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This paper is mainly concerned with the computational complexity of determining whether or 

not the vertices of a graph can be partitioned into equal sized subsets so that each subset induces 

a particular type of graph. Many of the NP-completeness results are for planar graphs. These are 

proved using a planar version of 3-dimensional matching. 

1. Introduction 

This paper is mainly concerned with the computational complexity of the problem 

of determining whether or not the edges or vertices of a graph can be partitioned 

into equal sized subsets so that each subset induces a particular type of graph. 

Notation 

For graph G = (V, E) we denote induced subgraphs as follows: 

for Sc1/ G[S]=(S,E,) whereEs={{u,w}~E:{u,w)~S}, 

for SLE G(S) = (V,,S) where VS = IJ e. 
es.5 

For positive integer k and finite set X we define a k-partition of X as a partition 

X=X,UX,U..-UX, where IX,1 =k for i=l,2,...,p. For a graph property rr we 

define a &-partition of the vertices or edges to be one in which each subset induces 

a graph with property rr. Thus for example a connected-k-partition of I/or E is a 

k-partition of V or E for which each subset induces a connected subgraph. The 

abbreviation for the problem of deciding whether a graph has a n-k-partition of its 

vertices (resp. edges) will be V/C(X) (resp. Ek(rc)). 

Planar Vk(rr) denotes V/c(n) restricted to planar graphs etc. 

*The second author is on leave from Dept. of Computer Science and Statistics, Queen Mary College, 

London El 4NS, United Kingdom. 
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Vertex set partitioning 

A connected 2-partitioning of I/corresponds to a perfect matching and so one can 

decide in polynomial time whether or not one exists (Edmonds [2]). 

For k 2 3 it has been known for some time that Vk(connected) is NP-complete 

(Garey & Johnson [3], Hadlock [5], Kirkpatrick & Hell [lo]). We are able to show 

that Planar Vk(connected) is NP-complete. The main tool in the proof is the NP- 

completeness of Planar 3DM - see Section 2 and Dyer & Frieze [l]. 

We also prove the NP-completeness of V(n/k)(connected) for k 2 2 fixed 

(n = 1 VI). The complexity of this problem was left open in Per1 & Schach [14] who 

considered weighted generalisations of this problem when G is a tree. They refer to 

applications of this problem in information and library processing [15] and paging 

and overlaying [ 161. 

It is of interest to note the following result of Gyori [4] and Lovasz [ll] which 

provides sufficient conditions for the existence of connected partitions in terms of 

connectivity. 

Theorem 1.1. Let G = (V, E) be a k-connected graph. Let n = 1 V 1, u,, v2, . . . , uk E V 
and let n,,nz, . . . , nk be positive integers satisfying n, + n2 + ... + nk = n. Then there 
exists a partition of V into V,, V,, . . . , vk satisfying ui E V,, 1 V, 1 = n, and G [ I$] iS 

connected for i = 1,2, . . . , k. 

To balance the NP-completeness results we have looked for classes of graphs for 

which these problems are polynomially solvable. Trees are an obvious case but we 

have also managed to prove some results for series-parallel graphs. 

All of the above results plus some related ones are discussed in Section 2. 

Edge set partitioning 

It is straightforward to specialise Theorem 1.1 to line-graphs in order to have a 

result on connected edge-set partitioning. In addition Junger, Reinelt & Pulleyblank 

[7] proved 

Theorem 1.2. (a) If G is k-edge connected, then G has a connected (k + I)-partition 
but not necessarily a connected (k + 2)-partition for k = 1,2,3. 

(b) If G is 4-edge connected, then G has a connected k-partition for aN k. 

The question of the complexity of Ek(connected) was left open in the above 

paper. We have been able to prove the NP-completeness of this problem for planar 

graphs when k ~3 is fixed and for general graphs when m/k is fixed, m = IE 1. 

These results are discussed in Section 3. 

2. Vertex set partitioning 

We first define Planar 3-Dimensional Matching (Planar 3DM). 
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Instance I. Disjoint sets R, B, Y with 1R 1 = IB 1 = 1 Y I = II? and a set of triples 

T c R x B x Y such that the bipartite graph G, = (T U R U B U x E,) is planar, 

where (see Fig. 1) 

(r,b,y) , , , 
Triples T 

r . Elements W = RUBUY 
L . . . . l l Y ’ 

Fig. 1. 

Question. Does there exist a matching MC_ T, i.e. jM\ =m and each element of 

W= R U B U Y occurs in exactly one triple of M? 

It is well known (e.g. Karp [9]), that 3DM is NP-complete when the restriction 

that G, is planar is removed. The NP-completeness of Planar 3DM is proved in 

Dyer & Frieze [l] using Lichtensteins result on Planar 3SAT [8]. 

It is important to note that Planar 3DM is NP-complete under the restriction 

each element of W appears in 2 or 3 triples only. (2.1) 

Theorem 2.1. Each of the following problems is NP-complete for any fixed k 2 3. 
(a) Planar bipartite Vk(connected). 

(b) Planar bipartite Vk(tree). 

(c) Planar bipartite Vk(path). 

Proof. By transformation from Planar 3DM - see Fig. 2. 

k-2 

edges 

There is one path of length k-2 

for each =ber of RUB and one 
pendant edge for each member of 

Fig, 2. 

Y. 
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The resulting graph is clearly bipartite planar if Gt is. This construction is only 

new in the sense that we can assume G, is planar. Therefore we only state 

(i) I has a matching implies G has a k-partition into paths. 

(ii) G has a connected k-partition implies I has a matching. 0 

We note that l??(G) 1 I (3k - 1) 1 T) . We can therefore allow k to vary with the size 

of our given graph G, as long as k = O(n’ -“) and E > 0 (n = 1 V(G) 1 as usual) and the 

conclusions of Theorem 2.1 will still hold. 

We next consider the case where n/k rather than k is bounded. 

Theorem 2.2. If nk = n/k, then Bipartite Vn,(connected) is NP-complete for any 
fixed kz2. 

Proof. We prove this first for k=2 and then indicate the simple modifications 

needed for arbitrary k. The reduction is again from 3DM but this time our transfor- 

mation does not preserve planarity. 

Given an instance of 3DM we define a graph G= (1/E) as follows (see Fig. 3). 

Elements 

Triples 

A 

Fig. 3. 

Let W+= WU {a,b}, 

n, = (3m+l)m3+5m- ITI and nb = m3. 

Let n,=nb for (TE w. 

I/=W+UTU u PO where P, = ((CT, t): t = 1, . . . , n,} for CJE W+. 
otW’ 
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E = {{a,t}:a~{a,b} and JET} U U E,UEr 
OEW’ 

where 

ET = U E, where if t = {x,Y,z} E, = ({t,x}, (t,y), {t,z}}. 
<ET 

Note that 

n= II’ =2+3m+~T~+n,+(3m+l)nb=2(n,+1+~T~-m). 

We show that G can be partitioned into 2 connected subgraphs G[S], G [s], 

IS 1 = n/2 if and only if T contains a matching. 

Suppose first that T contains a matching M. Let S = {a} U P, U (T-M). It is 

straightforward to check that 1 S I + n/2 and that G [S], G [s] are both connected (are 

both in fact trees). 

Conversely if such an S exists we can assume a E S. It follows that P, c S. Now 

IS-(P,U{a})l=lTI- m<nb and as a~Stl(WU{b}) implies PvcS we have 

Sn(WU(b})=O. Thus S-(P,U{a})cT. Let M=T-S. Now lMI=m and M 

must be a matching as WC s means that M ‘covers’ W. q 

To deal with the case in which G must be partitioned into k connected subgraphs 

we replace n, above by n, + (k - 2)n/2 and note that I I/ I = kn/2 now. Any parti- 

tion into k connected subgraphs of equal size must consist of 2 subgraphs of the 

original G plus k - 2 subpaths of P, of length n/2. 

It is again possible to vary the value of k with the size of G as long as k= 

O(n’-“). It follows from Theorem 2.1 and 2.2 that splitting a graph into k equal 

sized connected subgraphs is a hard problem for all kin/3. 

The question of whether it is still a hard problem when k is fixed and G is planar 

is left open and on present evidence we conjecture that the problem is NP-complete. 

We note that the proof of Theorem 2.2 also supports a proof that Vn,Jtree) is 

NP-complete. 

We note also that McDiarmid & Papacostas [12] show that deciding whether the 

vertices of a planar graph can be partitioned into 2 sets, of arbitrary size, each 

inducing a tree, is NP-complete. 

It is important to look for restricted classes of graphs on which our problems are 

polynomially solvable. We consider Vk(connected) when n/k is fixed. This is known 

to be polynomially solvable on trees [14] and we have conjectured that it is NP- 

complete for planar graphs. We show, in outline, that it is polynomially solvable 
for series-parallel graphs - see for example Valdes, Tarjan & Lawler [17]. 

Series-parallel graphs (SPG’s) have the following inductive definition: 

Basis: An edge {a, b} is an SPG with source a = a and sink T = 6. 

Suppose now that Gi, G2 are SPG’s with disjoint vertex sets. 
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Series-construction. We define G = Gr 0 G2 by identifying rl = r(G,) with cr2 = a(Gz) 

and defining o = a(G) = D, = o(G,) and r = r(G) = r2 = r(G,). See Fig. 4. 

5 o G2 

Fig. 4. 

Parallel-Construction. We define G= G, 11 G2 by identifying a(G,) with a(G,), 

s(G,) with s(G,) and defining a(G)=o(G,) and r(G) =t(G,). See Fig. 5. 

Fig. 5. 

We shall use a dynamic programming approach based on the inductive construc- 

tion of the given graph G. This can be found in linear time [17] if it is not given 

a priori. 

For simplicity we consider the problem of deciding whether the vertices V of a 

given SPG G can be partitioned into 2 sets V,, V, of equal size such that G[V,] and 

G[V2] are both connected. 

For an SPG G define 

X(G) = {(a,,a2,a,): 3 partition of V(G) into V,, V2, V, such that 

(i) 1 V, 1 = a; for i = 1,2,3 and G [V;] is connected, 

(ii) a(G) E V,, 

(iii) a3 = 0 + r(G) E VI and a3 # 0 + r(G) E V3}. 

Note then that G has a connected (n/2)-partition if and only if 

{(n/2, n/2,0), (n/2,0, n/2)} fl X(G) # 0. 

The reader can easily check that X(G) can be computed from X(G,) and X(G2) 

given that G = G, 0 G2 or Gr 11 G2. There is no room to go into details. The time taken 

is O(lX(Gr)I IX(G2)l) making an overall time bound of O(d) where n = / V(G)I. 

The idea generalises in several ways, i.e. splitting into an arbitrary fixed number 

of sets; putting weights on vertices and trying to find partitions with the weights of 

the sets being equal, here we only have a pseudo-polynomial time algorithm; and 

finally to partitioning graphs whose 2-connected components are series-parallel. 
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We consider first the problem of finding a connected k-partition of the set of 

edges of a graph. For k = 2 this can be solved using matching techniques - see [7]. 

However for kz 3 we have 

Theorem 3.1. Planar bipartite Ek(connected) is NP-complete for any fixed k L 3. 

Proof. We consider first the case k#4. Let G, =(V,,E,) be the bipartite planar 

graph associated with an instance of Planar 3DM as defined in Section 2. Attach 

to each element which appears in d triples, say, a set of (d- 1) independent paths 

of (k - 1) edges. Additionally attach to each element in R a (k - 3) path. See Fig. 6. 

(k-l)- 
paths 

d-l (k-l)-paths 

Fig. 6. 

This construction gives us a graph G = (V, E) which is clearly planar and bipartite, 

and constructible in polynomial time from G1. We now claim that G decomposes 

into k-edge components if and only if the Planar 3DM instance contains a matching. 

First we note that for each element, the (d- 1) (k- 1)-paths must each be in a dif- 

ferent component. Thus they must form a component with some other edge incident 

with the element. Removing these components from G, to leave G2 say, gives 

exactly one edge incident to each B, Y vertex, and an edge and a (k - 3)-path incident 

to each R vertex. Because k #4 this must be the (k - 3)-path which we attached, since 

then (k - 1) + (k - 3) f k. Thus each R element is incident in Gz with a unique triple 

and an isolated (k- 3)-path and edge incident to an R vertex, and an edge incident 

to each of a B and a Y vertex. This decomposition induces a matching, since each 

component only contains edges incident to one triple. This argument can be reversed 

to show that any matching induces a k-edge decomposition of G. 

The case k = 4 must be considered separately. The above argument breaks down 
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since the (k-3)-path is then a single edge, and can be combined with one of the 

(k- I)-paths. To obtain this case we use the same construction for the B, Y elements, 

i.e. we attach (d- 1) 3-paths, where d is the degree of the vertex in Gi. However 

a more complicated construction is required for the R vertices. Recall that we may 

assume that its degree d in G, is 2 or 3. Then replace this vertex and its (2 or 3) 

incident edges by the configurations shown in Fig. 7. This construction clearly 

preserves planarity and bipartiteness. This gives the graph G. Removing the 4-edge 

components for each 3-path attached to a B or Y vertex will mean that the T vertices 

in Fig. 7 have either 0, 1,2 other edges incident from B or Y vertices. It may be veri- 

fied that the graph can now be split into connected 4-edge components if and only 

if exactly one of these Tvertices has 2 such incident edges. This then induces a three- 

dimensional matching. The argument is again obviously reversible. 0 

T T 
Triples 

';\ 

T T 

(a) Degree 2 

T T T 

T T T 

Triples 

.______ 

Element 

(b) 
. 

Fig. 7. 

We may also put tighter degree bounds on the graphs. For example we can show 

that partition into 3-edge components remains NP-complete if all vertices have 

degree 2 or 3. (These bounds are best possible for planar bipartite graphs.) It may 

also be observed that the above proof remains valid as k grows with the number of 

vertices n in G. This only requires that the size of the matching problem, and hence 
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the number of k-components into which the graph is partitioned, is not strongly 

bounded. This is clearly the case if k= O(n’-“) for some E>O. We now consider 

the case where k=S;)(n), i.e. we wish to partition G into a number of equal sized 

components. 

Theorem 3.2. If mk = m/k, then Bipartite Emk(connected) is NP-complete for any 
fixed k?_2. 

Proof. We consider first the case k=2 and subsequently generalise the proof. We 

reduce from 3DM, but our construction does not preserve planarity, although it 

does preserve bipartiteness. Construct the graph G illustrated in Fig. 8. Each tri- 

angle represents a path, of the indicated number of edges, attached to the underlying 

bipartite graph for the 3DM instance. The new vertex u is joined to every triple. 

(This is the non-planar element in the construction.) 

The numbers n,, nb, n,, nd, n, are such that 

Triples 

Elements 

Fig. 8. 

For example we may choose n, = m4, nb = ma, n, = m’* and nd =M16, where q iS the 

size of the 3DM instance. Then n, is chosen as follows. If t = ITI 1m3, then clearly 

/El = nd+n,+t(n,+2+3(nb+2))+3mn,. 

We choose n, to satisfy 

1El = 2(n,+m(n,+2+3(nb+2)+3&)). (3.1) 
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It may be verified that this implies n,, nd > rn16, and nx<+ 1E 1 for x= a, . . . , e. 

In what follows we will use the terms a- or e-path to denote the attached paths 

of length n,, . . . , n, respectively, and b- or c-fork to denote an attached b- or c-path 

together with the two edges of G to which it is incident. Now suppose T contains 

a matching. Let El consist of the e-path, the m c-forks joining u to triples in the 

matching plus the 3m b-forks joining these triples to the elements, plus all the a- 

paths. It follows from (3.1) that IE, 1 = 3 lE 1. It is also clear that E, and Ez = E - E, 
are both connected. 

Conversely suppose G is partitionable into E,, E2 with IE, 1 = lE2 I. Without loss 

let us assume the e-path is in El and the d-path in E2. (Clearly these paths are too 

large to both be in the same component.) It follows from (3.1) that E, must con- 

tain exactly m c-paths and 3m b-paths and 3m a-paths. Consider an arbitrary 

a-path. Since E, is connected this must be incident with at least one b-fork in El. 
But this implies there must be exactly one such b-fork since E, contains 3m b-paths. 

Consider further the path in E, connecting this a-path to u. This must go directly 

through a b-fork and a c-fork, otherwise E, would have to contain at least two b- 
forks incident to some other element, which we know to be impossible. Thus there 

are exactly m c-forks in et. It now follows that the triples to which these are inci- 

dent induce a three-dimensional matching. 0 

We now modify this construction to general k. Suppose p = 1 E 1 in the above. By 

adding (k- 2) paths of length p to u to give a graph G ‘, we obtain the NP-com- 

pleteness of lE’I/k partition. Here again k could be polynomial in m and thus this 

result overlaps that of Theorem 2.1. 

It is unfortunate that our proof is non-planar. The NP-completeness in the planar 

case is, as far as we know, an open problem. (Though our proof shows it is suffi- 

cient to consider k = 2.) We suspect that it is NP-complete. 

We might inquire for which types of graph, if any, the problem Ek (connected) 

is polynomial. It appears that for trees, the problem is polynomial for k fixed or 

m/k fixed. We will sketch the method in each case for k = 3 and k = m/2. First con- 

sider k= 2 restricted to trees with n vertices and hence m = (n - 1) edges. Clearly if 

n # 1 (mod 3), there is no 3-edge decomposition. Otherwise, if G contains any con- 

figuration of the type shown in Fig. 9(a), remove it since it must form a component 

in any 3-edge decomposition. When all such components are removed, then Tmust 

have configurations of the type shown in Fig. 9(b). 

Fig. 9. 



Partitioning graphs into connected subgraphs 149 

The 2-paths must each select an edge incident to u. If r > s + 1, there is clearly no 

decomposition. Otherwise remove the r 2-paths and r edges incident to u (possibly 

including e). This will leave (s-t 1 - r) single edges incident to u, and e must be 

amongst these if (s + 1 - r) # 0 (mod 3). These edges must now be decomposed into 

[(s+ 1 -r)/3] 3-stars (i.e. graphs isomorphic to k,,,) leaving either no edges, e 

alone or e and one other edge incident with u. We now continue iteratively until we 

either find G cannot be decomposed further or we have obtained a 3-edge decom- 

position. 

Now consider k = m/2. For each vertex we simply count the number of edges in 

each of its sub-trees. Now G can be decomposed into two equal components if and 

only if it has a vertex whose subtrees can be partitioned into two sets such that the 

sums of the cardinalities of all the subtrees in each set are equal. For each vertex 

this gives an instance of the problem PARTITION [3, p. 2231, but with number of 

size bounded by n. This can be solved by dynamic programming in polynomial time. 

This is not suggested as being an efficient algorithm, but merely to demonstrate that 

the problem has a polynomial solution. 

The assumption that k is fixed is essential here since 

Theorem 3.3. Ek(connected) is NP-complete with G restricted to be a tree when k 
can be selected as part of the problem instance. 

Proof. By reduction from 3-PARTITION [3, p. 2241. This problem is NP-complete 

is the strong sense. We recall its form 

Instance. Set A of 3m elements, integer B and an integer S(a) for each aeA such 

that +B<s(a)<+B and 1 s(a)=mB. 

Question. Can A be partitioned into m disjoint sets A,,A,, . . ..A. such that 

C,,,,s(a)=B for i=1,2 ,..., m? 

For a 3-PARTITION instance we construct a tree G as follows. It has a single 

vertex u to which are attached paths of length s(a) for each a EA. (This graph is 

constructible in polynomial time since we are dealing with a strongly NP-complete 

problem.) We now see that solving the 3-PARTITION problem is equivalent to 

solving EB(connected) on G. 0 

We will now consider decomposing the edges of a graph into subgraphs iso- 

morphic to some given fixed graph. Holyer [6] has considered this problem in the 

case where the fixed graph is a complete graph or circuit. We consider first the 

problem where the fixed graph is a path of k edges, we have 

Theorem 3.4. Ek(path) is NP-complete for bipartite planar graphs provided k 2 3. 

Proof. Reduction from Planar 3DM. We construct a graph G having a vertex for 
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each element in R, B, Y and the configuration shown in Fig. 10 for each triple. Here 

r, b, y are any integers such that 0 < r, b, y < k/2 and r + b +y = k. 
We will initially exclude the case k = 4, since this is the only k for which these rela- 

tionships cannot be satisfied. We now attach to each R element having degree d in 

this graph a set of (d- 1) independent r-paths, similarly to the proof of Theorem 

3.1. We also attach (d - 1) b-paths to each B, and (d - 1) y-paths to each Y vertex 

to give G. Since r, b, y # k/2 it follows that each of these attached paths must form 

a k-path with one of the ‘vertical’ paths illustrated in Fig. 10. Thus, when these 

paths are removed from G, each R, B, Y vertex is incident to one such vertical path. 

Thus for each triple we must partition a configuration like that of Fig. 10 but with 

some or all of the vertical paths omitted. It is easy to see that this can be partitioned 

into k paths if and only if either none or all of the vertical paths are present. (In 

the first case there is a single k-path consisting of the ‘horizontal’ paths, in the latter 

there are three obvious k-paths. This obviously induces a three-dimensional 

matching.) 

R B Y 

k-r 
edges 

Fig. 10 

For the case k= 4, we take r=2, b=y= 1 and we construct the same graph as 

above, except that we attach paths to the R vertices in a slightly different manner. 

We may assume that the degree d= 2 or 3 for such vertices. We attach a single 2-path 

if d = 2, but no path if d = 3. The proof now goes through, since it follows easily 

that two of the three 2-paths incident to each R vertex must combine to form a 

4-path. For if they were all in different 4-paths, we would have three B and three 

Y vertices ‘matched’ with a single R vertex. But this would mean that some other 

R vertex was ‘unmatched’, i.e. incident to three 2-paths none of which is part of 

any other 4-path. This can obviously not be partitioned, since it has six edges. 

Reversing the argument in both cases establishes the partition corresponding to 

any given matching. The construction is clearly planar and bipartite. 0 
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We now examine the problem of decomposing the edges of G into ‘stars’ of k 

edges (i.e. Kl,k isomorphs). 

Theorem 3.5. Ek(star) is N&‘-complete for aN k 2 3, and it is NP-complete for 
planar graphs in the case k = 3. 

Proof. We reduce from kDM. This will establish the planar result for k=3 since 

our construction preserves planarity. Let G, be the bipartite graph corresponding 

to a kDM instance. Thus the vertex corresponding to each k-triple has degree k. We 

may also assume that the vertex corresponding to each element has degree d = 2 or 

3. We now attach (k-d + 1) independent additional edges to each of these element 

vertices. For each such vertex these edges must clearly be part of k-star by taking 

(d - 1) of the edges incident to the vertex in G,. Thus there will be exactly one edge 

left unaccounted for at each element vertex. It now follows that the only way the 

remainder of the graph, G,, say, can be partitioned into k-stars is for each k-triple 

vertex to have degree 0 or k in Gz. This obviously corresponds to a matching and 

again we can reverse the argument. 0 

We conjecture that the problem remains NP-complete in the planar cases for larger 

values of k, but our proof would require the NP-completeness of Planar kDM, 

which is not available. However, in Theorems 3.4 and 3.5 we have shown that the 

problems of partitioning into both 3-paths and 3-stars are NP-complete in the 

planar case. Now the only other graph on 3 edges is a triangle, and we might ask 

whether this problem is also NP-complete in the planar case, since Holyer [6] has 

shown it to be NP-complete in general. It is easy to see that it is not, and we will 

sketch the method. 

We assume that we start with a given fixed embedding of our graph G = (V, E) 

in the plane. We note first that if E has a partition into triangles T,, T,, . . . , Tp and 

T is any triangle of G, then for each i 

T, - T is contained entirely inside of T or entirely outside of T. (3.2) 

We call a triangle T decomposing if T is not a face of G and the number of edges 

inside T is divisible by 3. 

It is clear from (3.2) that only faces and decomposing triangles can be used in a 

partition. Moreover 

Lemma 3.6. Suppose that T is decomposing and X is the set of edges inside T in 
our embedding. Then E is partitionable into triangles if and only if 

(a) X and E - X are partitionable into triangles, or 
(b) X is not partitionable into triangles but X U T and E - (X U T) are parti- 

tionable into triangles. 
Furthermore, the conclusions of the Lemma remain true if X denotes the set of 

edges outside T. 
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Proof. If (a) or (b) hold, then clearly E is partitionable. Conversely, suppose 

T,, Tz, . . . . TP is a partition of E into triangles. Suppose that T; n Xf0 for 
i-l,2 , . . . , q only. It follows from (3.2) 

T,cTUX for i=1,2 ,..., q. (3.3) 

If T,nT=0 for i-1,2,..., q, then (a) holds with T,, T,, . . . , TQ partitioning X. If X 

is not partitionable, then for some i 5 q, T, fl T #0 and then T c Y = Up=, T, and 

(b) holds as 3q= IYI =/Xl + IYnTl by (3.3). 

Finally, if X now denotes the set of edges outside T, then we verify (a) and (b) 

in an analogous manner. 0 

We show next that we can decide in polynomial time whether or not we can parti- 

tion E into facial triangles (this coupled with Lemma 3.6 will provide a recursively 

defined algorithm for the whole problem). 

Let Ek = {e E E: e lies on k triangular faces}, k = 0, 1,2. Clearly E = E, U E, U E2 

and this partition is constructible in linear time. If E,#B, then there is no facial 

triangular partition. If eE El we remove e and the unique triangle Tse from the 

problem. It remains to consider the case where each edge lies on exactly 2 triangular 

faces i.e. G is a triangulation. 

Lemma 3.7. The edges of a triangulation G can be partitioned into facial triangles 

if and only if its dual graph G* is bipartite. 

Proof. A set {T,, T2, . . . , T,} of facial triangles partitions E if and only if 

(i) 7; tl TJ = 0, i #j, i.e. T,, T,, . . . , TP from a stable set in G*. 

(ii) U T, = E, i.e. all edges of G* are covered by T,, T,, . . . , TP. 

Clearly a graph is bipartite if and only if it has a stable set covering all its edges. q 

Now let 

x(E) = true, if E can be partitioned into triangles, 

= false, otherwise 
and 

ii(E) = true, if E can be partitioned into facial triangles, 

= false, otherwise. 

We now give a recursive algorithm for computing x(E). It is straightforward to 

amend it so that it produces a partition if n(E) = true. 

Computation of z(E) 

begin 
if G has a decomposing triangle T with inside X and outside Y 

then begin 
Z:=X; if 1x12 IYl then Z:= Y; 

if z(Z) then x(E) := rt(E-Z) 

else z(E) := n(Z U T)Ax(E- (Z U T)) 



Partitioning graphs into connected subgraphs 

end 

else rc(E) := 72(E) 

end 

153 

It remains to show that the above algorithm runs in polynomial time. We note 

first that if G has A4 edges, then we can enumerate all triangles of G in O(m) time - 

see Papadimitriou and Yannakakis [12]. Thus we can certainly check for the exis- 

tence of a decomposing triangle in 0(m2) time (possibly O(m) time?). We can 

certainly check whether G* is bipartite in O(m) time and so if 

g(m) = maximum execution time of the algorithm 

on a planar graph with m or fewer edges, 
then 

g(m) 5 cm2 + 3skz,;x3j,,2 (g(k) + g(k + 3) + s(m - k)) 

from which g(m) = O(m3) follows. 
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