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Abstract
Given an n vertex graph whose edges have colored from one of r colors C' = {c1,co,...,¢}, we
define the Hamilton cycle color profile hep(G) to be the set of vectors (mq,ma,...,m,) € [0,n]" such
that there exists a Hamilton cycle that is the concatenation of r paths Pi, Ps,..., P., where P; con-

tains m; edges. We study hcp(Gypp) when the edges are randomly colored. We discuss the profile
close to the threshold for the existence of a Hamilton cycle and the threshold for when hcp(Gmp) =
{(mlamQa...7mr) € [O,n]T imi+ma+ -+ m, :n}.

1 Introduction

We are given an n-vertex graph where each edge is colored from a set C' = {¢y,¢o,...,¢.}. The Hamilton
cycle color profile hep(G) is defined to be the set of vectors m € M = {m € [0,n]",m; + - -- + m, = n} such
that there exists a Hamilton cycle H such that H is the concatenation of r paths Py, Ps, ..., P., where P;
contains m; edges.

Let oy, g, ..., . be positive constants that sum to one and « denote (g, ag, ..., ;). Let Gy, denote the
random graph G, , where each edge e is independently given a random color ¢(e) € C' = {cy, ¢a, ..., ¢, } where
the color c(e) of edge e satisfies P(c(e) = ¢;) = o

Randomly colored random graphs have been studied recently in the context of (i) rainbow matchings and
Hamilton cycles, see for example [2], [5], [10], [13] [16]; (ii) rainbow connection see for example [§], [14], [15],
[19], [17]; (iii) pattern colored Hamilton cycles, see for example [1], [9]. This paper is closely related to Frieze
[11] and Chakraborti and Hasabanis [4] where edge colored matchings are the topic of interest. This paper
can be considered to be a contribution in the same genre. Our first theorem considers G, , where p is close
to the Hamiltonicity threshold.
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Theorem 1. Fiz r > 2 and positive real numbers 3, ay, aa, ... o where > . oy =1. If p> w
where w = w(n) — 00 as n — oo, then w.h.p. hep(GS,) 2 Mg ={m e M :m; > fn,i € [r]}.

We will for convenience assume that w = o(loglogn) and note that this also implies the theorem for larger w.
We next discuss why the factor r in the definition of p cannot be replaced by anything smaller in Theorem [T}
The importance of the factor r lies in the fact that it implies that the minimum degree is at least r + 1 w.h.p.
and if we replace w = o(loglogn) by —w then w.h.p. there will be at least ¢ /2 vertices of degree . In which
case there will w.h.p. be e¥~"/2 vertices of degree r, all of whose incident edges have a distinct color. Thus,
it is not possible to have a Hamilton cycle made from the concatenation of » monochromatic paths.

Our next theorem considers when to expect G, , to have a full Hamilton cycle color profile. For brevity, let
Qpin = min {ay, ..., .},

Theorem 2. Suppose that oy, o, ..., o, are as in Theorem and that p > W, where w = w(n) —
oo asn — oo. Then, w.h.p. hep(Gy,) = M.

If p < logntloglogn=w "t} w h.p. the subgraph of G, induced by the edges of color 1 has a vertex of degree

AminM

one, assuming that o, = a;.

We finally consider directed versions of the above two theorems. Let Dy, denote the random digraph in
which each edge of the complete digraph I_(’nyp occurs with probability p and is randomly colored as above.
We use the coupling argument of McDiarmid [I§] to prove the following couple of theorems.

Theorem 3. Suppose that r, 5, a1, s, ..., a, are as in Theorem . Ifp> w

00 asn — oo, then w.h.p. hep(Dyy ) 2 Mg ={m € M : m; > fn,i € [r]}.

where w = w(n) —

Theorem 4. Suppose that o, o, ..., «, are as in Theorem and that p > W, where w = w(n) —
oo asn — oo. Then, w.h.p. hep(Dgy,) = M.

Note that Theorems [3| and 4| probably carry an extra logl% in the values of p. This is inherent in the use of
McDiarmid’s argument.

2 Preliminaries

Throughout the paper, for the sake of clarity of presentation, we systematically omit the floor and ceiling
signs when they are not crucial. This paper is organized in the following way. We start with a few standard
properties of random graphs in the current section, which will be useful to prove our main results. We prove
Theorems [T] and 2] in the next two sections, and prove Theorems [3] and [f] in Section 5] We defer the proofs of
some structural lemmas for random graphs to Section [6]

In the following we distinguish between events of two kinds. Those that do not depend on m and we show
that they occur with probability 1 — o(1), i.e., w.h.p. Those events that do depend on m where we need to
prove that they occur with probability 1 — o(n™") in order to use the union bound on the ‘bad’ events over
all choices of m € M (note that [M| = ©(n")). We say that such events occur w.v.h.p.

The following lemma will be used in the proof of both Theorems [I] and [2|

(cto(1))logn

Lemma 5. Suppose that p = where c is constant. Then the following properties hold in G, ,:
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B1 Suppose that S C [n] and |S| = Q(n). For a vertez v € [n], we let dg(v) denote the number of neighbors
of v in S. Then, |B(p,S)| < n'=S1/4" w.u.h.p., where B(p, S) = {v € [n]:ds(v) < %}.

B2 Let SMALL = B(p,[n]). Then w.h.p., v,w € SMALL implies that dist(v,w) > 3 in G, ,. (Here dist
refers to graph distance.)

B3 Fiz S as in . Then w.v.h.p., every v € [n] is within distance 10 of at most 16%? vertices in B(p,S).

B4 Ifp= w with w = w(n) — 00 as n — oo, then Gy, has minimum degree at least r+1 w.h.p.

B5 W.v.h.p., there exists an edge between Sy and Sy for every Sy, Sy C [n| such that |Sy], |S2| > W
and S; NSy = 0.

This lemma is proved in Section [6.1

3 Proof of Theorem [

Fix a vector m € Mg and let u; = m;/n for i = 1,2,...,r and let pp, = min{g;}. Partition the vertex
set [n] into V4, V4, ..., V., where Vj contains the first m; elements (i.e., V; = [my]), V2 contains the next msy
elements, and so on.

We let p; = log"Jr“Ognlog"Jr”ﬁ and have 1 —p = (1 —p1)(1 — p2) so that p, ~ w/2n. Let d(v) denote the degree
of v in Gy, and let d;(v) = [{u € V; : wv has color i} |, for i = 1,2,...,r. Define the following sets:

1
o= {r e s e, 0
s {oa < o} 2)
Lemma 6.
(a) W.h.p. simultaneously, for all m € Mg,
| A < Pt emintain N

10r

OminMmin

(b) W.h.p. simultaneously, for all m € Mg, every v € [n] is within distance 10 of at most vertices of

An.

c e following is w.h.p. true simultaneously for all choices of m € : every pair of vertices u € Ay an
The following is w.h.p. t imault ly Il choi Mg Y pai ti A d
w € B are at distance at least three in G, p, .

Parts (a) and (b) of this lemma are straightforward corollaries of Properties B1 and B3 respectively. Proving
Part (c) is more subtle and it is done in Section [6.2]

In some sense, the vertices v in the set A,, are dangerous (and we need to be careful how we place them in
the Hamilton cycle). We do this by first finding vertex disjoint paths of length two with the vertices in Ay,
as middle vertex and then later we make sure to include those paths in the Hamilton cycle.

We now give an outline of the way we will construct a Hamilton cycle in several steps. Later we will elaborate
on why these steps are valid, assuming the high probability events stated in Lemmas [5] and [6]
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Step 1 For each v € Ay, choose a path @, = (wy, v, ws) where wy, wy ¢ Ay, and both edges of @, have the
same color, ¢;, say. Move v,wy,wy to V; and move three vertices in V; \ (Am U N(v)) to the sets
originally containing v, wy, ws, in order to keep the sizes of the V;’s unchanged. Let Q = {@,} and
let Q; C Q be the set of paths contained in V;,7 = 1,2,...,r. The paths Q,,v € A, can be chosen
to be vertex disjoint.

Following this step, for ¢« = 1,2,...,7 let G; denote the subgraph of G, with vertex set V; and
edges of color 1.

Step 2 For each 1 < i < r, execute a restricted rotation-extension algorithm where at all times we ensure
that for all @ € Q;, the current path either contains () or is vertex disjoint from ). In this way,
create a Hamilton path H; through V; for i =1,2,...,r

Step 3 Connect the Hamilton paths constructed in Step 2 into a Hamilton cycle.

3.1 Validation of Step 1

Property B4 and the pigeonhole principle imply that for each v € A,,, we can choose two neighbors wy, ws
such that the edges vwi,vw, have the same color, ¢;, say. We must now consider disjointness of the paths
wrvwse. If v1,v9 € B then Property B2 ensures that Q,,, Q,, are vertex disjoint. If v; € Ay, and v € B then
we can use Lemma |§| to argue that Qu,, Qu, are vertex disjoint. If v € Ay, \ B, then Lemma @ ) implies
that we have at least ﬁz?,:n - mmumm > 63?:111 choices of neighbors w which are not used in any other paths
in Q. Once again by pigeonhole principle, we can choose two neighbors w;, ws such that vwy, vw, have the

same color and will give us a required path @,.

3.2 Validation of Step 2

Call a neighbor w of a vertex v bad if ({w} U N(w)) N Aym # 0. In Step 1, only the bad neighbors of
v ¢ Ap can reduce the V;-neighborhood of v. Lemma [f[b) implies that for each v ¢ A, the number of
neighbors of v in G; can drop by at most QL. Thus, the vertices of G;, not in Ay, have degree at least

HPmin®min 10g no_ 20r > HPmin®min 10g n
25 QminMmin 26

minMmin

3.2.1 Expansion properties

We need to show that each G; has certain expansion properties. We have the following properties of G; C G, , ,
which will be verified in Section[6] For a set S C V;, let N;(S) ={w € V;\ S:Fv € S s.t. vw € E(G,)}.

Lemma 7. The following properties hold for all 1 < i <r w.v.h.p.

(a) For every set S C V;\ Am with |S| < minftmin®/200 logn, we have that |N;(S)| > |'S|ttmin@min log 1/100.
(b) For every set S C V;\ Am with |S| < p2,,02,,n/10%, we have that |N;(S)| > 3|S].

(c) G; is connected.

This lemma is proved in Section



3.2.2 Step 2: Constructing Hamilton paths in G;

We now validate Step 2 in a stronger sense. More precisely, we prove that there are many Hamilton paths in
each ;. This will later be of use in gluing them together to obtain a Hamilton cycle of G. Let

2 2
Nn = Mminaminn
T 105

Lemma 8. W.h.p. simultaneously, for all m € Mg, the following two events occur in G, ,: Each G; has at
least ng vertices v for which there are at least ng Hamilton paths with one end point v such that the other end
points are pairwise distinct.

Proof. Although by now extension-rotation is a standard procedure for attacking Hamilton cycle problems,
we briefly describe it here. Given a path P = (1,9, ...,x;) an extension is simply the creation of a new
path P + (xy,y) where x,y is an edge and y ¢ V(P). If 1 <i <k — 2 and x,x; is an edge then we create a
new path (z1,zs,...,2;, Tg, Tp—1 ..., 2;+1) of the same length as P by a rotation with fized endpoint x;. We
let END = END(P,x;) denote the set of vertices that can be the endpoint of a path created by a sequence
of rotations.

We modify the above constructions on G; by adding the restriction that for each () € Q;, the paths generated
either contain () or are vertex disjoint from (). We can do this by always adding or deleting both edges of
such a path in any change. Any rotation that would result in deleting one edge of such a path is neglected.
Under the assumption that P is a longest path, so that there are no extensions, Pédsa [20] proved that
IN(END)| < 2|END| and then accounting crudely for the interiors of the paths of Q we see that the

endpoint sets satisfy
20
IN(END)| < 2|END)| + min {21@1-\, —T|END|} .
HminCmin

Since |Q;| < |Am| < n/log?n for each m € Mg (by (3)), we can deduce from Lemma that w.h.p. for each
m € Mg, the endpoint sets are of size at least ny. We show next that with the use of G, ,,, we can prove
that each G; has a Hamilton cycle w.h.p. More precisely, suppose that E(G,,,,) = F = {f1, f2, ..., f»} where
w.h.p. ¢ > wn/3. Partition F into r + 1 sets Fy, Fi, ..., F, of almost equal size.

Condition on the high probability events in Lemmas [5] [0, and [[] Now given a path P of length ¢ < m; — 1
in (;, we make a series of rotations with one endpoint fixed until either the endpoint set EN D reaches ng
in size, or we generate a path that can be extended. Assume the former. Then for each v € END, there is
a path P, of length ¢ and one endpoint being v. We then try to find a longer path by doing rotations and
extensions with v as the fixed endpoint. We do this for all v € END. If we never extend a path then we
terminate with ng vertices END and for each v € END, a set of nyg paths with distinct endpoints EN D,,.
Observe next that adding an edge f = vw where w € EN D, will enable us to create a path of length ¢ + 1.
This is because adding f creates a cycle C' of length ¢ 4+ 1. Because G; is connected we can find a path of
length ¢ + 1 by adding an edge g1 = ww; and deleting an edge go = wwy where g; € E(C) and wy ¢ V(C).
The edge f is referred to as a booster.

If we go through the edges of F; one by one, we see that each edge has probability at least v = amyuns/3n?
of being a booster. This bound holds given the previous edges examined. Thus the probability we fail
to obtain a Hamilton path in each G; is bounded by the probability that the binomial random variable
B(o/(r +1),7) < n, which is bounded by e=*"). After a simple application of union bound, this shows that
w.h.p. for each m € Mg, we can find Hamilton paths in each G;.



Finally, note that once we have found one Hamilton path we can find ny vertices, each of which are the
endpoints of ng Hamilton paths. Note that w.h.p. we will only need to examine O(n) edges of F' in this
construction. The remaining edges can be used to glue Hamilton paths into a Hamilton cycle of G = G, ,. [

3.3 Step 3: Connecting the Hamilton paths together

In the final step, our goal is to show that w.h.p. we can choose Hamilton paths P; of G; with endpoints z;
and y; for ¢+ = 1,2,...,r, such that for each i, the edge y;x; 11 exists and is colored with ¢;; ;. We begin by
choosing ny hamilton paths in G all with vertex ), say as one endpoint.

Assume inductively, that we have chosen Py, P, ..., P,_; plus ng Hamilton paths Q1,Qs,...,Q,, of G;, all
with endpoint x; (or 2} if i = 1). Now choose a set END;,; of size ny such that each v € END,,, is the
endpoint of ny Hamilton paths of G;;1 with distinct endpoints. We now use the edges of GG}, ,,, to find a vertex
i1 € END;,q such that there is an edge yx; 1 of color ¢;,1, where y # x; is an endpoint of one of the paths
Q1,Q2, ..., Qn,- As we go through the edges of Fy we see that we find such an edge with probability at least
7. It follows that w.h.p. for each m € Mg, we find the required edge after at most log® n steps. Repeating
this argument 7 times we see that w.h.p. for each m € Mg, there are ny Hamilton paths of G made up of
correctly colored paths of length m; — 1,ma, ..., m,_1 plus one of ny Hamilton paths Hy, Hs, ..., H,, of G,,
all with z, as an endpoint.

We now do rotations in G, starting with P; and keeping the endpoint y; fixed and generate ny paths
Ji,Joy .oy Jny. We then search for an edge y,x1 of color ¢; such that y, is an endpoint of an Hy and z; is an
endpoint of a J;. We can find one w.h.p. for each m € My by examining log® n edges of Fy and we are done
with the proof of Theorem [I}

4 Proof of Theorem 2

To prove Theorem [2] we will deal with small and large m; separately. Fix a vector m € M. Let J =
{7 :m; <n/4r} and let o = |J| < r. Assume without loss of generality that J = [o]. We focus initially on
the small m; and construct paths P; for each j € J in such a way that we can construct the remaining long
paths using the previous strategy to glue the long and short paths together.

n, _Motl
2 Zi>o’ m;

. m . o e .

) Xt 5 = . vertex-

elements, V, o contains the next = 22 elements, and so on. We construct internally vertex-disjoint short

>0 T

paths with the colors in .J, only using the vertices in V*. We further partition the set V* to accommodate
different colors in J. We partition V* into ¢ + 1 almost equal parts Vg, Vi, ..., V,, where Vj contains the first

ﬁ elements, Vi contains the next ﬁ elements, and so on. (Observe that if j < o then m; < =< ﬁ)

Let u; be such that |V;| = um for i =0,1,... r.

We partition [n] into V*, V,41,...,V;, where V* contains the first § elements, V1 contains the next

We let p, = lentloslosntw/2 onq then let po,ps satisfy 1 — p = (1 — p1)(1 — po)(1 — p3) so that py =

ps X w/daminn. For each v € [n], let do(v) = |{u € Vj: wv has color ¢;}| and for i = 1,2,...,r, let

d;(v) = |{u € V; : u,v has color ¢;}|.

We now give an outline of the way we will construct a Hamilton cycle in several steps. The strategy is similar
to that used for the proof of Theorem [I], except for the way we deal with short paths. Let now



|
Am:{vzﬂi>a:di(v)§%50gn}.

B— {v:dT(v) < 400 }

- ﬁamin

Lemma 9. W.h.p. simultaneously, for all choices of m, every pair of vertices u € Ay and v € B are at
distance at least three.

This lemma is proved in Section [6.4

Step 1 For each v € Ay, choose two neighbors wy, ws ¢ Ay, of v such that vw; and vwsy have the color ¢,
and let @, be the path wyjvwy. Then, move v, wy, and wq to V,. Lemma [9] and Properties B3 and
B4 and the fact that |V,| = Q(n) implies that we can choose the pairs wq, wy such that the paths in
Q = {Q,} are vertex disjoint. After this step for i =1,..., 0, denote the new V;’s by V.

Step 2 Construct a path P of the form P, P, ... P, where P; is a path using only the vertices of V/ as internal
vertices, and with edges of color ¢;. P, has length m; — 1 and P; has length m; for j =2,... s. For
all vertices in V* that are not used in P, place them arbitrarily into V;’s and denote them by V.’s
and ensure that each V/ has size m;, for i ¢ J.

Let G; denote the subgraph induced by the edges of color ¢; in V/, for i = 1,2,...,r. (Note that it
is possible to have i ¢ J and j € J such that V/ and Vj’ are not disjoint, however this does not pose
any problem in our arguments.) For i = o + 1,...,r, the graphs G; have minimum degree at least

pioilogn - 20r . fmin@minlogn by construction.
25 Hmin 26

Step 3 For each 0 +1 < i < r, execute the restricted rotation-extension algorithm to ensure that for all
Q@ € Q, the current path either contains () or is vertex disjoint from ). In this way, create a Hamilton
path H; of color i.

Step 4 Connect the Hamilton paths into a Hamilton cycle.

We already validated Step 1 in its description. We now elaborate on and validate Step 2. To obtain
P, P, ..., P, we use the following lemma. (See Ben-Eliezer, Krivelevich, and Sudakov [3].)

Lemma 10. Let G be a connected graph with N vertices such that for every pair of disjoint sets S and T
with |S| = |T| = M there is an edge joining S and T. Then for every v € V(G), there is a path of length
N — 2M with one endpoint v.

We need the following lemma which enables us to apply Lemma [10] on the graphs G; for i =1,2,..., 0.

Lemma 11. W.h.p. simultaneously, for all choices of m, for each 1 =1,2,...,0, we have the following:

(a) G; is connected and

n(loglogn)?
logn

(b) There is an edge in G; between every pair of disjoint sets S and T with |S| = |T| =ny =

This will be proved in Section [6.5]



4.1 Construction of paths P, P, ..., P,

We condition on the high probability events in the above lemmas. We assume here that m; > 1 for all 4,
because otherwise we are just dealing with fewer colors. Fix a starting vertex v; € V. It follows from Lemmas
and that there is a path P; of length m; — 1 starting at v; and using only the vertices in V/, all of
whose edges have color ¢; (we use Lemma (10| with N = % and M = n;). Suppose then that we have
constructed paths Py, P, ..., Py, k < 0 where P;_;, P; share an endpoint and the edges of P; are colored c;
for 1 < j < k. (If m; = 1 then we can take P, to be an endpoint of P;.) Let u; denote the endpoint of P
that is not in P,_; and vp4; be a cp4i-neighbor of w, in V)| (such a neighbor exists because of the fact that
V) contains only vertices outside of A,,). Then it follows from Lemmas and that there is a path Pyyq
of length my, starting at v, and using only the vertices in V}_;, all of whose edges have color c;4;. We

end the path P, with a vertex v,11 € V1.

The path P, has length m; — 1. There are at least ¢, = %Oék_l’_l log n choices of vertex vy € Vj such that vy is
an edge of color ¢;. This finishes the construction of £y choices for P; and a single choice of each of P, ..., P,
giving us {y choices for P = P, P, ... P, where the starting vertices vy are distinct. Denote this collection of
paths by P. The paths P = P, P, ... P, use vertices from V*\ Ay, except one of the end points v,41 € V1.

4.2 Construction of P,.4,..., P, and the Hamilton cycle

Steps 3 and 4 can be validated in the exact same way as was done in Sections and [3.3] and Lemma
continues to hold. We can therefore w.h.p. construct a Hamilton path P in G, ,, U G, ,, with the correct
color scheme. We can in fact find ng choices for one endpoint v of P (corresponding to P,) and we have £
choices for the other endpoint w (corresponding to P;). The probability that none of the ngly possible edges
vw occur in E(G,,,) is at most (1 — py)™of < e~len = o(n=") for some absolute constant ¢ > 0. This
completes the proof of Theorem 2

5 Proof of Theorems [3 and (4

We can consider both theorems simultaneously. Let ¢ = p(1 — p) and note that Gy, satisfies the conditoins
of Theorems 1| and . Suppose that the claim in Theorem 1| (or [2) holds with probability 1 —¢,, where €,, — 0
as n — 0o. Let Q(«a) denote the set of colorings of the edges of K, with the following property: if ¢ € Q(«)
is fixed and we construct G, , then the claimed Hamilton cycles exist with probability at least 1 — er/?. Let
F denote the failure of the property described in Theorem [1] (or [2). Then,

en =P(F)=P(F | c€ Qa))P(c € Qa)) +P(F | c ¢ Qa))P(c ¢ Qa))
> elPP(c ¢ Q(a)).

It follows that P(c ¢ Q(a)) < &>, So, let ¢ be a fixed coloring in Q(e) that we will use to color edges. Now let
e = {u;,v},i=1,2,...,N= (72‘) be an arbitrary ordering of the edges of K,,. We couple the construction of
Grpa= p(1 —p) with Dpy, a subgraph of Dy . For each i, we generate two independent Bernouilli random
variables, B,, ,, and B,, ,,, each with probability of success p. If exactly one of these variables has value one

then we include the corresponding directed edge in Dy and give it the color c(e;).



Consider the following sequence I'g,I'y,..., 'y of random edge colored digraphs. In I, for 7 < ¢, we first
tentatively include (u;,v;) and (vj, ;) independently with probability p and include the corersponding edge
only if exactly one is chosen. In which case give it color ¢(e;). For j > i we include both (u;,v;), (v;, u;) with
probability ¢ and neither of (u;,v;), (v;,u;) with probability 1 — g.

Now T’y is distributed as Gy, and I'y is distributed as a subgraph of D . We argue that

P(I; € F) > P(T;y; € F) for 0 <i < N. (4)

Given () we see that we have Theorems [3 and [il So let us verify (). Following [I8], we condition on the
existence or non-existence of (uj,v;) or (vj,u;) for j # ¢ + 1, in both models, I';,T';;1). Let C denote this
conditioning. Then, one of (a), (b), (¢) below occurs:

(a) There is a desiredly colored Hamilton cycle (in both T';,; ;1) that does not use either of (u;;1,v;41) or

(Uz'+1, Uz‘+1)'

(b) Not (a) and there exists a desiredly colored Hamilton cycle if at least one of (u;y1,vi11) Or (Vi1 Uis1)
is present, or

(¢) There does not exist a desiredly colored Hamilton cycle even if both of (u;,1,v;41) and (v;11,us1) are
present.

(a) and (c) give the same conditional probability of Hamiltonicity in I';, I";11, 1 and 0 respectively. In T'; (b)
happens with probability ¢. In I';;; we consider two cases (i) exactly one of (u;y1,vi41), (Vig1, uir1) yields
Hamiltonicity and in this case the conditional probability is again ¢ and (ii) either of (w;41, vit1), (Vig1, Wit1)
yields Hamiltonicity and in this case the conditional probability is 1 — (1 — p)? — p* = 2¢. Note that we will
never require that both (w;y1,v;11), (viy1, wir1) occur. In summary, we have proved that

P(DYy € F) < e/’ (5)

6 Structural lemmas

In this section, we prove the various structural properties of random graphs that have been used throughout
this paper. We begin with the following: let 0 < v < 1 and g = |1/v] and let Wy, W5, ..., W, be consecutive
intervals in [n] where |W;| = |yn] for 1 <7 < g. Let d; j(v) denote the number of neighbors w of vertex v in
W; such that c(vw) = ¢;. Here G = Gy, with p; ~ clogn > 1. Let

n

1
AL = {v rdielr]jelg—1]:dij(v) < %}

Lemma 12.

(a) In Section[5 with c =1, v = 3/10, we have that Am C A}, and By = B.
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(b) In Section [4] with ¢ = 1/oumin, v = 1/80r, we have that Am C A%, and B, = B.

Proof. Tt is clear that B; = B in (a) and By = B in (b).

(a) If v € Ay, then there is some ¢ € [r] such that d;(v) < ’%, i.e., there are at most ’% many c¢;-
colored edges between v and V;. Recall that V; was defined so that it consists of m; > fn consecutive elements
from [n]. Hence, there are j, k such that P; U Pj41 U---UPjyp—1 CV;and V; \ (P U Pjy1 U -+ - U Pjyg_1) has
at most 2(3/10 elements. Thus,

kfyn:|PjUPj+1U"'UPj+k—1|Zmi_ﬁ/524mi/5‘

Suppose for the sake of contradiction that v ¢ A% . Then, d; ;1 (v) > mi;% forall [ =0,1,...,k — 1. Thus,
we have the following (recall that m; = p;n):

e

-1

di(v) > > diju(v) >
l

kvya; logn S wicy; logn
20 . 25

Il
o

giving us a contradiction.

(b) The proof is essentially the same as for part (a). O

Lemma 13.

(a) If c=1, v = /10, then w.h.p. every pair of vertices u € A%, and v € By are at distance at least three.

(b) If ¢ = amin, v = 1/80r, then w.h.p. every pair of vertices u € A}, and v € By are at distance at least
three.

Proof.

(a) The probability that there are vertices u € A% and v € B at distance at most two can be bounded by

2 c log n i BT/YOmin n 9 ; r 1 vyeo;logn/20 n
i e k n—2—i—k k yn—2—i—k
VA C= D DI (i) TR 35 DD DI G [P

i=1 k=1 =1 j=1 k=1
=o(1).

(b) This is similar. O

6.1 Proof of Lemma 5

c|S|logn
B1 Let Z = |B(p,S)| and L =logn and A = ‘Q‘Tng' Then,

10



()< () (S pro-n)
<(3) (2()pra-pr)
< <Z> (2 (% : le;gn '60(1)>AeCS|logn/n>L
< <Z> ((216)10g”/20n—1+o(1))Lc\S\/n
nL—2clS|L/3n
= L!

Explanation for @: Having chosen a set X of L vertices, we bound the probability that the set is
contained in B(p, S) by the probability that the vertices in X each have at most A neighbors in S\ X.

So, from the Markov inequality

E ((Z)) nL—o(1)—2¢|S|L/3n

L —lSIL/3n _ (=
(nL—c\S|/4n) = L—cSIL/an <n " =o(n™").

L

]P)(Z Z nl—c|5‘/4n)

VAN

B2 Let ¢ = clogn/20.

3 , 2
P(Jv, w € SMALL : dist(v, w) Z nip ! (Z( Z J>pz'(1 _p)nm)

j= =0
< (enlogn + c*nlog’n) - (n=23)2 = o(1).

B3 If this property fails then there is a connected set 7" of at most tq = 1 + 19%7 vertices that contains a set

IEER
T, of size t; = 16?;7 vertices, each of which has at most s = 951%™ neighbors in S\ 7. The probability

20n
of this can be bounded by

W) (= (19 ' Slep) " "
N -2 to—1( “0 i 1 — |S|—1 < 1 to 2 ep —c|S|logn/n
(to)to p (tl) (; ( Z. )p( p) ) < (clogn) W) e

= (clogn)™(2(20e)* e 20%)h
e

< (clogn)ioe 1550t — o(n=T).

B4 Proof of this can be found in Chapter 3 of [12].

B5 Let s; = %Ofn)z. The probability of existence a pair of disjoint sets Sp,.5; of size s; with no edge

between them can be bounded by

2 2.2\ S1
n 2 n-e B _
() =< ()=o)
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6.2 Proof of Lemma

(a) This follows from Property B1.
(b) This follows from Property B3.

(c) This follows from Part (a) of Lemmas [12[ and

6.3 Proof of Lemma [T

We first prove the following lemma bounding the edge density of small sets.

Lemma 14. In G, , with p ~ Clo%, w.v.h.p. for each S C [n] satisfying |S| < so = pn/logn, we have that
e(S) < epc|S|logn, where e(S) denotes the number of edges contained in S.

Proof. The probability that there exists a set S with more edges than claimed can be bounded by

> s s epclogn\
ZO n (2) pepcs logn ZO E ) sec lOg n pelog
s/ \epcslogn N s 2epcsnlogn

s=epclogn s=epclogn

50 s\ 1—2/epclogn 1 cepslogn
< (%) 7
< 2 (7))

s=epclogn

o(1)\ ePs logn
) =o(n™").

50
&
<
<> (5
s=epclogn

]

(a) Suppose that there exists S with |S| < cuminftminn/200log n that does not satisfy Part (a) of Lemmal7] Let
T = N;(S). Then |SUT| < [S|(14 ptminQmin 10g 1/100) < fimin@minn/199 and e(SUT) > |S|tminOmin log n/52,
contradicting Lemma , with ¢ = 1 and p = i ftmin/199.

(b) Suppose now that S is a set with aupinpminn/200logn < |S| < p2;,a2:,n/10° and choose X C S of size
exactly auminftmin?/200logn. Then from (a), we have

INAS)| > [N:(X)] = 18] > X ftmintmin log /100 — [S] > 3/,

(c) Tt follows from (b) that every component of G; has size at least sy = p?; a2, .n/10°. Now apply Property

B5 with ¢ = ap,, to show that there cannot be two such large components.

6.4 Proof of Lemma

This follows from Part (b) of Lemmas [12] and [13]

12



6.5 Proof of Lemma 11l

Connectivity follows as in the proof of Part (c) of Lemma[7]in Section [6.3] The other condition follows from
Property B5.

7

Concluding remarks

The ultimate goal is to understand the thresholds for the existence of varying patterns in edge colored random
graphs. The hardest question seems to be to find the threshold for the existence of arbitrary patterns. Periodic
patterns were dealt with in [I] and [9].

Leaving this problem aside we can still ask for the likely value of hep(G,,,) for all values of p between the
threshold for Hamiltonicity and the value in Theorem [2]
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