A note on the chromatic number of the square of a sparse random graph

Alan Frieze* and Aditya Raut
Department of Mathematical Sciences
Carnegie Mellon University
Pittsburgh PA15217

Abstract

We show that w.h.p the chromatic number χ of the square of $G_{n, p}, p=c / n$ is asymptotically equal to the maximum degree $\Delta\left(G_{n, p}\right)$. This improves an earlier result of Garapaty et al [5] who proved that $\chi\left(G_{n, p}^{2}\right) \leq 6 \cdot \Delta\left(G_{n, p}\right)$ w.h.p.

1 Introduction

Let $p=c / n$ where $c>0$ is a constant. The chromatic number of $G_{n, p}$ is well-understood, at least for sufficiently large c. Łuczak [6] proved that if $G=G_{n, p}$ then $\chi(G) \sim \frac{c}{2 \log c}$. This was refined by Achlioptas and Naor [1] and further refined later by Coja-Oghlan and Vilenchik [2].

The square of a graph G is obtained from G by adding edges for all pairs of vertices at distance two or less from each other. Atkinson and Frieze [3] showed that w.h.p. the independence number of $G_{2}=G_{n, p}^{2}$ is asymptotically equal to $\frac{4 n \log c}{c^{2}}$, for large c. Garapaty, Lokshtanov, Maji and Pothen [5] studied the chromatic number of powers of $G_{n, p}$. Let $\Delta=\Delta\left(G_{n, p}\right) \sim \frac{\log n}{\log \log n}$ be the maximum degree in $G=G_{n, p}$ (for a proof of this known claim about the maximum degree, see for example [4], Theorem 3.4). Garapaty et al proved, in the case of the square G_{2} of $G_{n, p}, p=c / n$ that $\chi\left(G_{2}\right) \leq 6 \cdot \frac{\log n}{\log \log n}$ w.h.p. We strengthen this and prove

Theorem 1. Let $p=c / n, c>0$ constant. Let G_{2} denote the square of $G_{n, p}$. Then, w.h.p. $\chi\left(G_{2}\right) \sim$ $\Delta\left(G_{n, p}\right) \sim \frac{\log n}{\log \log n}$.

We will show that w.h.p. we can properly color G_{2} with $q=\Delta\left(1+3 \theta^{1 / 3}\right)$ colors, where $\theta=o(1)$ is given in (11). Note that the neighbors of a vertex form a clique in G_{2} and so the lower bound in the theorem is trivial.

Remark 1. The value of c does not contribute to the main term in the claim of Theorem 1 . Thus we would expect that we could replace $p=c / n$ by $p \leq \omega / n$ for some slowly growing function $\omega=\omega(n) \rightarrow \infty$. Indeed, a careful examination of the proof below verifies this so long as $c=o(\log \log n)$.

[^0]
2 Proof of Theorem 1

2.1 Structural properties

We can use the following high probability bounds for Δ taken from [4], Theorem 3.4:

$$
\frac{\log n}{\log \log n}\left(1-\frac{3 \log \log \log n}{\log \log n}\right) \leq \Delta \leq \frac{\log n}{\log \log n}\left(1+\frac{3 \log \log \log n}{\log \log n}\right)
$$

This implies that w.h.p.

$$
\begin{equation*}
n^{1-\theta} \leq \Delta^{\Delta} \leq n^{1+\theta} \text { where } \theta=\frac{4 \log \log \log n}{\log \log n} \tag{1}
\end{equation*}
$$

Let $d(v)$ denote the degree of v in $G_{n, p}$. For $0<\alpha \leq 1$, let $V_{\alpha}=\{v: d(v) \geq \alpha \Delta\}$ and let W_{α} denote the closed neighborhood of V_{α} i.e V_{α} plus the neighbors of V_{α}.

Fix

$$
\varepsilon=\theta^{1 / 2}
$$

The next few lemmas are needed to analyse the coloring of vertices in W_{ε}.
Lemma 2. W.h.p., $v, w \in V_{2 / 3}$ implies that $\operatorname{dist}(v, w) \geq 10$. (Here dist(.,.) is graph distance in $G_{n, p}$.)

Define

$$
L_{m}=\left\{\left(\ell_{1}, \ell_{2}, \ldots, \ell_{m}\right) \in\{\varepsilon \Delta, \varepsilon \Delta+1, \ldots, \Delta\}^{m}: \sum_{i=1}^{m} \ell_{i} \geq\left(1+\theta^{1 / 3}\right) \Delta\right\}
$$

Lemma 3. Suppose that $m \leq 2 / \varepsilon$. Then w.h.p. there does not exist a connected subset $S \subseteq[n]$ of $G_{n, p}$ with at most $3 m$ vertices containing vertices $w_{i} \in i=1,2, \ldots, m$ such that $\left(d\left(w_{i}\right), i=1,2, \ldots, m\right) \in L_{m}$.

Corollary 4. A vertex $v \notin V_{\varepsilon}$ has at most $\Delta_{1}=\left(1+2 \theta^{1 / 3}\right) \Delta G_{2}$-neighbors in W_{ε}, w.h.p.

Proof. Suppose v has more than $\Delta_{1} G_{2}$-neighbors in W_{ε}. Let T be the tree obtained by Breadth-First-Search to depth three from v in $G_{1}=G_{n, p}$. Let this tree have levels $L_{0}=\{v\}, L_{1}, L_{2}, L_{3}$. Let the G_{1} neighbors of v be $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$. Let $F_{i, t}, t=2,3$ denote the vertices in L_{t} separated from v in T by u_{i}.

We now define a subtree T_{1} of T that will take the place of S in Lemma 3. To obtain T_{1} we do the following: suppose that $u_{1}, u_{2}, \ldots, u_{p}$ are the neighbors of v in V_{ε}. Delete the neighbors of $u_{i}, i \in[1, p]$, except for v. Suppose that $X_{i}=F_{i, 2} \cap V_{\varepsilon} \neq \emptyset$ for $i \in[p+1, q]$ and that $F_{i, 2} \cap V_{\varepsilon}=\emptyset$ for $i \in[q+1, k]$. Choose a vertex $x_{i} \in X_{i}$ for each $i \in[p+1, q]$ and delete $X_{i} \backslash\left\{x_{i}\right\}$ from T. Suppose also that $Y_{i}=F_{i, 3} \cap V_{\varepsilon} \neq \emptyset$ for $i \in[q+1, r]$. Choose a vertex $x_{i} \in X_{i}$ with a neighbor y_{i} in Y_{i} for each $i \in[q+1, r]$ and delete $X_{i} \backslash\left\{x_{i}\right\}, Y_{i} \backslash\left\{y_{i}\right\}$ from T. T_{1} is the tree that survives these deletions. For $i \in[r+1, k]$, we delete u_{i} and the vertices $F_{i, 2} \cup F_{i, 3}$ from T.

Vertex v has at most

$$
D=\sum_{i=1}^{r} d\left(u_{i}\right)+(k-r) \leq \sum_{i=1}^{p} d\left(u_{i}\right)+(r-p) \varepsilon \Delta+(k-r) \leq \sum_{i=1}^{p} d\left(u_{i}\right)+(r-p+1) \varepsilon \Delta .
$$

G_{2} neighbors in W_{ε}. Our assumption is that $D>\Delta_{1}$.

Next let $M=\sum_{w \in V\left(T_{1}\right) \cap V_{\varepsilon}} d(w)$. Then,

$$
M \geq \sum_{i=1}^{p} d\left(u_{i}\right)+(r-p) \varepsilon \Delta \geq D-\varepsilon \Delta>\left(1+2 \theta^{1 / 3}-\theta^{1 / 2}\right) \Delta>\left(1+\theta^{1 / 3}\right) \Delta .
$$

We get a contribution of at least $\varepsilon \Delta$ from a member of $F_{i, 2}$ for $i \in[p+1, q]$ and a contribution of at least $\varepsilon \Delta$ from the surviving member of $F_{i, 3}$ for $i \in[q+1, r]$.

The number of vertices N in the tree T_{1} satisfies

$$
N \leq 1+p+2(q-p)+3(r-q) \leq 3\left|V\left(T_{1}\right) \cap V_{\varepsilon}\right| .
$$

Putting $m=\left|V\left(T_{1}\right) \cap V_{\varepsilon}\right|$, we see that this contradicts Lemma 3, provided $m \leq 2 / \varepsilon$. Assume then that $m>2 / \varepsilon$. It follows from Lemma 2 that either T consists of $u_{1} \in V_{2 / 3}$ and the neighbors of u_{1} and then the corollary holds trivially. Otherwise, $M>m \varepsilon \Delta>2 \Delta$ and one can delete a vertex of degree less than $2 \Delta / 3$ and reduce m by one keep $M>\left(1+\theta^{1 / 3}\right) \Delta$, eventually leading to a contradiction.

A similar argument gives

Corollary 5. A vertex has at most $\Delta_{1} G_{2}$-neighbors in V_{ε}.

Proof. Suppose v has more than $\Delta_{1} G_{2}$-neighbors in V_{ε}. Let T be the tree obtained by Breadth-First-Seach to depth two from v in $G_{1}=G_{n, p}$. Remove all leaves from T that are not in V_{ε} and repeat. We are left with a set of G_{1}-neighbors W_{0} of v in V_{ε} and set of G_{1}-neighbors $u_{1}, u_{2}, \ldots, u_{k}$ of v that are not in V_{ε}. In addition we have sets $W_{1}, W_{2}, \ldots, W_{k} \subseteq V_{\varepsilon}$ such that u_{i} is a G_{1}-neighbor of all vertices in $W_{i}, i=1,2, \ldots, k$. The G_{2}-degree of v is given by $D=\sum_{w \in W_{0}} d(w)+k+\sum_{i=1}^{k}\left|W_{i}\right|>\Delta_{1}$. The number of G_{2}-neighbors in V_{ε} is $m_{1}=\sum_{i=0}^{k}\left|W_{i}\right|$ and the tree T contains $1+k+m_{1} \leq 2 m_{1}+1$ vertices. Let $W=\bigcup_{i=0}^{k} W_{i}$ and add v to W if $v \in V_{\varepsilon}$. Then let $W=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ where $m=m_{1}+1_{v \in V_{\varepsilon}}$. If $m \leq 2 / \varepsilon$ then we contradict Lemma 3. Otherwise, $M=\sum_{i=1}^{m} d\left(w_{i}\right) \geq m d_{\text {min }}$ where $d_{\text {min }}=\min \{d(w): w \in W\}$. But $d_{\text {min }} \geq \varepsilon \Delta$ and so $M>2 \Delta$. It follows from Lemma 2 that $d_{\text {min }}<2 \Delta / 3$ and so we can reduce m by one and keep $M>4 \Delta / 3$. Continuing in this way, we eventually reduce m to below $2 / \varepsilon$ and keep $M>\left(1+\theta^{1 / 3}\right) \Delta$. But now we contradict Lemma 3.

The next part of our strategy is to bound the number of G_{2}-edges contained in any set S that is disjoint from W_{ε}. We prove a high probability bound of $(5.5+2 c) \varepsilon \Delta|S|$.

Remark 2. This will imply that the vertices of $[n] \backslash W_{\varepsilon}$ can be list-colored using at most $(5.5+2 c) \varepsilon \Delta+1$ colors.

This remark follows from Lemmas 6, 7 and 8 ,
For large sets we can use the following:
Lemma 6. The total number of edges in G_{2} is less than $c(c+1) n$ w.h.p.

For $2 \leq s \leq n$ let ν_{s} be the maximum number of G_{2}-edges in a set of size s. Then we have that

$$
\begin{equation*}
\text { if } k_{0}=2 / \varepsilon^{2} \text { then } \nu_{s} \leq 10 k_{0} c^{3} s \text { for } n /\left(10 c k_{0}\right) \leq s \leq n \text {. } \tag{2}
\end{equation*}
$$

If $S \cap W_{\varepsilon}=\emptyset$ then a vertex outside S has at most $\varepsilon \Delta$ neighbors in S. For a fixed set S let $a_{k, S}$ denote the number of (vertex, set) pairs v, T where $v \notin S$ and $|T|=k$ and $T=N(v) \cap S$.

Lemma 7. The following holds w.h.p. Let $A_{1}(S)=\sum_{k \leq \varepsilon \Delta} a_{k, S} k^{2}$ bound the number of G_{2}-edges due to the $a_{k, S}$. Then $A_{1}(S) \leq 5 \varepsilon \Delta|S|$ for all $|S| \leq n /\left(10 c k_{0}\right)$.

We now have to deal with the number of edges $u v$ and the number of paths of length two uvw where $\{u, v, w\} \subseteq S$. Denote this by $A_{2}(S)$.
Lemma 8. W.h.p., $A_{2}(S) \leq(2 c+1 / 2) \varepsilon \Delta|S|$ for all $|S| \leq n /\left(10 c k_{0}\right)$.

Thus,

$$
\begin{equation*}
A_{1}(S)+A_{2}(S) \leq(5.5+2 c) \varepsilon \Delta|S| \tag{3}
\end{equation*}
$$

This, together with (2), verifies what we claimed in Remark 2 .

3 Coloring G_{2}

Given the above we color G_{2} as follows:
(a) We color V_{ε} with $q=\Delta\left(1+3 \theta^{1 / 3}\right)$ colors. We do this greedily i.e we arbitrarily order the vertices in V_{ε} and then in this order, we color a vertex with the lowest index available color. Corollary 5 implies that any vertex v has at most $\Delta\left(1+2 \theta^{1 / 3}\right) G_{2}$-neighbors in V_{ε} and so there will be an unused color.
(b) We color $\widehat{W}_{\varepsilon}=W_{\varepsilon} \backslash V_{\varepsilon}$ with $q=\Delta\left(1+3 \theta^{1 / 3}\right)$ colors. We do this greedily i.e we arbitrarily order the vertices in $\widehat{W}_{\varepsilon}$ and then in this order, we color a vertex with the lowest index available color. Corollary 4 implies that any vertex $v \notin V_{\varepsilon}$ has at most $\Delta\left(1+2 \theta^{1 / 3}\right) G_{2}$-neighbors in $\widehat{W}_{\varepsilon}$ and so there will be an unused color.
(c) We then color $[n] \backslash W_{\varepsilon}$ with at most $\Delta\left(1+2 \theta^{1 / 3}+(5.5+2 c) \theta^{2 / 3}\right)$ colors. This follows from (3) and Corollary 4.

3.1 Proof of Lemma 2

Let $\ell_{0}=2 \Delta / 3-10$. We have

$$
\begin{aligned}
\mathbb{P}\left(\exists v, w \in V_{2 / 3}: \operatorname{dist}(v, w)<10\right) & \leq \sum_{k=1}^{9}\binom{n}{k} k!p^{k-1}\left(\sum_{\ell=\ell_{0}}^{n-1}\binom{n}{\ell} p^{\ell}(1-p)^{n-10-\ell}\right)^{2} \\
& \leq \sum_{k=1}^{9} n c^{k-1} n^{-4 / 3+o(1)}=o(1)
\end{aligned}
$$

3.2 Proof of Lemma 3

Then,

$$
\mathbb{P}(\exists S) \leq \sum_{m=2}^{2 / \varepsilon} \sum_{s=m}^{3 m}\binom{n}{s} s^{s-2} p^{s-1}\binom{s}{m} \sum_{D \geq\left(1+\theta^{1 / 3}\right) \Delta \ell_{1}+\cdots+\cdots \ell_{m}=D} \prod_{i=1}^{m}\left(\sum_{k=\ell_{i}}^{n-s}\binom{n-s}{k} p^{k}(1-p)^{n-s-k}\right)
$$

$$
\begin{aligned}
& \leq \sum_{m=2}^{2 / \varepsilon} \sum_{s=m}^{3 m}\binom{n}{s} s^{s-2} p^{s-1} 2^{s} \sum_{D \geq\left(1+\theta^{1 / 3}\right) \Delta \ell_{1}+\cdots+\cdots \ell_{m}=D} \prod_{i=1}^{m} n^{-\ell_{i} / \Delta+O(\theta)} \\
& \leq \frac{2 n}{c} \sum_{m=2}^{2 / \varepsilon}\left(\frac{2 e c}{3 m}\right)^{3 m} \sum_{D \geq\left(1+\theta^{1 / 3}\right) \Delta}\binom{D-1}{m-1} n^{-D+O(\theta m)} \\
& \leq \frac{2 n}{c} \sum_{m=2}^{2 / \varepsilon}\left(\frac{2 e c}{3 m}\right)^{3 m}\left(\frac{\left(1+\theta^{1 / 2}\right) \Delta}{m}\right)^{m} n^{-\left(1+\theta^{1 / 3}-O\left(\theta^{1 / 2}\right)\right)} \\
& \leq n^{1+o\left(\theta^{1 / 2}\right)-\left(1+\theta^{1 / 3}-O\left(\theta^{1 / 2}\right)\right)}=o(1) .
\end{aligned}
$$

Explanation: There are $\binom{n}{s}$ choices for S. Then there are at most s^{s-2} choices for a spanning tree of S. Then we choose the vertices of large degree in $\binom{s}{m}$ ways. D is the total degree of the large degree vertices. The product bounds the probability that the selected vertices have large degree.

3.3 Proof of Lemma 6

Let $d(i)$ denote the degree of vertex i in $G_{n, p}$. The expected number of edges in G_{2} is

$$
\mathbb{E}\left(\sum_{i=1}^{n} \frac{d(i)(d(i)+1)}{2}\right)=\frac{n}{2} \sum_{j=1}^{n-1} j(j+1)\binom{n-1}{j} p^{j}(1-p)^{n-1-j}=\frac{c^{2}(n-1)(n-2)+c n^{2}}{2 n} .
$$

To show concentration round the mean, we use the following theorem from Warnke [7:
Theorem 9. Let $X=\left(X_{1}, X_{2}, \ldots, X_{N}\right)$ be a family of independent random variables with X_{k} taking values in a set Λ_{k}. Let $\Omega=\prod_{k \in[N]} \Lambda_{k}$ and suppose that $\Gamma \subseteq \Omega$ and $f: \Omega \rightarrow \mathbf{R}$ are given. Suppose also that whenever $\mathbf{x}, \mathbf{x}^{\prime} \in \Omega$ differ only in the k th coordinate

$$
\left|f(\mathbf{x})-f\left(\mathbf{x}^{\prime}\right)\right| \leq \begin{cases}c_{k} & \text { if } \mathbf{x} \in \Gamma \\ d_{k} & \text { otherwise }\end{cases}
$$

If $W=f(X)$, then for all reals $\gamma_{k}>0$,

$$
\mathbb{P}(W \geq \mathbb{E}(W)+t) \leq \exp \left\{-\frac{t^{2}}{2 \sum_{k \in[N]}\left(\left(c_{k}+\gamma_{k}\left(d_{k}-c_{k}\right)^{2}\right)\right)}\right\}+\mathbb{P}(X \notin \Gamma) \sum_{k \in[N]} \gamma_{k}^{-1} .
$$

We use Theorem 9 with $N=n, W=\sum_{i=1}^{n} \frac{d(i)(d(i)+1)}{2}, X_{i}=\left\{j<i:\{j, i\}\right.$ is an edge of $\left.G_{n, p}\right\}, i=1,2, \ldots, n$ and $\Gamma=\left\{\Delta\left(G_{n, p}\right) \leq \log n\right\}$. In which case we can take $c_{k}=\log ^{2} n, d_{k}=n^{2}$ and $\mathbb{P}(X \notin \Gamma) \leq(\log n)^{-\frac{1}{2} \log n}$. Then we can take $\gamma_{k}=n^{-4}$ for $k \in[n]$ and $t=n^{3 / 2}$ to complete the proof of Lemma 6.

3.4 Proof of Lemma 7

Let $|S| \leq n /\left(10 c k_{0}\right)$. We will prove:
(a) For $k_{0}<k_{1}<k_{2} \leq \varepsilon \Delta$, for all sets $S \subseteq[n] \backslash V_{\varepsilon}$,

$$
\sum_{k=k_{1}}^{k_{2}} a_{k, S} \leq \frac{(1+\varepsilon)|S|}{k_{1}}
$$

(b) $a_{k, S} \leq(10 c)^{k_{0}}|S|$ for $k \leq k_{0}$.

We have, where $M_{u, k_{1}, k_{2}}=\left\{\left(x_{2}, \ldots, x_{\varepsilon \Delta}\right): \sum_{k=k_{1}}^{k_{2}} x_{k}=u\right\}$.

$$
\left.\begin{array}{l}
\mathbb{P}\left(\exists S,|S|=s \leq n /\left(10 c k_{0}\right): \sum_{k=k_{1}}^{k_{2}} a_{k, S} \geq t\right) \\
\leq \sum_{s=k_{1}^{1 / 2}}^{n /\left(10 c k_{0}\right)}\binom{n}{s} \sum_{u \geq t} \sum_{\mathbf{x} \in M_{u, k_{1}, k_{2}}}\binom{n}{x_{k_{1}}, \ldots, x_{k_{2}}, n-u} \prod_{k=k_{1}}^{k_{2}}\left(\binom{s}{k}\left(\frac{c}{n}\right)^{k}\right)^{x_{k}} \\
\leq \sum_{s=k_{1}^{1 / 2}}^{n /\left(10 c k_{0}\right)}\left(\frac{n e}{s}\right)^{s} \sum_{u \geq t} \sum_{\mathbf{x} \in M_{u, k_{1}, k_{2}}}\binom{n}{x_{k_{1}}, \ldots, x_{k_{2}}, n-u} \prod_{k=k_{1}}^{k_{2}}\left(\frac{s e c}{k_{1} n}\right)^{k_{1} x_{k}} \\
=\sum_{s=k_{1}^{1 / 2}}^{n /\left(10 c k_{0}\right)}\left(\frac{n e}{s}\right)^{s} \sum_{u \geq t}\left(\frac{s e c}{k_{1} n}\right)^{k_{1} u} \sum_{\mathbf{x} \in M_{u, k_{1}, k_{2}}}\left(x_{k_{1}, \ldots, x_{k_{2}}, n-u}\right) \\
\leq \sum_{s=k_{1}^{1 / 2}}^{s /\left(10 c k_{0}\right)} \\
\leq \\
s
\end{array}\right)^{s} \sum_{u \geq t}\left(\frac{n e c}{k_{1} n}\right)^{k_{1} u}\binom{n}{u} .
$$

Putting $t=(1+\varepsilon) s / k_{1}$, we have, for large k_{1} i.e. for $k_{1}>2 / \varepsilon$,

$$
\begin{aligned}
& \mathbb{P}\left(\exists S,|S|=s \leq n /\left(10 c k_{0}\right): \sum_{k=k_{1}}^{k_{2}} a_{k, S} \geq \frac{(1+\varepsilon) s}{k_{1}}\right) \\
& \leq \sum_{s=k_{1}^{1 / 2}}^{n /\left(10 c k_{0}\right)}\left(\frac{n e}{s}\right)^{s} \sum_{u \geq t}\left(\frac{s e c}{k_{1} n}\right)^{k_{1} u}\binom{n}{u} \\
& \leq 2 \sum_{s=k_{1}^{1 / 2}}^{n /\left(10 c k_{0}\right)}\left(\frac{n e}{s}\right)^{s}\left(\frac{s e c}{k_{1} n}\right)^{(1+\varepsilon) s}\binom{n}{(1+\varepsilon) s / k_{1}} \\
& \leq 2 \sum_{s=k_{1}^{1 / 2}}^{n /\left(10 c k_{0}\right)}\left(\frac{n e}{s}\right)^{s}\left(\frac{s e c}{k_{1} n}\right)^{(1+\varepsilon) s}\left(\frac{n e k_{1}}{(1+\varepsilon) s}\right)^{(1+\varepsilon) s / k_{1}} \\
& =2 \sum_{s=k_{1}^{1 / 2}}^{n /\left(10 c k_{0}\right)}\left(\left(\frac{s}{n}\right)^{\varepsilon-(1+\varepsilon) / k_{1}} \frac{e^{2+\varepsilon+(1+\varepsilon) / k_{1}} c^{1+\varepsilon}}{\left.k_{1}^{(1+\varepsilon)\left(k_{1}-1\right) / k_{1}}\right)^{s}}\right. \\
& =o\left(n^{-2}\right) .
\end{aligned}
$$

We also have

$$
\mathbb{P}\left(\exists S,|S|=s \leq n /\left(10 c k_{0}\right): a_{k, S} \geq t\right) \leq\binom{ n}{s}\binom{n}{t}\left(\binom{s}{k}\left(\frac{c}{n}\right)^{k}\right)^{t}
$$

$$
\begin{equation*}
\leq\left(\frac{n e}{s}\right)^{s}\left(\frac{n e}{t}\right)^{t} \cdot\left(\frac{s e}{k} \cdot \frac{c}{n}\right)^{k t} \tag{4}
\end{equation*}
$$

We put $t=(10 c)^{k_{0}} s$ for $2 \leq k<k_{0}$. Then we have, where $L=(10 c)^{k_{0}}$,

$$
\begin{align*}
\mathbb{P}\left(\exists S,|S|=s \leq n /\left(10 c k_{0}\right): 2 \leq k \leq k_{0}, a_{k, S} \geq L s\right) & \leq\left(\frac{n e}{s}\right)^{s} \cdot\left(\frac{n e}{L s}\right)^{L s} \cdot\left(\frac{s e c}{k n}\right)^{L k s} \\
& =\left(\left(\frac{s}{n}\right)^{L(k-1)-1} \cdot e \cdot\left(\frac{e}{L}\right)^{L} \cdot\left(\frac{e c}{k}\right)^{L k}\right)^{s} \\
& \leq\left(\left(\frac{s}{n}\right)^{L(k-1)-1} \cdot e^{c L+2}\right)^{s} \tag{5}
\end{align*}
$$

If $k \geq 3$ then the bracketed term σ_{s} in (5) is at $\operatorname{most}\left(\frac{s e^{c}}{n}\right)^{L}=o(1)$ and so $\sum_{s \geq 1} \sigma_{s}^{s}=o(1)$. If $k=2$ we write $\sigma_{s}=\left(\frac{s e^{c}}{n}\right)^{L-1} \cdot e^{c+2}=o(1)$, as well.

So, by dividing $[1, \varepsilon \Delta]$ into intervals of size $\varepsilon \Delta / 2^{i}, i \geq 1$, we get that for all $|S| \leq n /\left(10 c k_{0}\right)$

$$
\begin{align*}
A_{1}(S) & \leq \sum_{k=2}^{k_{0}}(10 c)^{k_{0}} s+\sum_{i \geq 1} \frac{(1+\varepsilon) s}{\varepsilon \Delta / 2^{i}} \cdot \frac{(\varepsilon \Delta)^{2}}{2^{2 i-2}} \\
& \leq 2 \varepsilon^{-1 / 2}(10 c)^{2 / \varepsilon} s+4(1+\varepsilon) \varepsilon \Delta s \leq 5 \varepsilon \Delta s \tag{6}
\end{align*}
$$

3.5 Proof of Lemma 8

The number of such paths is equal to $\sum_{v \in S} \frac{d_{S}(v)\left(d_{S}(v)+1\right)}{2}$ where $d_{S}(v)$ is the degree of v in S.

$$
\begin{equation*}
A_{2}(S)=\sum_{v \in S, d(v) \leq \varepsilon \Delta} \frac{d_{S}(v)\left(d_{S}(v)+1\right)}{2} \leq \varepsilon \Delta \sum_{v \in S} \frac{d_{S}(v)+1}{2}=\varepsilon \Delta(e(S)+|S| / 2), \tag{7}
\end{equation*}
$$

where $e(S)$ is the number of $G_{n, p}$ edges entirely contained in S. Now

$$
\begin{aligned}
\mathbb{P}\left(\exists S, s=|S| \leq n /\left(10 c k_{0}\right): e(S) \geq 2 c s\right) \leq \sum_{s=2}^{n /\left(10 c k_{0}\right)}\binom{n}{s}\binom{\binom{s}{2}}{2 c s}\left(\frac{c}{n}\right)^{2 s} & \leq \sum_{s=2}^{n /\left(10 c k_{0}\right)}\left(\frac{n e}{s} \cdot\left(\frac{s e}{4 n}\right)^{2}\right)^{s} \\
& =\sum_{s=2}^{n /\left(10 c k_{0}\right)}\left(\frac{s}{n} \cdot\left(\frac{e}{4}\right)^{2}\right)^{s}=o\left(n^{-1}\right) .
\end{aligned}
$$

So,

$$
A_{2}(S) \leq \varepsilon \Delta(2 c+1 / 2)|S| \text { for all }|S| \leq n /\left(10 c k_{0}\right), \text { w.h.p. }
$$

4 Conclusions

While we have shown that $\chi\left(G_{2}\right) \sim \Delta$ w.h.p., it is possible that $\chi\left(G_{2}\right)=\Delta+1$ w.h.p. This would be quite pleasing, but we are not confident enough to make this a conjecture. It is of course interesting to further consider $\chi\left(G_{2}\right)$ when $n p \rightarrow \infty$. Note that when $n p \gg n^{1 / 2}$, the diameter of $G_{n, p}$ is equal to 2 w.h.p. In which case $G_{2}=K_{n}$. One can also consider higher powers of $G_{n, p}$ as was done in [3] and [5]. Such considerations are more technically challenging.

References

[1] D. Achlioptas and A. Naor, The two possible values of the chromatic number of a random graph, Annals of Mathematics 162 (2005) 1335-1351.
[2] A. Coja-Oghlan and D. Vilenchik, Chasing the k-colorability threshold, Proceedings of the 54th IEEE Annual Symposium on Foundations of Computer Science.
[3] A.M. Frieze and G. Atkinson, On the b-independence number of sparse random graphs, Combinatorics, Probability and Computing 13, 295-310.
[4] A.M. Frieze and M. Karoński, Introduction to Random Graphs, Cambridge University Press, 2015.
[5] K. Garapaty, D. Lokshtanov, H. Maji and A. Pothen, The Chromatic Number of Squares Of Random Graphs, Journal of Combinatorics 14 (2023) 507-537.
[6] T. Łuczak, The chromatic number of random graphs, Combinatorica 11 (1991) 45-54.
[7] L. Warnke, On the Method of Typical Bounded Differences, Combinatorics, Probability and Computing 25 (2016 269-299.

[^0]: *Research supported in part by NSF grant DMS1952285

