) in a further (i− log4(i)) − log2(i− log4(i)) steps from x3.

15

In this way, we see that we can iterate, and then for any k ∈ N such that k log2(i− log4(i)) <

log4(i), it is true that after k log2(i− log4(i)) steps, we have probability at least 1−
(
3
4

)k
to reach a

point x′ such that at least a 1− 150
i fraction of paths from x′ are outside W− log4(i)(S) in a further

(i− log4(i)) − log2(i− log4(i)) steps from x′.

We plug in k = log2(i). Then with probability ≥ 1 −
(
3
4

)log2(i) ≥ 1 − 1
i , in the first log4(i)

steps we have that we reach a point x′ such that at least a 1 − 150
i fraction of paths from x′ are

outside W− log4(i)(S) in a further (i− log4(i)) − log2(i− log4(i)) steps from x′. This shows that if

we do reach such an x′, then conditioned on reaching that x′ we have at least a 1 − 150
i of being

outside of S after exactly i steps from our initial x (as we reach x′ after a number of steps between
log2(i− log4(i)) and log4(i); and then a further (i− log4(i)) − log2(i− log4(i)) steps later we are
likely to be outside of W− log4(i)(S), meaning outside of S after i− k log2(i− log4(i)) steps from x′

for every 1 ≤ k ≤ log2(i) as desired).
Since the probability of reaching such an x′ is at least 1 − 1

i , we have probability at least(
1 − 150

i

) (
1 − 1

i

)
≥ 1− 200

i of being outside of S after exactly i steps from our initial x. Therefore,

x /∈ B
(2)
i (S), as desired.

We defined B
(2)
i (S) to have 200/i probability of hitting S. Now, we want to strengthen this

result by reducing this probability to 2/i1.5. We will now bootstrap Lemma 5.5 to a stronger failure
probability, but first using the same definition as in Lemma 5.4 except with the 150/i probability
replaced with i−1.5.

For any set S ⊆ X, define B
(3)
i (S) ⊆ X under a given matching M as follows. An object x is

in B
(3)
i (S) if and only if at least 1/4 of the (d − 1)log

2(i) paths of length log2(i) from x end in an

object z ∈ W+ log2(i)(x) such that at least i−1.5 proportion of the (d − 1)i−log2(i) paths of length

i− log2(i) starting at z end in S.
In other words, you could define

S′
3 = {z ∈ X :≥ (d− 1)i−log2(i)/i1.5 paths of length i− log2(i) from x end in S}

and then

B
(3)
i (S) = {x ∈ X :≥ (d− 1)log

2(i)/4 paths of length log2(i) from x end in S′
3}.

Lemma 5.6. For any d ≥ 3 and c < c∗d, we have the following with high probability that for any

matching M: for any S ⊆ X and i ∈ N with i ≥ C3 for some C3 = Θ(1) and (d− 1)−i3n < |S| <
(d− 1)−i2/4.5n, we have that |B(3)

i (S)| < (d− 1)−.7i|S|.

Proof. This proof will follow much of the same structure of Lemma 5.4, and will also use the result
of Lemma 5.5.

Let Q ⊆ X such that |Q| = (d−1)−.7i|S|. As in Lemma 5.4, we will prove that, starting from a
uniformly random point x ∈ Q, there is at least probability ≥ 1

4 that after log2(i) steps, we are at

a point z such that more than a 1− i−1.5 proportion of the (d−1)i−log2(i) paths of length i− log2(i)

do not end in S. This shows that there must be some x ∈ Q such that x /∈ B
(3)
i (S), proving that

|B(3)
i (S)| < (d− 1)−.7i|S|.
In the same way as in the proof of Lemma 5.4, we see that

|W+ log2(i)(Q)| ≥ (d− 1)log
2(i)|Q|/3

16

and

|W+j(Q)| ≥
(
d− 1 − 32(d− 1)

i2

)
|W+(j−1)(Q)| (2)

for every log2(i) ≤ j ≤ i. Applying these iteratively, we get that

|W+j(Q)| ≥ (d− 1)j−log2(i)

(
1 − 32

i2

)
|W+ log2(i)(Q)| ≥ (d− 1)j

(
1 − 32

i2

)
|Q|/3

≥ (d− 1)j |Q|/4 ≥ (d− 1)j−.7i|S|/4

for every log2(i) ≤ j ≤ i. We also have that, for every i0.3 ≤ k ≤ i,

|W−1(B
(2)
k (S))| ≤ 3d log

(
n

|B(2)
k (S)|

)
|B(2)

k (S)| by Lemma 3.2

≤ 3d log

(
n

(d− 1)−.8k|S|

)
(d− 1)−.8k|S|

by Lemma 5.5, as k ≥ C2, and |S| > (d− 1)−i3n ≥ (d− 1)−k10n,

and |S| < (d− 1)−i2/4.5n ≤ (d− 1)−k2/4.5n

≤ 3d log

(
n

(d− 1)−.8i(d− 1)−i3n

)
(d− 1)−.8k|S|

≤ 3d(log(d− 1))(i3 + .8i)(d− 1)−.8k|S|

Comparing these two bounds, we get that for all log2(i) ≤ j ≤ i− i0.3,

|W−1(B
(2)
i−j(S))| ≤ 3d(log(d− 1))(i3 + .8i)(d− 1)−.8(i−j)|S|

≤ (d− 1).8j−.8i+.05i|S| for all i ≥ C3

≤ (d− 1)(j−1)−.7i|S|/(4i3) for all i ≥ C3

≤ |W+(j−1)(Q)|/(i3)

Now, consider the (d− 1)|W+(j−1)(Q)| hashes leaving W+(j−1)(Q). If j ≤ i− i0.3, at most an i−3

proportion of them end inside B
(2)
i−j(S).

Additionally, by (2), at most an 32
i2

proportion of them under any ordering land on a slot
already hashed to by a previous hash. If we use R to denote the set of hashes that land on a slot
that another hash from W+(j−1)(Q) also lands on, we have that R is at most a 64

i2
proportion of

the total hashes. Counting separately the i−3 proportion ending up inside B
(2)
i−j(S), the at most 64

i2

proportion outside of B
(2)
i−j(S) corresponding to R thus has at least probability 1 − 200

i−j of landing
outside of S after i− j more steps (i total steps).

Of the remaining hashes that go to unique locations at each step, at most |S| end up in S.

Therefore, of the (d − 1)i−log2(i)|W+ log2(i)(Q)| paths of length i − log2(i) from W+ log2(i)(Q),
every path that lands in S falls into one of the following categories:

• At the first j where its position is the same as the position of another one of the paths, it

falls into B
(2)
i−j(S)

– At most an i−3 proportion of paths for a given log2(i) ≤ j ≤ i− i0.3

17

– At most an 64i−2 proportion of paths for a given i− i0.3 ≤ j ≤ i

• At the first j where its position is the same as the position of another one of the paths, it

does not fall into B
(2)
i−j

– At most an 64
i2

proportion of paths for a given j

– At most a 200
i−j proportion of the paths that fall into this category for this j end up in

S, if i− j ≥ i0.3

• Has no j such that its position at step j is the same as the position of another one of the
paths

– At most |S| total paths

Putting this together, the proportion that land in S out of the of the (d− 1)i−log2(i)|W+ log2(i)(Q)|
paths of length i− log2(i) from W+ log2(i)(Q) is at most

i− log2(i)

i3
+

64

i2

i−i0.3∑
j=log2(i)

200

i− j
+

64

i2

i∑
j=i−i0.3

1 +
|S|

(d− 1)i−log2(i)|W+ log2(i)(Q)|

≤ i−2 +
12800 log(i)

i2
+

64i0.3

i2
+

|S|
(d− 1)i|Q|/3

< i−1.5/4. for i ≥ C3

From here, we finish the proof as in Lemma 5.4: The Markov inequality tells us that less than 1
4 of

the elements in W+ log2(i)(Q) have at least a i−1.5 proportion of their paths ending in S, and thus
(recalling the definition of S′

3 before the start of Lemma 5.6),

|S′
3 ∩W+ log2(i)(Q)| < |W+ log2(i)(Q)|/4

so then
|W+ log2(i)(Q) ∩ (X \ S′)| > (3/4)|W+ log2(i)(Q)| ≥ (d− 1)log

2(i)|Q|/4.

This finishes the proof, as it then must be true that more than 1/4 of the (d− 1)log
2(i)|Q| paths of

length log2(i) leaving Q must not end up in S′
3, meaning that Q cannot be B

(3)
i (S).

Finally, we complete the analogy with B
(4)
i (S), which will be defined for B

(3)
i (S) in the way

that B
(2)
i (S) was for B

(1)
i (S).

For any set S ⊆ X, define B
(4)
i (S) ⊆ X under a given matching M as follows. An object x is

in B
(4)
i (S) if and only if at least 2i−1.5 of the (d− 1)i paths of length i starting at x end in S.

In other words, you could define

B
(4)
i (S) = {x ∈ X :≥ 2(d− 1)ii−1.5 paths of length i from x end in S}.

Lemma 5.7. For any d ≥ 3 and c < c∗d, we have the following with high probability that for any

matching M: for any S ⊆ X and i ∈ N with i ≥ C4 for some C4 = Θ(1) and (d− 1)−i3n < |S| <
(d− 1)−i2/4n, we have that |B(4)

i (S)| < (d− 1)−.6i|S|.

18

Proof. This proof follows in exactly the same way as the proof of Lemma 5.5. We will still present
the same proof here for completeness.

We claim that B
(4)
i (S) ⊆ W− log4(i)(B

(3)

i−log4(i)
(W− log4(i)(S))). Then

|W− log4(i)(S)| ≤
(

3d log

(
n

|S|

))log4(i)

|S| ≤
(
3di3

)log4(i)
(d− 1)−i2/4n ≤ (d− 1)−i2/4.5n

for i ≥ C4, by Lemma 3.2. So

|B(3)

i−log4(i)
(W− log4(i)(S)))| ≤ (d− 1)−0.7(i−log4(i))|W− log4(i)(S)| by Lemma 5.6

≤ (d− 1)−0.65i

(
3d log

(
n

|S|

))log4(i)

|S| by Lemma 3.2

≤ (d− 1)−0.65i
(
3di3 log(d− 1)

)log4(i) |S| as (d− 1)−i3n < |S|
≤ (d− 1)−0.62i|S|

and thus

|W− log(i)4(B
(3)

i−log4(i)
(W− log4(i)(S)))|

≤

3d log

 n

|B(3)

i−log4(i)
(W− log4(i)(S))|

log4(i)

|B(3)

i−log4(i)
(W− log4(i)(S))|, by Lemma 3.2

≤
(

3d log

(
n

(d− 1)−0.62i|S|

))log4(i)

(d− 1)−0.62i|S|

≤
(
3d(i10 + 0.62i) log(d− 1)

)log4(i)
(d− 1)−0.62i|S|

≤ (d− 1)−0.6i|S|

as desired.
Now, let x /∈ W− log4(i)(B

(3)

i−log4(i)
(W− log4(i)(S))), and we will prove that x /∈ B

(4)
i (S).

Let x2 be the position that we reach after log2(i− log4(i)) steps. Because

x /∈ B
(3)

i−log4(i)
(W− log4(i)(S)), there is at least a 1/4 chance that x2 has the property that there is at

least 1−i−1.5 chance that we will be outside of W− log4(i)(S) in a further (i−log4(i))−log2(i−log4(i))
steps.

Also, because x /∈ W− log4(i)(B
(3)

i−log4(i)
(W− log4(i)(S))), we know for sure that

x2 /∈ W−(log4(i)−log2(i−log4(i)))(B
(3)

i−log4(i)
(W− log4(i)(S))). Then if the 1/4 chance does not occur, we

still have that after a further log2(i − log4(i)) steps from x2, there is again at least a 1/4 chance
that we are at a point x3 such that with probability 1− i−1.5 we will be outside of W− log4(i)(S) in

a further (i− log4(i)) − log2(i− log4(i)) steps from x3.
In this way, we see that we can iterate, and then for any k ∈ N such that k log2(i− log4(i)) <

log4(i), it is true that after k log2(i− log4(i)) steps, we have probability at least 1 −
(
3
4

)k
to reach

a point x′ such that at least a 1 − i−1.5 fraction of paths from x′ are outside W− log4(i)(S) in a

further (i− log4(i)) − log2(i− log4(i)) steps from x′.

19

We plug in k = log2(i). Then with probability ≥ 1 −
(
3
4

)log2(i) ≥ 1 − i−1.5, in the first log4(i)
steps we have that we reach a point x′ such that at least a 1 − i−1.5 fraction of paths from x′ are
outside W− log4(i)(S) in a further (i− log4(i)) − log2(i− log4(i)) steps from x′. This shows that if

we do reach such an x′, then conditioned on reaching that x′ we have at least a 1 − i1.5 of being
outside of S after exactly i steps from our initial x (as we reach x′ after a number of steps between
log2(i− log4(i)) and log4(i); and then a further (i− log4(i)) − log2(i− log4(i)) steps later we are
likely to be outside of W− log4(i)(S), meaning outside of S after i− k log2(i− log4(i)) steps from x′

for every 1 ≤ k ≤ log2(i) as desired).
Since the probability of reaching such an x′ is at least 1 − i−1.5, we have probability at least(

1 − i−1.5
) (

1 − i−1.5
)
≥ 1 − 2i−1.5 of being outside of S after exactly i steps from our initial x.

Therefore, x /∈ B
(4)
i (S), as desired.

Note that if we adjust the constants, we could repeat this process an arbitrary constant number
of times, define a Bi with i−c probability of hitting S for any c ∈ R, and still show this is smaller
than S by an exponential factor in i. But for our overall proof, the 2i−1.5 probability we have now
obtained suffices.

6 Chaining together the Bi sets

Take α sufficiently small; in fact, what we need is that

α < (d− 1)−(C4)2/4

using the C4 from Lemma 5.7. Let G be the corresponding set given by Lemma 2.1 under the
starting matching M, where G consists of all elements of BFS distance at most M for some
appropriate M , and let BC4 = X \G.

For all i > C4, recursively define Bi = B
(4)
i (Bi−1).

Lemma 6.1. For any d ≥ 3 and c < c∗d, we have with high probability that for any matching M,

|Bi| ≤ (d− 1)−i2/4n for all i ∈ N.

Note that, in particular, this implies that there is a C ′ = Θ(1) such that Bi = ∅ for all
i ≥ C ′√log n.

Proof. We will prove this by induction on i, noting that it is true for i = C4.

If |Bi−1| < (d− 1)−i3n, then we note that B
(4)
i (Bi−1) ⊆ W−i(Bi−1), so

|Bi| ≤ |W−i(Bi−1)| ≤ 3d log

(
n

|Bi−1|

)
|Bi−1| by Lemma 3.2

≤ 3d log

(
n

(d− 1)−i3n

)
(d− 1)−i3n

≤ 3d(i3 log(d− 1))(d− 1)−i3n

≤ d−i2/4n

as desired. Otherwise, we have that

(d− 1)−i3n ≤ |Bi−1| ≤ (d− 1)−(i−1)2/4n,

20

and thus we can apply Lemma 5.7 to say that

|Bi| ≤ (d− 1)−.6i|Bi−1| by Lemma 5.7

≤ (d− 1)−.6i(d− 1)−(i−1)2/4n

≤ (d− 1)−.6i−i2/4+i/2−1/4n

≤ (d− 1)−i2/4n

as desired.

Lemma 6.2. Conditioned on starting at any vertex outside of Bi, the random walk has probability
≥ 0.99 of being in G (or having finished) in exactly i(i + 1)/2 − C4(C4 + 1)/2 steps.

Proof. By the definition of Bj , if we are at a vertex outside of Bj , then we have probability
≥ 1− 2

j1.5
of being outside of Bj−1 after j steps. Iterating this, we see that the probability of being

in G or finished (that is, outside of BC4) after
∑i

j=C4
j = i(i + 1)/2 − C4(C4 + 1)/2 steps is

≥
i∏

j=C4

(
1 − 2

j1.5

)
≥ 1 −

i∑
j=C4

2

j1.5
≥ 1 −

∞∑
j=C4

2

j1.5
≥ 0.99

as desired (using C4 ≥ 5000).

Lemma 6.3. For any i ≥ C4, conditioned on starting at any vertex outside of W−10(M+1)(d−1)M (Bi),

the random walk has probability ≥ 0.97 of terminating (finishing in U) within 10(M +1)(d−1)M +
(i(i + 1)/2 − C4(C4 + 1)/2) steps.

Proof. For any random walk, denote by xt the location of the random walk after t steps, with x0
being the initial hash location. Recalling the constant M and set G from Lemma 2.1, define an M -
separated sequence in G to be a list of steps t1, . . . , tq such that xt1 , . . . , xtq ∈ G and tr+1− tr > M
for every 1 ≤ r < q. That is, an M -separated sequence in G is a list of times that the random
walk is in G where each time is at least M steps after the previous.

Given a random walk that goes until finishing at an empty slot, let ζ be the maximum length
of an M -separated sequence in G. Then we have

P(ζ ≥ s) ≤ (1 − (d− 1)−M)s,

as for every time t where xt ∈ G, we have that the random walk will be finished in at most M
more steps with probability at least (d− 1)−M .

Furthermore, note that this inequality P(ζ ≥ s) ≤ (1 − (d− 1)−M)s still holds conditioned on
any given starting location for the random walk.

Let G1 denote the event that ζ ≥ 5(d−1)M . Then P(G1) ≤ (1−(d−1)−M)5(d−1)M ≤ e−5 < 0.01.
This is still true conditioned on starting at any vertex outside of W−10(M+1)(d−1)M (Bi).

Now, for any k ∈ N, let Ek denote the event that step k(M +1)+(i(i+1)/2−C4(C4 +1)/2) of
the random walk is in G or finished. The fact that the walk starts outside of W−10(M+1)(d−1)M (Bi)

means that for k ≤ 10(d − 1)M , step k(M + 1) of the random walk is not in Bi, and thus by
Lemma 6.2, there is probability at least 0.99 that step k(M + 1) + (i(i + 1)/2 − C4(C4 + 1)/2) of
the random walk will either be in G or finished.

Therefore, P(Ek) ≥ 0.99 for all k ≤ 10(d − 1)M . (We do not claim that these events are
independent.) Then the expected number of k ∈ {0, . . . , 10(d − 1)M − 1} such that Ek does not
occur is at most 0.1(d− 1)M .

21

Let G2 be the event that there are at least 5(d− 1)M values k ∈ {0, . . . , 10(d− 1)M − 1} such

that Ek does not occur. By Markov’s inequality, P(G2) ≤ 0.1(d−1)M

5(d−1)M
= 0.02.

Together, we get P(G1 ∪ G2) ≤ P(G1) + P(G2) ≤ 0.01 + 0.02 = 0.03.
Finally, we claim that if neither G1 nor G2 happen, then the random walk finishes within

10(M + 1)(d− 1)M + (i(i + 1)/2 − C4(C4 + 1)/2) steps, which will complete the proof.
If G2 does not happen, then there are more than 5(d−1)M values of k such that Ek does occur.

This means that there are more than 5(d − 1)M values of k for which k(M + 1) + (i(i + 1)/2 −
C4(C4 + 1)/2) is either in G or finished. If all of those k were in G (and not finished), then that
would produce a M -separated sequence in G of length ≥ 5(d − 1)M . However, G1 not occuring
means that no such sequence exists. Therefore, there must be some k ∈ {0, . . . , 10(d − 1)M − 1}
such that step k(M + 1) + (i(i + 1)/2 − C4(C4 + 1)/2) is finished, completing the proof.

7 Improved Bounds on the Number of Paths to any Set

We now seem to be very close to proving the theorem, as we have shown that there are sets Bi such
that |Bi| declines exponentially with i, and there is .97 probability in finishing in O(i2) steps when
starting outside of Bi. However, we do still need to deal with what happens in the 0.03 probability
case. To complete our proof of Theorem 1.1, we need to improve the bounds on Lemma 3.2.

Lemma 3.2 showed that |W−j(S)| ≤ (O(log(n/|S|))j |S|. Intuitively, as an average slot has in
expectation d hashes to it, you should expect |W−j(S)| to grow like dj |S| for an average S. Rather
than doing a new union bound over all S ⊆ X of a given size at each of the j steps as Lemma 3.2
implicitly did, we can get a stronger result by overcoming a smaller union bound.

Lemma 7.1. For any d ≥ 3 and c < c∗d, we have with high probability that for any matching M
any S ⊆ X with |S| < |X|/(10d), and 0 ≤ j ≤ log2(n), we have that

|W−j(S)| ≤ 10 (2d + log(d))j e

(
log2

(
log
(

n
|S|

)))
|S|.

Proof. First, imagine fixing some S ⊆ X before any hashes are revealed. Then, we generate the
hashes of the objects in S. We then perform a union bound over the ≤ d|S| choices for which out
of d slots each object in S is occupying under M. Next, we reveal which other hashes land in the
slots that are occupied by S, thus determining W−1(S).

Then, we again continue iteratively, next generating the hashes of the objects in W−1(S) and
union bounding over the ≤ d|W−1(S)| choices of where they occupy.

Note that for any fixed choice of the slots occupied by W−k(S), we have that |W−(k+1)(S)| is
stochastically dominated by the binomial random variable Bin(dn, |W−k(S)|/n), and so
E(|W−(k+1)(S))| ≤ d|W−k(S)|. By standard Chernoff bounds, for any λ > 0 and for any particular
choice of the slots occupied by W−k(S), which we denote by the “conditioning on M”, or “| M”
symbol, we have

P
(
|W−(k+1)(S)| ≥ (1 + λ)d|W−k(S)| | M

)
≤ e−λ2d(|W−k(S)|)/(λ+2).

Intuitively, this means that |W−j(S)| should on average be upper bounded by dj |S|. We will use
these Chernoff bounds to get a result that holds even in our worst case. Let

λk =
log(d)

d
+

4 log(en/|S|)
dk+1

+ 1.

We will induct on k to bound P
(
|W−(k+1)(S)| ≥

(∏k
ℓ=0(1 + λℓ)

)
dk|S|

)
.

22

We claim that
λ2
k

λk + 2
≥ log(d)

d
+

2 log(en/|S|)
dk+1

To show this claim, we set C1 = log(d)
d ∈ (0, 1) and C2 = 4|S| log(en/|S|)

dk+1 ≥ 0. Then

(C1 + C2 + 1)2

C1 + C2 + 3
≥ C1 + 0.5C2

⇐⇒ C2
1 + C2

2 + 2C1C2 + 2C1 + 2C2 + 1 ≥ C2
1 + 0.5C2

2 + 1.5C1C2 + 3C1 + 1.5C2

⇐⇒ 0.5C2
2 + 0.5C1C2 + 0.5C2 ≥ C1 − 1,

which is true whenever C1 ∈ (0, 1) and C2 > 0, as the left side will then be positive while the right

side is negative. So, assuming (inductively) that |W−k(S)| ≤
(∏k−1

ℓ=0 (1 + λℓ)
)
dk−1|S|, we have for

any particular choice of the slots occupied by W−k(S) that

P

(
|W−(k+1)(S)| ≥

(
k∏

ℓ=0

(1 + λℓ)

)
dk|S|

∣∣∣∣M
)

≤ P
(
|W−(k+1)(S)| ≥ (1 + λk)d|W−k(S)| | M

)
by the inductive hypothesis

≤ e−λ2
kd(|W−k(S)|)/(λk+2)

≤ e−(log(d)|W−k(S)|+2|W−k(S)| log(en/|S|)/dk)

≤ e−(log(d)|W−k(S)|+2(
∏k−1

ℓ=0 (1+λk))|S| log(en/|S|))

≤ e−(log(d)|W−k(S)|+2|S| log(en/|S|))

≤ d−|W−k(S)|
(
en

|S|

)−2|S|
.

Now, we union bound over the ≤ d|W−k(S)| choices we faced to choose which slots the objects in
W−k(S) were matched to. Therefore,

P

(
|W−(k+1)(S)| ≥

(
k∏

ℓ=0

(1 + λℓ)

)
dk+1|S|

)
≤
(
en

|S|

)−2|S|
.

Summing over all 1 ≤ k ≤ j gives us that

P

(
|W−j(S)| ≥

(
j−1∏
k=0

(1 + λk)

)
dj |S|

)
≤ k

(
en

|S|

)−2|S|
.

Now, we union bound over the
(
n
s

)
≤
(
en
s

)s
choices for S with |S| = s to say that

P

(
∃ S ⊆ X s.t. |W−j(S)| ≥

(
j−1∏
ℓ=0

(1 + λk)

)
dj |S|

)
≤

n∑
s=1

j
(en

s

)−s

≤ j

n

n∑
s=1

se−s
(s
n

)s−1
≤ j

n

n∑
s=1

se−s

≤ j

n

e

(e− 1)2
≤ o(1)

23

as long as j = o(n), which is true as it is O(log2(n)).
Therefore, we have proven that with high probability, for every S ⊆ X and 0 ≤ j ≤ log2(n),

we have that

|W−j(S)| ≤

(
j−1∏
k=0

(1 + λk)

)
dj |S|.

Now, what remains is to upper bound the product
∏j−1

ℓ=0(1 + λk).(
j−1∏
k=0

(1 + λk)

)
dj |S|

=

(
j−1∏
k=0

(
1 +

log(d)

d
+

4 log(en/|S|)
dk+1

+ 1

))
dj |S|

=

(
j−1∏
k=0

(
1 +

4 log(en/|S|)
(2 + log(d)/d)dk+1

))
(2d + log(d))j |S|

≤

(∞∏
k=0

(
1 +

log(en/|S|)
dk

))
(2d + log(d))j |S|

≤

(∞∏
k=0

(
1 +

log(en/|S|)
3k

))
(2d + log(d))j |S|

≤

log3

(
log
(

en
|S|

))∏
k=0

(
1 +

log(en/|S|)
3k

)
 ∞∏

k=log3

(
log
(

en
|S|

))
(

1 +
log(en/|S|)

3k

) (2d + log(d))j |S|

≤

log3

(
log
(

en
|S|

))∏
k=0

(
1 +

log(en/|S|)
3k

)(∞∏
k=0

(
1 +

1

3k

))
(2d + log(d))j |S|

≤ 4

log3

(
log
(

en
|S|

))∏
k=0

(
1 +

log(en/|S|)
3k

) (2d + log(d))j |S|

≤ 4

log3

(
log
(

en
|S|

))∏
k=0

(1 + log(en/|S|))

 (2d + log(d))j |S|

≤ 4
(

(1 + log(en/|S|))log3(log(en/|S|))
)

(2d + log(d))j |S|

≤ 4e(log(1+log(en/|S|)) log3(log(en/|S|))) (2d + log(d))j |S|

≤ 10e(log
2(log(en/|S|))) (2d + log(d))j |S|

as desired.

24

8 Proof of Theorem 1.1

Theorem 8.1. For any d ≥ 3 and c < c∗d, we have with high probability that the expected insertion
time is O(1).

Proof. Essentially, the idea here is that if we fail to finish in ≤ i2 on the run starting outside Bi

(which happens with probability at most 0.03), then we are probably still outside B3i, so we try
again with a run starting there, then B9i, and so on.

Note that |B3ki| ≤ (d−1)−9ki2/4n by Lemma 6.1. Furthermore, if the walk is currently outside
of B3ki, then Lemma 6.3 says that we have probability at least 0.97 of finishing in 10(M + 1)(d−
1)M + (3ki(3ki + 1)/2 −C4(C4 + 1)/2) steps. For sufficiently large i, we have that 10(M + 1)(d−
1)M + (3ki(3ki + 1)/2 − C4(C4 + 1)/2) ≤ (0.51)9ki2.

Formally, for all i ≥ C5 for a sufficiently large constant C5, let Ei be the event that the starting
hash of the object we are inserting is outside of W−9ki2/15(B3ki) for every k ∈ Z≥0. Note that if

C5 is sufficiently large (specifically, if C2
5/15 ≥ 10(M + 1)(d − 1)M), then the k = 0 case of this

hypothesis includes being outside of W−(10(M+1)(d−1)M)(Bi), satisfying the hypothesis of Lemma
6.3.

We now bound
∑

k |W−9ki2/15(B3ki)|. For all i ≥ C5, we have

|W−9ki2/15(B3ki)| ≤ O

(2d + log(d))9
ki2/15e

(
log

(
log

(
n

|B
3ki

|

))2
)
|B3ki|n


by Lemma 7.1

≤ O

(
(2d + log(d))9

ki2/15e

(
log((3ki)2 log(d−1)/2)

2
)
(d− 1)−(3ki)2/4n

)
by Lemma 6.1

≤ O
(

(2d + log(d))9
ki2/15e((log(3

ki))3)(d− 1)−9ki2/4n
)

≤ O
(
e((log(3

ki))3+9ki2(log(2d+log(d))/15−log(d−1)/4))n
)

≤ O
(
e−9ki2/50n

)
for i ≥ C5 and d ≥ 3

Then ∣∣∣∣∣
∞⋃
k=0

W−9ki2/15(B3ki)

∣∣∣∣∣ ≤
∞∑
k=0

O
(
e−9ki2/50n

)
≤ O(e−i2/50n)

In particular, this means that Ei happens with probability at least 1 −O(e−i2/50).
Conditioned on starting on any specific vertex under which Ei happens, we claim the expected

run-time is O(i2). By Lemma 6.3, since we started outside of W−(10(M+1)(d−1)M)(Bi), there is a

≥ 0.97 probability of finishing in ≤ 0.51i2 steps (again using i ≥ C5). If we do not finish after 0.51i2

steps (the ≤ 0.03 event occurs), then because we started outside of W−9i2/15(B3i) and thus outside
of W−((0.51)8i2/15+10(M+1)(d−1)M)(B3i), we are still outside of W−(10(M+1)(d−1)M)(B3i). Then by

Lemma 6.3, there is now a 0.97 probability of finishing in 0.51(3i)2 more steps.

25

In general, after k iterations we have taken

k∑
q=0

0.51(3qi)2 ≤ (0.58)9ki2 < (9k+1)i2/15 − 10(M + 1)(d− 1)M

steps, so we are still outside of W−(10(M+1)(d−1)M)(B3ki). The chance of reaching the k-th stage

without finishing is 0.03k, and the number of steps taken through the k-th stage is (0.58)9ki2.
Therefore, the total expected number of steps taken is at most

∞∑
k=0

(0.03k)((0.58)9ki2) ≤ i2

So, conditioned on starting at a given vertex under which Ei does not happen, the expected
run time of the random walk is at most i2.

For any i ≥ C5, let Fi be the event that Ei happens but Ej does not happen for every C5 ≤ j < i.
This is a partition of where our starting hash lands. Let T be the run time of our random walk.
Then by the law of total probability,

E(T) =

∞∑
i=C5

E(T |Fi)P(Fi)

≤ (C5)
2 +

∞∑
i=C5+1

E(T |Fi)P(Fi) as we start at a vertex where EC5 happens

≤ O(1) +
∞∑

i=C5+1

(i2)P(Fi) as we start at a vertex where Ei happens

≤ O(1) +

∞∑
i=C5+1

(i2)(O(e−(i−1)2/50)) as Ei−1 does not happen

≤ O(1)

as desired.

9 Note on Tail Bounds

Corollary 9.1. Let C6 > 1. There exists a constant C7 = C7(C6, c, d) = Θ(1) such that for all
ℓ ∈ N, the probability that the random walk takes more than ℓ steps is at most C7ℓ

−C6.

Proof. We can assume that ℓ is sufficiently large in terms of C6, d, and ϵ by increasing C7 accord-
ingly.

First, note that for any ϵ1 > 0, the value 0.99 in Lemma 6.2 can be replaced with 1 − ϵ1 by
requiring C4 to be large enough such that

∑∞
j=C4

2
j1.5

≤ ϵ1.
Correspondingly, the 0.97 in Lemma 6.3 can be replaced with 1 − ϵ2 any ϵ2 ≥ 0 as well. This

is because we can take ϵ1 = ϵ2/3, replace 10(d − 1)M with 2 log(3/ϵ2)(d − 1)M and 5(d − 1) with
log(3/ϵ2)(d− 1)M .

Then, letting G1 in Lemma 6.3 denote the event that ζ ≥ log(3/ϵ2)(d − 1)M , we get P(G1) ≤
(1 − (d− 1)−M)log(3/ϵ2)(d−1)M ≤ e− log(3/ϵ2) = ϵ2/3.

26

Similarly, we use the same definition of Ek and let G2 in Lemma 6.3 denote the event that there
are at least log(3/ϵ2)(d − 1)M values k ∈ {0, . . . , 2 log(3/ϵ2)(d − 1)M − 1} such that Ek does not

occur. we get P(G2) ≤ ϵ1(2 log(3/ϵ2)(d−1)M)
log(3/ϵ2)(d−1)M

= 2ϵ1 = 2ϵ2/3.

This gives a total failure probability of at most ϵ2.
Now, when considering the probability that the random walk takes at least ℓ steps, we partition

on whether Elog(ℓ) happens, where the definition of Ei is taken from Section 8.

The probability that Elog(ℓ) does not happen is O(e− log2(ℓ)/50) = O(ℓ− log(ℓ)/50) ≤ O(ℓ−C6) for
sufficiently large ℓ.

If Elog(ℓ) does happen, then as in Section 8, the probability of being finished after k iterations

is (ϵ2)
k, and the total number of steps taken up to iteration k is ≤ (0.51)9k(log(ℓ))2. Taking k to

be log9(
√
ℓ), we see that the probability of having taking more than

(0.51)9log9(
√
ℓ)(log(ℓ))2 = 0.51

√
ℓ(log(ℓ))2 < ℓ

steps is at most

(ϵ2)
log9(

√
ℓ) = ℓlog9(

√
ϵ2) ≤ ℓ−C6

as long as we have made ϵ2 sufficiently small in terms of C6.

This shows that the tail bounds on the random walk decline faster than any polynomial. This
does not show that these tail bounds are exponential: for instance, we have not excluded the
possibility that the probability of the random walk taking ℓ steps is Θ(e−(log2(ℓ))). We believe that
the true tail bounds should be exponentially decreasing (for some base of the exponent):

Conjecture 9.2. There exists constants C8 and C9 such that for all ℓ ∈ N, the probability of the
random walk taking at least ℓ steps is at most C8((C9)

−ℓ).

10 Modified Insertion Algorithms

Throughout this paper, we have studied a form of random walk insertion where an evicted object
chooses uniformly at random one of its other d − 1 hash values to insert at next. This seems
critical, as we are looking at (d − 1)i possibilities of length i. However, some implementations
of random walk insertion may simply choose to insert an object at any one of its d hash values,
including the one it was just evicted from.

Corollary 10.1. Theorem 1.1 still holds for the form of random walk insertion where each object
chooses uniformly among its d hash functions for re-insertion at each step.

Proof. In order to prove this, we will give a coupling from the random walk with backtracking,
to the random walk without backtracking but with some delays. Essentially, every time the walk
backtracks, we can imagine that it just stayed in the same spot for the same amount of time
that the backtracking took. We will show that the expected time “wasted” by this backtracking
simply multiplies the expected random walk time by at most a O(1) factor. Therefore, if the non-
backtracking walk had O(1) expected time, then the backtracking walk also has O(1) expected
time.

Every time we are at an object xi+1 on step i+ 1 of the random walk and choose the hash that
xi+1 was just evicted from, that means that we return again to the previous object xi. Essentially,
we will charge this time backtracked to xi. So, at every step xi, we unveil how many steps will be

27

“wasted” only to eventually end up back at xi through backtracking, and charge those to xi right
then before going to the new object xi+1.

To do this, we want to upper bound the probability of backtracking to return to xi. This does
not include the probability that we cycle around on new hashes to return to xi, so we are only
thinking of returning through the exact same hashes we leave from xi on.

To return to xi by backtracking in exactly 2t steps (at time i+2t), we need to choose t of those
steps to be backtracks. Each of those t steps has an independent 1

d probability of indeed being

a backtrack, while the other t cannot be a backtrack, which has an independent d−1
d probability

for each. Therefore, the probability that we return to xi by backtracking in 2t steps is upper

bounded by
(
2t
t

)
d−t

(
d−1
d

)t ≤ (
4(d−1)

d2

)t
. Note that this does already include the situation where

we backtrack to xi in fewer than 2t steps, and then backtrack again to reach xi again exactly 2t
steps after time i.

Then for all d ≥ 3, the expected delay at xi from backtracking is at most
∑∞

t=1 2t
(
4(d−1)

d2

)t
=

O(1) as desired, as the sum is convergent.

An insertion algorithm that differs significantly from random walk insertion is BFS insertion.
Recall that BFS insertion refers to the insertion algorithm where we compute the shortest aug-
menting path and reassign objects along that. There are d(d−1)i−1 possibilities for paths of length
i. We will now note that O(1) expected time for BFS insertion comes as a corollary of Lemmas
2.1 and 5.1.

Corollary 10.2. Let d ≥ 3 and c < c∗d. With high probability, BFS Insertion takes O(1) expected
time.

Proof. For all i ∈ N, let Di be the set of all elements at BFS distance of at least i from U , the
set of unoccupied slots. Note that every slot in N(Di+1) must be occupied by an object in Di, so
|N(Di+1)| ≤ |Di|.

By Lemma 5.1, we note that there is a constant α = Θ(1) such that if 1 ≤ |S| ≤ |X|/α, then
|N(S)| ≥ (d − 1.5)|S|, as making |X|/|S| a sufficiently large constant makes p|S| < 0.5. Apply
Lemma 2.1 with this α, and let M be the constant that results. The previous paragraph then
implies that for every i ≥ M , we have |Di+1|(d−1.5) ≤ |N(Di+1)| ≤ |Di|. Applying this iteratively,
we get that |Di+M | ≤ (d− 1.5)i|DM | ≤ (d− 1.5)in for every i ≥ M . Then there exists a C = Θ(1)
(in particular, C = (d− 1.5)M) such that for every i ∈ N, |Di| ≤ C(d− 1.5)−in.

The run time of BFS insertion on an object x that is at BFS distance i from U can be bounded
by O((d− 1)i), as noted in [FPSS03]. Then using a similar argument to [FPSS03], we find that

E(BFS Insertion Time) = O

(∑
i∈N

(d− 1)iP(x at BFS distance ≥ i)

)

= O

(∑
i∈N

(d− 1)iP(hj(x) ∈ Di ∀ 1 ≤ j ≤ d)

)

= O

(∑
i∈N

(d− 1)i
(
|Di|
n

)d
)

= O

(∑
i∈N

(d− 1)i(d− 1.5)−id

)
= O(1)

as (d− 1)(d− 1.5)−d < 1 for all d ≥ 3.

28

11 Future Work

One line of improvement would be to improve the tail bounds on the number of steps in the random
walk beyond what was proven in Corollary 9.1. Proving (or disproving) Conjecture 9.2 would be
a good goal, though weaker improvements would also be worthwhile.

It would also be interesting to give a stronger bound on the o(1) term in our “with high
probability” statements. A careful analysis of our and previous works ([FP10, FPS13]) shows that
this probability (originating from Lemmas 2.1, 3.1, 4.3, 5.1, and 7.1) could currently be taken to
be O(n−β) for some small β = Θ(1). By a union bound, the failure probability also implies that
the O(1) expected insertion time is robust to a sequence of O(nβ) non-hash-dependent deletions
and insertions of new elements (not allowing re-insertions of previously deleted elements). Note
that β < 1, so the load factor will remain below c∗d.

Now that we have an insertion time independent of n, another avenue for future study is to
optimize the insertion time in terms of d, c, and absolute constants. Subsequent to the initial
version of this paper, Kuszmaul and Mitzenmacher have done work along this line [KM25].

It has been shown under some previous models of cuckoo hashing that the assumption of
uniformly random hash functions can be relaxed to families of efficiently computable hash functions
while retaining the theoretical insertion time guarantees [CK09, ADW14]. As our proof relies
on similar “expansion-like” properties of the bipartite graph to previous work, we believe that
Theorem 1.1 should still hold under practically computable hash families.

A different model for generalizing cuckoo hashing, proposed in 2007, gives a capacity greater
than one to each hash table slot (element of Y), instead of (or in addition to) additional hash
functions [DW07]. The load thresholds for this model are known for both two hashes [CSW07,
FR07] and d ≥ 3 hashes [FKP11]. As in our model, O(1) expected time for random walk insertion
has been shown for some values below the load threshold [FP18, Wal22], but it remains open for
any capacities greater than one to prove O(1) insertion up to the load thresholds.

In general, it would be nice to extend our random walk insertion time guarantees to other
modifications of cuckoo hashing, such as those schemes that increase the probability of a valid
matching [KMW09, MP23, Yeo23].

Acknowledgment

We thank Stefan Walzer and the anonymous referees for their helpful comments and discovering
issues with a previous version.

References

[ADW14] Martin Aumüller, Martin Dietzfelbinger, and Philipp Woelfel. Explicit and efficient
hash families suffice for cuckoo hashing with a stash. Algorithmica, 70:428–456, 2014.

[BHR18] Aaron Bernstein, Jacob Holm, and Eva Rotenberg. Online bipartite matching with
amortized O(log2(n)) replacements. Proceedings of the 2018 Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 947–959, 2018.

[CDKL09] Kamalika Chaudhuri, Constantinos Daskalakis, Robert Kleinberg, and Henry Lin. On-
line bipartite perfect matching with augmentations. Proceedings of the 28th IEEE Con-
ference on Computer Communications (IEEE INFOCOM), pages 1044–1052, 2009.

29

[CK09] Jeffrey S. Cohen and Daniel M. Kane. Bounds on the independence required for cuckoo
hashing. 2009.

[CSW07] Julie Anne Cain, Peter Sanders, and Nick Wormald. The random graph threshold for k-
orientiability and a fast algorithm for optimal multiple-choice allocation. Proceedings
of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
page 469–476, 2007.

[DGM+10] Martin Dietzfelbinger, Andreas Goerdt, Michael Mitzenmacher, Andrea Montanari,
Rasmus Pagh, and Michael Rink. Tight thresholds for cuckoo hashing via xorsat.
Proceedings of the 37th International Colloquium Conference on Automata, Languages
and Programming (ICALP), pages 213–225, 2010.

[DM03] Luc Devroye and Pat Morin. Cuckoo hashing: Further analysis. Information Processing
Letters, 86(4):215–219, 2003.

[DW07] Martin Dietzfelbinger and Christoph Weidling. Balanced allocation and dictionaries
with tightly packed constant size bins. Theoretical Computer Science, 380(1):47–68,
2007.

[EGMP14] David Eppstein, Michael T. Goodrich, Michael Mitzenmacher, and Pawe l Pszona. Wear
minimization for cuckoo hashing: How not to throw a lot of eggs into one basket.
Proceedings of the International Symposium on Experimental Algorithms (SEA), pages
162–173, 2014.

[FJ17] Alan Frieze and Tony Johansson. On the insertion time of random walk cuckoo hash-
ing. Proceedings of the 2017 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1497–1502, 2017.

[FKP11] Nikolaos Fountoulakis, Megha Khosla, and Konstantinos Panagiotou. The multiple-
orientability thresholds for random hypergraphs. Proceedings of the 2017 Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1222–1236, 2011.

[FM12] Alan Frieze and Páll Melsted. Maximum matchings in random bipartite graphs and the
space utilization of cuckoo hash tables. Random Structures & Algorithms, 41(3):334–
364, 2012.

[FMM09] Alan Frieze, Páll Melsted, and Michael Mitzenmacher. An analysis of random-walk
cuckoo hashing. Proceedings of the 2009 International Conference on Randomization
and Computation (RANDOM), 2009.

[FP10] Nikolaos Fountoulakis and Konstantinos Panagiotou. Orientability of random hy-
pergraphs and the power of multiple choices. Proceedings of the 37th International
Colloquium Conference on Automata, Languages and Programming (ICALP), pages
348–359, 2010.

[FP18] Alan Frieze and Samantha Petti. Balanced allocation through random walk. Informa-
tion Processing Letters, 131:39–43, 2018.

[FPS13] Nikolaos Fountoulakis, Konstantinos Panagiotou, and Angelika Steger. On the inser-
tion time of cuckoo hashing. SIAM Journal on Computing, 42(6):2156–2181, 2013.

30

[FPSS03] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G. Spirakis. Space efficient
hash tables with worst case constant access time. Proceedings of the 20th Annual
Symposium on Theoretical Aspects of Computer Science (STACS), page 271–282, 2003.

[FR07] Daniel Fernholz and Vijaya Ramachandran. The k -orientability thresholds for Gn,p .
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 459–468, 2007.

[GKKV95] Edward Grove, Ming-Yang Kao, P. Krishnan, and Jeffrey Scott Vitter. Online perfect
matching and mobile computing. Proceedings of the 4th International Workshop on
Algorithms and Data Structures (WADS), 955:194–205, 1995.

[GW10] Pu Gao and Nicholas C. Wormald. Load balancing and orientability thresholds for ran-
dom hypergraphs. Proceedings of the 42nd ACM Symposium on Theory of Computing
(STOC), pages 97–104, 2010.

[KA19] Megha Khosla and Avishek Anand. A faster algorithm for cuckoo insertion and bipar-
tite matching in large graphs. Algorithmica, 81(9):3707–3724, 2019.

[KM25] William Kuszmaul and Michael Mitzenmacher. Efficient d -ary cuckoo hashing at high
load factors by bubbling up. Proceedings of the 2025 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 3931–3952, 2025.

[KMW09] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. More robust hashing: Cuckoo
hashing with a stash. SIAM Journal on Computing, 39(4):1543–1561, 2009.

[Mit09] Michael Mitzenmacher. Some open questions related to cuckoo hashing. Proceedings
of the 17th Annual European Symposium on Algorithms (ESA), pages 1–10, 2009.

[MP23] Brice Minaud and Charalampos Papamanthou. Generalized cuckoo hashing with a
stash, revisited. Information Processing Letters, 181(106356), 2023.

[PR01] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Proceedings of the 9th
Annual European Symposium on Algorithms (ESA), pages 121–133, 2001.

[SHF+17] Yuanyuan Sun, Yu Hua, Dan Feng, Ling Yang, Pengfei Zuo, Shunde Cao, and
Yuncheng Guo. A collision-mitigation cuckoo hashing scheme for large-scale storage
systems. IEEE Transactions on Parallel and Distributed Systems, 28(3):619–632, 2017.

[Wal22] Stefan Walzer. Insertion time of random walk cuckoo hashing below the peeling
threshold. Proceedings of the 30th Annual European Symposium on Algorithms (ESA),
244(87):1–11, 2022.

[Yeo23] Kevin Yeo. Cuckoo hashing in cryptography: Optimal parameters, robustness and
applications. 43rd Annual International Cryptology Conference (CRYPTO), page
197–230, 2023.

31

	Introduction
	Problem Statement and Theorem
	Applications and Relation to Previous Literature

	Preliminaries
	The Bipartite Graph and Matchings
	Paper Outline

	Bounding the Number of Paths to any Set
	The Changing Matching
	Expansion from any vertex set
	Lower bounds on |W+j(S)|
	Avoiding small sets through expansion

	Chaining together the Bi sets
	Improved Bounds on the Number of Paths to any Set
	Proof of Theorem ??
	Note on Tail Bounds
	Modified Insertion Algorithms
	Future Work

