Combinatorial Games

Game 1 Start with n chips. Players A,B alternately take 1,2,3,4 chips until there are none left.
The winner is the person who takes the last chip:
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What is the optimal strategy for this game?

Game 2 Chip placed at point (m, n). Players can move chip to (m’,n) or (m,n’) where 0 < m’ <m
and 0 < n' < n. The player who makes the last move and puts the chip onto (0,0) wins.

What is the optimal strategy for this game?

Game 3 W is a set of words. A and B alternatel remove words wy, ws, ..., from W. The rule is
that the first letter of w;; must be the same as the last letter of w;. The player who makes the
last legal move wins.

1 Abstraction

Represent each position by a vertex of a digraph D = (X, A). (z,y) is an arc of D iff one can move
from position x to position y.

We assume that the digraph is finite and that it is acyclic i.e. there are no directed cycles.

The game starts with a chip on vertex zg say, and players alternately move the chip to =, zo,...,
where x;,1 € I'"(x;), the set of out-neighbours of ;. The game ends when the chip is on a sink
i.e. a vertex of out-degree zero. The last player to move is the winner.

Example 1: D = ({0,1,...,n}, A) where (z,y) € Aiff z — y € {1,2,3,4}.

Example 2: D = ({0,1,...,m} x {0,1,...,n}, A) where (z,y) € I'*((z',y'))) iff z = 2’ and y > ¢/
orz >z and y = 9.

Example 3: D = ({(W/,w): W' C W\ {w}}, A). w is the last word used and W’ is the remaining
set of unused words. (A’,w') € TF((A,w)) iff w’ € A and w’ begins with the last letter of w. Also,
there is an arc from (W,-) to (W \ {w}, w) for all w, corresponding to the games start.

We will first argue that such a game must eventually end. A topological numbering of digraph
Disamap f: X — [N], N = |X| which satisfies (z,y) € A implies f(z) < f(y).

Theorem 1. A finite digraph D = (X, A) is acyclic iff it admits at least one topological numbering.

Proof Suppose first that D has a topological numbering. We show that it is acyclic. Suppose
that C = (z1,%a,...,Tk,71) is a directed cycle. Then f(z1) < f(z2) < - < f(z) < f(z1),
contradiction.

Suppose now that D is acyclic. We first argue that D has at least one sink. Thus let P =
(z1,22,...,2k) be a longest simple path in D. We claim that zj is a sink. If D contains an arc
(zk,y) then either y = z;,1 < i < k—1 and this means that D contains the cycle z;, 1, . ., Tk, ;),
contradiction or y ¢ {x1,xs,...,2;} and then (P,y) is a longer simple path than P, contradiction.



We can now prove by induction on N that there is at least one topological numbering. Ifg N =1
and X = {z} then f(z) =1 defines a topological numbering.

Now asssume that NV > 1. Let z be a sink of D and define f(z) = N. The digraph D' = D — z is
acyclic and by the induction hypothesis it admits a topological numbering, f: X \ {z} — [V — 1].
The function we have defined on X is a topological numbering. If (z,y) € A then either z,y # 2
and then f(z) < f(y) by our assumption on f, or y = z and then f(z) < N = f(z) (z # z because
z is a sink). O

The fact that D has a topological numbering implies that the game must end. Each move increases
the f value of the current position by at least one and so after at most N moves a sink must be
reached.

The positions of a game are partitioned into 2 sets:
e P-positions: The next player cannot win. The previous player can win regardless of the current
player’s strategy.

e N-positions: The next player has a strategy for winning the game.

The main problem is to determine N and P and what the strategy is for winning from an N-position.
Forz € X let I (z) = {y € X : (z,y) € A} be the set of pout-neighbours of z.

Labelling procedure

1. Label all sinks with P.

2. Label with N, every position = for which there exists y € I'"(x) which is labelled with P.

3. Label with P, every position z for which I'*(z) is labelled with N.
A position z is an N-position (winning) iff there is a move from x to a losing position for the next
player.
The labelling should be carried out in reverse topological order.

Thus there is a unique partition of X into N, P which satisfies the following:

P1 All sinks are in P.
P2 If z € N then ' (z) N P # 0.
P3 If z € P then ' (z) C N.

In Game 1, P = {6k : k> 0} and in Game 2, P = {(z,z) : = > 0}.
Sprague-Grundy Numbering

For S C {0,1,2,...,} let
mez(S) =min{z >0: z ¢ S}.

Now given an acyclic digraph D = X, A define g recursively by

9(z) =

0 x is a sink
mex(T't(z)) otherwise

g(z) can be computed in reverse topological order.



Lemma 1.
z € P g(x)=0.

Proof Clearly P1 holds. We check P2 and P3.
P2: If g(z) > 0 there must be a y € I'*(z) with g(y) = 0.
P3: If g(x) = 0 there cannot be a y € I'(z) with g(y) = 0. O

Sums of games

Suppose that we have n games with digraphs D; = (X;, A;), ¢ = 1,2,...,n. The sum of these games

is played as follows. A position is a vector (z1,xa,...,T,) € A1 X Ay X +-+ X A,. To make a move,
a player chooses i such that z; is not a sink of D; and then replaces x; by y € ]f‘?' (z;). The game
ends when each z; is a sink of D; fori =1,2,...,n.

Example Nim

In a one pile game, we start with a > 0 chips and while there is a positive number z of chips, a
move consists of deleting y < x chips. In this game the N-positions are positive integers and the
unique P-position is 0. The Sprague-Grundy numbering is defined by g(z) = z.

In general, Nim consists of the sum of n single pile games stsrting with ay,as,...,a, > 0. A move
consists of deleting some chips from a non-empty pile.

We now show how to compute the Sprague-Grundy numbering for a sum of games.

For binary integers a = amam—_1 - a1ag and b = by by, 1 -+ - b1bg we define a B b = ¢;cm_1--- €100
by ¢; =1ifa; #b; and ¢; =0if a; = b; for i =1,2,...,m.

So for example 11 & 5 = 14.

Theorem 2. If g; is the Sprague-Grundy function for game ¢t = 1,2,...,n then the Sprague-Grundy
function g for the sum of the games is defined by

g(z) = g1(z1) @ g2(z2) ® - @ gn(zn)
where © = (T1,%2,...,%y)-

Proof It is enough to show

1. If x € X is a sink of D then g(z) = 0.
2. If z € X and g(x) = b > a > 0 then there exists ' € ['"(z) such that g(z') = a.

3. If z € X and g(z) = b and 2’ € I'"(z) then g(z') # g(=).

1. If x = (z1,22,...,%n) is a sink then z; is a sink of D; for i =1,2,...,n. So
g(x) = gi(z1) ® g2(z2) © -+ @ gn(n)
= 00®---00
0.

2. Write d =a @ b. Then

a = dob
= d®g1(21) @ ga2(72) D+ @ gn(an). (1)



Now suppose that we can show there exists ¢ such that d @ g;(x;) < gi(x;). Then since g;(z;) =
mex(T} (z;)) there must exist z; € T (z;) such that g;(z}) = d ® gi(x;). Assume without loss of
generality that ¢ = 1. Then from (1) we have

a= gl(xll) @ 92(332) S D gn(mn) = g(xlla T2y 7xn)-
Furthermore, (2}, 2,...,7,) € ['"(z) and so we will have verified 2.

Let us prove that such an i exists. Suppose that 25~ < d < 2%, Then d has a 1 in position k and
no higher. Since dy = ay @ by and a < b we must have ar = 0 and by = 1. Thus there is at least
one i such that g;(z;) has a 1 in position k. But then d @ g;(z;) < g;(x;) since d “destroys” the kth
bit of g;(x;) and does not change any higher bit.

3. Suppose without loss of generality that g(z},®s,...,z,) = g(z1, 22, ..., T,) where 2} € TT(z1).
Then g1(x}) ® g2(x2) B - - @ gn(zn) = g1(21) B g2(22) & - - - B gn(xy,) implies that g;(z}) = g1(x1),
contradition. O

If we apply this theorem to the game of Nim then if the position = consists of piles of x; chips for
i=1,2,...,ntheng(z) =21 2@+ B zp.

Sums of other subtraction games:
In our first example, g(z) = z mod 5 and so for the sum of n such games we have
g(z1,22,...,2,) = (1 mod5)® (zg mod 5)®--- & (x, modH5).
Another subtraction game.
One pile:
e A player can remove any even number of chips, but not the whole pile.

e A player can remove the whole pile if it is odd.

The terminal positions are 0 or 2.

Lemma 2. g(0) =0, g(2k) =k — 1 and g(2k — 1) =k for k > 1.

Proof 0,2 are terminal postions and so g(0) = g(2) = 0. g(1) = 1 because the only position
one can move to from 1 is 0. We prove the remainder by induction on k.

Assume that k£ > 1.

9(2k) = mex{g(2k — 2),9(2k — 4),...,9(2)}
= mex{k—2,k—3,...,0}
= k-1
92k —1) = mex{g(2k - 3),9(2k - 5),...,9(1),9(0)}
= mex{k—1,k—2,...,0}
k.

A more complicated one pile game
Start with n chips. First player can remove up to n — 1 chips.
In general, if the previous player took x chips, then the next player can take y < z chips.

Thus a games position can be represented by (n,x) where n is the current size of the pile and z is
the maximum number of chips that can be removed in this round.



Theorem 3. Suppoose that the position is (n,x) where n = m2* and m is odd. Then,

(a) This is an N-position if x > 2%.

(b) This is a P-position if m =1 and = < n.

Proof For a non-negative integer n = m2*, let (n) denote the number of bits in the binary
expansion of n and let ¥ = p(n) determine the position of the right-most one in this expansion.
We claim that the following strategy is a win for the player in a postion described in (a): Remove
y = 2% chips. Suppose this player is A.

If m =1 then £ > n and A wins. Otherwise, after such a move the position is (n’,y) where where
p(n') > p(n). Note first that (n’) = (n) —1 > 0. Thus B cannot win at this point. Second, B
cannot remove more than 2¥ chips and so if B moves the position to (n”,z") then (n) > (n') and
furthermore, 2" > 2°(""") since z” must have a 1 in position p(n"). Thus, by induction, A is in an
N-position and wins the game.

To prove (b), note that after the first move, the position satisfies the conditions of (a). O.

Let us next consider a generalisation of this game. There are 2 players A and B and A goes first.
We have a non-decreasing function f from N — NN where N = {1,2,...} which satisfies f(z) > =.
At the first move A takes any number less than A from the pile, where h is the size of the initial
pile. Then on a subsequent move, if a player takes x chips then the next player is constrained to
take at most f(z) chips. Thus the above considered the cases f(z) = .

There is a set H = {H; = 1 < Hy < ...} of initial pile sizes for which the first player will lose,
assuming that the second player plays optimally. Also, if the initial pile size h ¢ H then the first
player has a winning strategy. It will turn out that the sequence satisfies the recurrence:

Hj+1 = Hj + Hg where Hg = I’I1<11’1{Hl | f(Hl) 2 Hj}, for ] Z 0. (2)
157
Note that
Hj 1 < 2H;. (3)

[The reader should check that if f(z) = = then H; = 2°. Another case to check is f(z) = 2z. This
gives H = {1,2,3,5,8,...,} i.e. the Fibonacci sequence.]

The key to the game is the following result.

Theorem 4. FEvery positive integer n can be uniquely written as the sum
n:Hj1+Hj2+"'+ij (4)

where f(Hj,) < Hj,,, for1<i<p.

Proof We prove this by induction on n. If n =1 then n = H; is the unique decomposition.

Existence
Assume that any n < Hj, can be represented as a sum of distinct Hj,’s with f(H;,) < Hj,,, and
suppose that Hy < n < Hgy1. Inequality (3) implies that n — Hy, < Hy.

It follows by induction that
n—Hy=Hj +---+ Hj,, (5)

where f(Hj,) < Hj,,, fori=1,2,...,p—1. To establish existence we need only show that f(H;, ) <
Hj,. Assume to the contrary that f(ij) > Hj,. But then for some m < j, we have

Hygy1=Hy + Hy < Hi + Hj, <n,



contradicting the choice of n.
Uniqueness

We will first prove by induction on p that if f(H;,) < H;

. jiga for 1 < i < p then
Hj1+Hj2+'”+HJ‘p <H.7‘p+1' (6)

If p = 2 then we are saying that if f(H;,) < Hj, then H;, + H;, < Hj,11. But this follows directly
from H;,, = H;, + H,, where f(Hy,) > Hj, i.e. Hy,, > Hj,.

So assume that (6) is true for p > 2. Now

ij+1+1 = ij+1 + Hp, and f(ij) < ij+1
implies that m > j, + 1.
Thus
ij+1+1 2 ij+1 + ij+1

\Y

ij+1 + ij + H]’pfl et Hj1
after applying induction to get the second inequality.

This completes the induction for (6).
Now assume by induction on %k that n < Hj has a unique decomposition (4). This is true for k = 2
and so now assume that & > 2 and Hy < n < Hg41. Consider a decomposition

n=Hj + Hj, +---+ Hj,.

It follows from (6) that j, = k. Indeed, j, < k since n < Hy11 and if j, < k then H;, + Hj, +--- +
Hj;, < Hj, 1 < Hy, contradicting our choice of n. So Hj, appears in every decomposition of n.

Now (3) and n < Hp.y1 implies n— Hy, < Hy, and so, by induction, n— Hy, has a unique decompositon.
But then if n had two distinct decompositions, Hy would appear in each, implying that n — Hy, also
had two distinct decompositions, contradiction. O

One simple consequence of the uniqueness of the decomposition is that
Hk#Hj1+Hj2+'”+H]'p (7)

for all k and sequences j1, ja, - .., jp, where f(H;,) < Hj,,, fori=1,2,...,p — 1.

i Ji+1
It follows from the above Lemma that the integers n can be given unique “binary” representations
by representing n = Hj, + Hj, +--- + H;, by the 0-1 string with a 1 in posiitons ji, j2,. .., jp and
0 everywhere else. We call this the H-representation of n. This then leads to the following

Theorem 5. Suppose that the position is (n,*). Then,

(a) This is an N-position if n ¢ H = {H,,Ha,...,}.
(b) This is a P-position if n € H.
Proof

(a) The winning strategy is to delete a number of chips equal to H;, where j; is the index of the
rightmost 1 in the H-representation of n.



All we have to do is verify that this strategy is possible. Note that if A deletes H;, chips, then B
cannot respond by deleting H;, chips, because H;, > f(H,,) and so it is only A that can reduce
the number of 1’s in the H-representation of n.

The thing to check is that if A starts in (n, *) then A can always delete H;, chips i.e. the positions
(m, z) that A will face satisfy f(z) > Hy, where m = Hy, + Hy, +-- -+ Hy,. We do this by induction
on the number of plays in the game so far. It is true in the first move and suppose it is true for
(m,z) and A removes Hy, and B removes y where y < min{m — Hy,, f(Hg,)} < Hy,. Now

m—Hy, —y = Hg, —y+ Higy + -+ Hyg,
= Hy +Hy,+---+Hy +Hp, +---+ Hy,

and we need to argue that Hy, < f(y). But if f(y) < Hy, then we have
Hy, = y+Hy +Hpy+--+H,,
= H, +---+H, +Hp, +Hp, +---+ Hy,

where f(H,,) < f(y) < Hy,, contradicting (7). Thus A can remove Hy, in the next round, as
required.

(b) Assume that n = Hj. After A removes x chips we have

Hk*x:Hjl +Hj2 +"'+ij
chips left.

All we have to show is that B can now remove Hj, chips i.e. H;, < f(z). But if this is not the case
then we argue as above that H, = Hy, ++-++H,,+H; +Hj,+---+H; ,wherex = Hy +- -+ H,,
and f(Hj,) < f(z) < Hj,, contradicting (7). O

Geography

Start with a chip sitting on a vertex v of a graph or digraph G.

A move consists of moving the chip to a neighbouring vertex. In edge geography, moving the chip
from z to y deletes the edge (z,y). In vertex geography, moving the chip from z to y deletes the
vertex x.

The problem is given a position (G, v), to determine whether this is a P or N position.

Complexity Both edge and vertex geography are Pspace-hard on digraphs. Edge geography is
Pspace-hard on an undirected graph. Only vertex geography on a graph is polynomial time solvable.

2 Undirected Vertex Geography — UVG

Theorem 6. (G,v) is an N-position in UVG iff every mazimum matching of G covers v.

Proof (i) Suppose that M is a maximum matching of G which covers v. Player 1’s strategy is
now: Move along M-edge that contains current vertex.

If Player 1 were to lose, then there would exist a sequence of edges e1, f1, ..., eg, fr such that v € ey,
e1,€a,...,ex € M, f1, fo,..., fx ¢ M and fr = (z,y) where y is the current vertex for Player 1 and
y is not covered by M. But then if A = {ej,ea,...,ex} and B ={f1, f2,..., fr} then (M \ A)U B
is a maximum matching (same size as M) which does not cover v, contradiction.



(ii) Suppose now that there is some maximum matching M which does not cover v. Then if (v, w)
is Player 1’s move, w must be covered by M, else M is not a maximum matching. Player 2’s
strategy is now: Move along M-edge that contains current vertex. If Player 2 were to lose then

there exists e; = (v,w), f1,..., €k, [k, €k+1 = (x,y) where y is the current vertex for Player 2 and y
is not covered by M. But then we have defined an augmenting path from v to y and so M is not a
maximum matching, contradiction. O

Note that we can determine whether or not v is covered by all maximum matchings as follows: Find
the size o of the maximum matching G. This can be done in O(n?) time on an n-vertex graph. Then
find the size ¢’ of a maximum matching in G — v. Then v is covered by all maximum matchings of

Giff o #£0'.

3 Undirected Edge Geography — UEG on a bipartite graph

An even kernel of G is a non-empty set S C V such that (i) S is an independent set and (ii) v ¢ S
implies that degg(v) is even, (possibly zero). (degs(v) is the number of neighbours of v in S.)

Lemma 3. If S is an even kernel and v € S then (G,v) is a P-position in UEG.

Proof Any move at a vertex in S takes the chip outside S and then Player 2 can immediately
put the chip back in S. After a move from z € S to y ¢ S, degs(y) will become odd and so there is
an edge back to S. making this move, makes degs(y) even again. Eventually, there will be no S : S
edges and Player 1 will be stuck in S. O

We now discuss Bipartite UEG i.e. we assume that G is bipartite, G has bipartion consisting of a
copy of [m] and a disjoint copy of [rn] and edges set E. Now consider the m x n 0-1 matrix A with
A(i,§) = 1iff (i, ) € E.

We can play our game on this matrix: We are either positioned at row ¢ or we are positioned at
column j. If say, we are positioned at row ¢, then we choose a j such that A(7,j) = 1 and (i) make
A(3,j) = 0 and (ii) move the position to column j. An analogous move is taken when we positioned
at column j.

Lemma 4. Suppose the current position is row i. This is a P-position iff row i is in the span of
the remaining rows (is the sum (mod 2) of a subset of the other rows) or row i is a zero row. A
similar statement can be made if the position is column j.

Proof If row 7 is a zero row then vertex i is isolated and this is clearly a P-position. Otherwise,
assume the position is row 1 and there exists I C [m] such that 1 € I and

ry = Z r;(mod 2) or Zri = 0(mod 2) (8)
i€\ {1} icl
where r; denotes row 7.

I is an even kernel: If z ¢ I then either (i) z corresponds to a row and there are no z, I edges or
(ii)  corresponds to a column and then . ; A(i,z) = 0(mod 2) from (8) and then z has an even
number of neighbours in I.

i€l

Now suppose that (8) does not hold for any I. We show that there exists a ¢ such that A(1,¢) =1
and putting A(1,£) = 0 makes column ¢ dependent on the remaining columns. Then we will be in
a P-position, by the first part.

Let e; be the m-vector with a 1 in row 1 and a 0 everywhere else. Let A* be obtained by adding e;
to A as an (n + 1)th column. Now the row-rank of A* is the same as the row-rank of A (here we



are doing all arithmetic modulo 2). Suppose not, then if r} is the ith row of A* then there exists a

set J such that

Zri = 0(mod 2) # Zr;‘(mod 2).

= ieJ
Now 1 ¢ J because r; is independent of the remaining rows of A, but then > ._,r; = 0(mod 2)
implies ), ; r¥ = 0(mod 2) since the last column has all zeros, except in row 1.

i€J
Thus rank A* = rank A and so there exists K C [n] such that

er = Z ck(mod 2) or ey + Z ex = 0(mod 2) (9)

keK keK

where c;, denotes column k of A. Thus there exists £ € K such that A(1,£) = 1. Now let ¢} = ¢;
for j # £ and ¢, be obtained from ¢, by putting A(1,¢) = 0i.e. ¢j, = c¢ + e;. But then (9) implies
that >,y ¢, = 0(mod 2) (K = {k} is a possibility here).. O

Tic Tac Toe and extensions

We consider the following multi-dimensional version of Tic Tac Toe (Noughts and Crosses to the

English). The board consists of [n]%. A point on the board is therefore a vector (zy,s,...,zq)
where 1 < z; <nforl<7:<d.
A line is a set points (mgl),mf), . ,azgd)) j 2,...,n where each sequence z(*) is either (i) of

, J =1,
the form k, k, ...,k for some k € [n] or is (ii) 1,2,.
have Case (i) for all i.

.,noris (ili) n,n—1,...,1. Finally, we cannot

Thus in the (familiar) 3 x 3 case, the top row is defined by zW =1,1,1 and 2z(®» =1,2,3 and the
diagonal from the bottom left to the top right is defined by (1) =3,2,1 and 2 =1,2,3
Lemma 5. The number of winning lines in the (n,d) game is W

Proof In the definition of a line there are n choices for k in (i) and then (ii), (iii) make it up

to n + 2. There are d independent choices for each i making (n + 2)?. Now delete n? choices where
only Case (i) is used. Then divide by 2 because replacing (ii) by (iii) and vice-versa whenever Case
(i) does not hold produces the same set of points (traversing the line in the other direction). O

The game is played by 2 players. The Red player (X player) goes first and colours a point red.
Then the Blue player (0 player) colours a different point blue and so on. A player wins if there is
a line, all of whose points are that players colour. If neither player wins then the game is a draw.
The second player does not have a wnning strategy:

Lemma 6. Player 1 can always get at least a draw.

Proof We prove this by considering strategy stealing. Suppose that Player 2 did have a winning
strategy. Then Player 1 can make an arbitrary first move x;. Player 2 will then move with y,. Player
1 will now win playing the winning strategy for Player 2 against a first move of y;. This can be
carried out until the strategy calls for move z; (if at all). But then Player 1 can make an arbitrary
move and continue, since x; has already been made. O



3.1 Pairing Strategy

11 1 8 1 12
6 2 2 9 10
3 7 % 9 3
6 7 4 4 10
12 5 8 5 11

The above array gives a strategy for Player 2 the 5 X 5 game (d = 2,n = 5). For each of the 12
lines there is an associated pair of positions. If Player 1 chooses a position with a number i, then
Player 2 responds by choosing the other cell with the number i. This ensures that Player 1 cannot
take line 7. If Player 1 chooses the * then Player 2 can choose any cell with an unused number. So,
later in the game if Player 1 chooses a cell with j and Player 2 already has the other j, then Player
1 can choose an arbitrary cell. Player 2’s strategy is to ensure that after all cells have been chosen,
he/she will have chosen one of the numbered cells asociatded with each line. This prevents Player
1 from taking a whole line. This is called a pairing strategy.

We now generalise the game to the following: We have a family F = Ay, As,..., Ay C A. A move
consists of one player, taking an uncoloured member of A and giving it his colour. A player wins if
one of the sets A; is completely coloured with his colour.

A pairing strategy is a collection of distinct elements X = {z1,z2,...,Zan_1,Z2n} such that
Toj_1,To; € A; for @ > 1. This is called a draw forcing pairing. Player 2 responds to Player
1’s choice of x2;45,6 = 0,1 by choosing x9;43_5. If Player 1 does not choose from X, then Player
2 can choose any uncoloured element of X. In this way, Player 2 avoids defeat, because at the end
of the game Player 2 will have coloured at least one of each of the pairs zs; 1,22; and so Player 1
cannot have completely coloured A; for i =1,2,..., N.

Theorem 7. If

U4

A€eg

>2(G] VGCF (10)

then there is a draw forcing pairing.

Proof We define a bipartite graph I'. A will be one side of the bipartition and B = {by, bo, ...
,ban}. Here by; 1 and by; both represent A; in the sense that if a € A; then there is an edge
(a,ba;—1) and an edge (a, by;). A draw forcing pairing corresponds to a complete matching of B into
A and the condition (10) implies that Hall’s condition is satisfied. O

Corollary 8. If |A;| > n fori=1,2,...,n and every © € A is contained in at most n/2 sets of F
then there is a draw forcing pairing.

Proof The degree of a € A is at most 2(n/2) in I' and the degree of each b € B is at least n.
This implies (via Hall’s condition) that there is a complete matching of B into A. O

Consider Tic tac Toe when case d = 2. If n is even then every array element is in at most 3 lines
(one row, one column and at most one diagonal) and if n is odd then every array element is in at
most 4 lines (one row, one column and at most two diagonals). Thus there is a draw forcing pairing
if n > 6, n even and if n > 9, n odd. (The cases n = 4,7 have been settled as draws. n = 7 required
the use of a computer to examine all possible strategies.

In general we have

Lemma 7. Ifn >3%—1 and n is odd or if n > 2% — 1 and n is even, then there is a draw forcing
pairing of (n,d) Tic tac Toe.
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Proof We only have to estimate the number of lines through a fixed point ¢ = (¢, ¢a,. .., ca)-
If n is odd then to choose a line L through ¢ we specify, for each index ¢ whether L is (i) constant
on 4, (ii) increasing on i or (iii) decreasing on i. This gives 3¢ choices. Subtract 1 to avoid the all
constant case and divide by 2 because each line gets counted twice this way.

When n is even, we observe that once we have chosen in which positions L is constant, L is
determined. Suppose ¢; = = and 1 is not a fixed position. Then every other non-fixed position is
z orn—z+ 1. Asuning w.l.o.g. that x < n/2 we see that z < n — z = 1 and the positions with
x increase together at the same time as the positions with n — 2 4+ 1 decrease together. Thus the
number of lines through ¢ in this case is bounded by Z;i:_ol (7) =2¢ 1, O

3.2 Quasi-probabilistic method

We now prove a theorem of Erdés and Selfridge.

Theorem 9. If |A;| > n fori € [N] and N < 2", then Player 2 can get a draw in the game
defined by F.

Proof At any point in the game, let C; denote the set of elements in A which have been
coloured with Player j’s colour, j = 1,2 and U = A\ C; U Cs. Let

d = Z 9—14:nNU|
i:A;NCa=0

Suppose that the players choices are x1,y1,*2,¥2,...,. Then we observe that immediately after
Player 1’s first move, ® < N2~ ("1 <1,

We will show that Player 2 can keep ® < 1 through out. Then at the end, when U = (), & =
> iia,nCy—p 1 < 1 implies that A; N Cy # 0 for all i € [N].

So, now let ®; be the value of ® after the choice of z1,y1,...,z;. then if U, Cq,C; are defined at
precisely this time,

q)j+1 o @] — E 27‘AiﬁU‘ 4 E 27‘AiﬂU‘
i:A;NCa=0 i:A;NCa=0
y; €EA; yj¢Ai,cj1€A;
< _ E 27‘AiﬁU‘ _|_ E 27\AiﬂU\
:A;NCa=0 1 A;NCa=0
Y;€A; Tj+1€A;

We deduce that ®;,, — ®; < 0 if Player 2 chooses y; to maximise over ¥, Z 9~ 14U

i:A;NCa=0
yEA;

In this way, Player 2 keeps ® < 1 and obtains a draw. O
In the case of (n,d) Tic Tac Toe, we see that Player 2 can force a draw if (see Lemma 5)

(n+2)4 - nd

2n71
9 <

which is implied, for n large, by
n > (1+¢€)dlog,d

where € > 0 is a small positive constsnt.
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Shannon Switching Game Start with a connected multi-graph G = (V, E).
Two players: Player A goes first and deletes edges and player B fortifies edges making them invul-
nerable to deletion by B. Player B wins iff the fortified edges contain a spanning tree of G.

Theorem 10. Player B wins iff G contains two edge disjoint spanning trees.

Proof (a) Here we assume that G has two edge disjoint spanning trees T7,7> We prove this
by induction on |V|. If |[V]| = 2 then G must contain at least two parallel edges joining the two
vertices and so B can win. Suppose next that |V| > 2. Suppose that A deletes an edge e = (z,y)
of T5 red. This breaks T into two sub-trees Ty, Ty'. B will choose an edge f = (u,v) € T} with one
end in V(T4) and the other end in V(T3'). Now contract the edge f. In the new graph G*, both Ty
and T, become spanning trees 77 and 75 and they are edge disjoint. It follows by induction that
B can win the game on G* and then wins the game on G by uncontracting the edge f. Of course
f is chosen first of all still!

If A chooses an edge z in neither of the trees then B can choose an arbitrary edge f of T;. Now let
e be any edge of the unique cycle contained in T5 + e. B can continue playing on G — z as though
e was the deleted edge. We can contract f as before and apply the above inductive argument.

(b) For this part we use a Theorem due to Nash-Williams:

Theorem 11. Let k be a positive integer. Then G contains k edge disjoint spanning trees iff for
every partition P = (V1,Va,...,V;) of V we have

(P)=[BP) = Y e(ViV}) > k(¢ 1). (1)

1<i< <t

Here E(P) is the set of edges joining different parts of the partition and e(V;,V;) is the number of
edges joining V; and Vj.

Let us apply Theorem 11 with k£ = 2. If G does not contain two edge disjoint spanning trees, then it
contains a partition P = (V4, Va,...,V;) with e(P) < 2£—3. A starts by deleting an edge e € E(P).
B will fortify an edge f = (u,v). If u,v join different sets in the partition P then we can merge
them and consider P’ which has one less part and satisfies e(P’) < e(P) — 2 (edegs e, f have gone
from the count). Otherwise B chooses an edge entirely inside a part of P and the number of parts
does not change, but e(P) goes down by one. Eventually, we come to a point where one part is
joined to the rest of the graph by a single edge (2¢ —3 = 1 when ¢ = 2) and A wins by deleting this
edge. O

Sketch of proof of Theorem 11

IfP=(V,Va,...,Vp) is a partition and T is a spanning tree then T contains at least £ — 1 edges
of E(P) and the only if part is straightforward.

Suppose now that (11) holds for all partitions. Let F be the set of edge disjoint forests containing
the maximum number of edges. If F = (Fy, Fy,...,F}) € F and e € E \ E[F] then every F; + e
contains a cycle. If e’ belongs to this cycle then ' € F where F| = F; for j # i and F] = F; +¢' —e.
We say that F’ is obtained from F by a replacement.

Consider now a fixed FO = (F?, FY, ..., FQ) € F and let F° be the set of k-tples in F that can be
obtained from F° by a sequence of replacements. Then let
E°= [ (B\ E(F).
FeFo

Claim 1. For every e’ € E\ E([F°] there exists a set U C V that contains the endpoints of e® and
nduces a connected tree in Fi0 for1 <i<k.
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Assume the claim for the moment. Suppose that not every F} is a spanning tree. Then G contains
at least k(|V| — 1) edges (from (11) applied to the parttion of V into singletons) and so there exists
e’ € E\ E[F°]. Shrink the vertices of the set U in the claim to a single vertex vy to obtain a
graph G’. Apply induction to G’ to get a set of k disjoint spanning trees 77, T3, ..., T} of G'. Now
expand vy back to U. Each T] expands to a spanning tree of G. In this way we get k edge-disjoint
spanning trees of G.

Proof of Claim 1

Let G° = (V, E°) and let Cy be the component of G° that contains €. Let U = V(C°). First verify
that if F = (Fy, Fy, ..., Fy) € F° and F’ is obtained from F by a replacement and z,y are the ends
of a path in F N U then z,y are joined by a path zF;y C U . (Exercise).

We now show that F? N U is connected. Let (z,y) be an edge of C°. Since C° is connected, we
only have to show that F contains a path from z to y, all of whose vertices belong to U. But
this follows by using the exercise and backwards induction starting from some F € F° for which F;
contains the edge (z,v). |
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