
Combinatorial GamesGame 1 Start with n 
hips. Players A,B alternately take 1,2,3,4 
hips until there are none left.The winner is the person who takes the last 
hip:Example A B A B An = 10 3 2 4 1 B winsn = 11 1 2 3 4 1 A winsWhat is the optimal strategy for this game?Game 2 Chip pla
ed at point (m;n). Players 
an move 
hip to (m0; n) or (m;n0) where 0 � m0 < mand 0 � n0 < n. The player who makes the last move and puts the 
hip onto (0; 0) wins.What is the optimal strategy for this game?Game 3 W is a set of words. A and B alternatel remove words w1; w2; : : : ; from W . The rule isthat the �rst letter of wi+1 must be the same as the last letter of wi. The player who makes thelast legal move wins.
1 Abstra
tionRepresent ea
h position by a vertex of a digraph D = (X;A). (x; y) is an ar
 of D i� one 
an movefrom position x to position y.We assume that the digraph is �nite and that it is a
y
li
 i.e. there are no dire
ted 
y
les.The game starts with a 
hip on vertex x0 say, and players alternately move the 
hip to x1; x2; : : : ;where xi+1 2 �+(xi), the set of out-neighbours of xi. The game ends when the 
hip is on a sinki.e. a vertex of out-degree zero. The last player to move is the winner.Example 1: D = (f0; 1; : : : ; ng; A) where (x; y) 2 A i� x� y 2 f1; 2; 3; 4g.Example 2: D = (f0; 1; : : : ;mg � f0; 1; : : : ; ng; A) where (x; y) 2 �+((x0; y0))) i� x = x0 and y > y0or x > x0 and y = y0.Example 3: D = (f(W 0; w) : W 0 �W n fwgg; A). w is the last word used and W 0 is the remainingset of unused words. (A0; w0) 2 �+((A;w)) i� w0 2 A and w0 begins with the last letter of w. Also,there is an ar
 from (W; �) to (W n fwg; w) for all w, 
orresponding to the games start.We will �rst argue that su
h a game must eventually end. A topologi
al numbering of digraphD is a map f : X ! [N ℄, N = jXj whi
h satis�es (x; y) 2 A implies f(x) < f(y).Theorem 1. A �nite digraph D = (X;A) is a
y
li
 i� it admits at least one topologi
al numbering.Proof Suppose �rst that D has a topologi
al numbering. We show that it is a
y
li
. Supposethat C = (x1; x2; : : : ; xk; x1) is a dire
ted 
y
le. Then f(x1) < f(x2) < � � � < f(xk) < f(x1),
ontradi
tion.Suppose now that D is a
y
li
. We �rst argue that D has at least one sink. Thus let P =(x1; x2; : : : ; xk) be a longest simple path in D. We 
laim that xk is a sink. If D 
ontains an ar
(xk; y) then either y = xi; 1 � i � k�1 and this means thatD 
ontains the 
y
le xi; xi+1; : : : ; xk; xi),
ontradi
tion or y =2 fx1; x2; : : : ; xkg and then (P; y) is a longer simple path than P , 
ontradi
tion.1



We 
an now prove by indu
tion on N that there is at least one topologi
al numbering. Ifg N = 1and X = fxg then f(x) = 1 de�nes a topologi
al numbering.Now asssume that N > 1. Let z be a sink of D and de�ne f(z) = N . The digraph D0 = D � z isa
y
li
 and by the indu
tion hypothesis it admits a topologi
al numbering, f : X n fzg ! [N � 1℄.The fun
tion we have de�ned on X is a topologi
al numbering. If (x; y) 2 A then either x; y 6= zand then f(x) < f(y) by our assumption on f , or y = z and then f(x) < N = f(z) (x 6= z be
ausez is a sink). 2The fa
t that D has a topologi
al numbering implies that the game must end. Ea
h move in
reasesthe f value of the 
urrent position by at least one and so after at most N moves a sink must berea
hed.The positions of a game are partitioned into 2 sets:� P-positions: The next player 
annot win. The previous player 
an win regardless of the 
urrentplayer's strategy.� N-positions: The next player has a strategy for winning the game.The main problem is to determine N and P and what the strategy is for winning from an N-position.For x 2 X let �+(x) = fy 2 X : (x; y) 2 Ag be the set of pout-neighbours of x.Labelling pro
edure1. Label all sinks with P.2. Label with N, every position x for whi
h there exists y 2 �+(x) whi
h is labelled with P.3. Label with P, every position x for whi
h �+(x) is labelled with N.A position x is an N-position (winning) i� there is a move from x to a losing position for the nextplayer.The labelling should be 
arried out in reverse topologi
al order.Thus there is a unique partition of X into N;P whi
h satis�es the following:P1 All sinks are in P .P2 If x 2 N then �+(x) \ P 6= ;.P3 If x 2 P then �+(x) � N .In Game 1, P = f5k : k � 0g and in Game 2, P = f(x; x) : x � 0g.Sprague-Grundy NumberingFor S � f0; 1; 2; : : : ; g let mex(S) = minfx � 0 : x =2 Sg:Now given an a
y
li
 digraph D = X;A de�ne g re
ursively byg(x) = (0 x is a sinkmex(�+(x)) otherwiseg(x) 
an be 
omputed in reverse topologi
al order.2



Lemma 1. x 2 P $ g(x) = 0:Proof Clearly P1 holds. We 
he
k P2 and P3.P2: If g(x) > 0 there must be a y 2 �+(x) with g(y) = 0.P3: If g(x) = 0 there 
annot be a y 2 �+(x) with g(y) = 0. 2Sums of gamesSuppose that we have n games with digraphs Di = (Xi; Ai); i = 1; 2; : : : ; n. The sum of these gamesis played as follows. A position is a ve
tor (x1; x2; : : : ; xn) 2 A1 �A2 � � � � �An. To make a move,a player 
hooses i su
h that xi is not a sink of Di and then repla
es xi by y 2 �+i (xi). The gameends when ea
h xi is a sink of Di for i = 1; 2; : : : ; n.Example NimIn a one pile game, we start with a � 0 
hips and while there is a positive number x of 
hips, amove 
onsists of deleting y � x 
hips. In this game the N-positions are positive integers and theunique P-position is 0. The Sprague-Grundy numbering is de�ned by g(x) = x.In general, Nim 
onsists of the sum of n single pile games stsrting with a1; a2; : : : ; an > 0. A move
onsists of deleting some 
hips from a non-empty pile.We now show how to 
ompute the Sprague-Grundy numbering for a sum of games.For binary integers a = amam�1 � � � a1a0 and b = bmbm�1 � � � b1b0 we de�ne a� b = 
m
m�1 � � � 
1
0by 
i = 1 if ai 6= bi and 
i = 0 if ai = bi for i = 1; 2; : : : ;m.So for example 11� 5 = 14.Theorem 2. If gi is the Sprague-Grundy fun
tion for game i = 1; 2; : : : ; n then the Sprague-Grundyfun
tion g for the sum of the games is de�ned byg(x) = g1(x1)� g2(x2)� � � � � gn(xn)where x = (x1; x2; : : : ; xn).Proof It is enough to show1. If x 2 X is a sink of D then g(x) = 0.2. If x 2 X and g(x) = b > a � 0 then there exists x0 2 �+(x) su
h that g(x0) = a.3. If x 2 X and g(x) = b and x0 2 �+(x) then g(x0) 6= g(x).1. If x = (x1; x2; : : : ; xn) is a sink then xi is a sink of Di for i = 1; 2; : : : ; n. Sog(x) = g1(x1)� g2(x2)� � � � � gn(xn)= 0� 0� � � � � 0= 0:2. Write d = a� b. Then a = d� b= d� g1(x1)� g2(x2)� � � � � gn(xn): (1)
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Now suppose that we 
an show there exists i su
h that d � gi(xi) < gi(xi). Then sin
e gi(xi) =mex(�+i (xi)) there must exist x0i 2 �+i (xi) su
h that gi(x0i) = d � gi(xi). Assume without loss ofgenerality that i = 1. Then from (1) we havea = g1(x01)� g2(x2)� � � � � gn(xn) = g(x01; x2; : : : ; xn):Furthermore, (x01; x2; : : : ; xn) 2 �+(x) and so we will have veri�ed 2.Let us prove that su
h an i exists. Suppose that 2k�1 � d < 2k. Then d has a 1 in position k andno higher. Sin
e dk = ak � bk and a < b we must have ak = 0 and bk = 1. Thus there is at leastone i su
h that gi(xi) has a 1 in position k. But then d� gi(xi) < gi(xi) sin
e d \destroys" the kthbit of gi(xi) and does not 
hange any higher bit.3. Suppose without loss of generality that g(x01; x2; : : : ; xn) = g(x1; x2; : : : ; xn) where x01 2 �+(x1).Then g1(x01)� g2(x2)� � � � � gn(xn) = g1(x1)� g2(x2)� � � � � gn(xn) implies that g1(x01) = g1(x1),
ontradition. 2If we apply this theorem to the game of Nim then if the position x 
onsists of piles of xi 
hips fori = 1; 2; : : : ; n then g(x) = x1 � x2 � � � � � xn.Sums of other subtra
tion games:In our �rst example, g(x) = x mod 5 and so for the sum of n su
h games we haveg(x1; x2; : : : ; xn) = (x1 mod 5)� (x2 mod 5)� � � � � (xn mod 5):Another subtra
tion game.One pile:� A player 
an remove any even number of 
hips, but not the whole pile.� A player 
an remove the whole pile if it is odd.The terminal positions are 0 or 2.Lemma 2. g(0) = 0, g(2k) = k � 1 and g(2k � 1) = k for k � 1.Proof 0,2 are terminal postions and so g(0) = g(2) = 0. g(1) = 1 be
ause the only positionone 
an move to from 1 is 0. We prove the remainder by indu
tion on k.Assume that k > 1. g(2k) = mexfg(2k � 2); g(2k � 4); : : : ; g(2)g= mexfk � 2; k � 3; : : : ; 0g= k � 1:g(2k � 1) = mexfg(2k � 3); g(2k � 5); : : : ; g(1); g(0)g= mexfk � 1; k � 2; : : : ; 0g= k: 2A more 
ompli
ated one pile gameStart with n 
hips. First player 
an remove up to n� 1 
hips.In general, if the previous player took x 
hips, then the next player 
an take y � x 
hips.Thus a games position 
an be represented by (n; x) where n is the 
urrent size of the pile and x isthe maximum number of 
hips that 
an be removed in this round.4



Theorem 3. Suppoose that the position is (n; x) where n = m2k and m is odd. Then,(a) This is an N-position if x � 2k.(b) This is a P-position if m = 1 and x < n.Proof For a non-negative integer n = m2k, let hni denote the number of bits in the binaryexpansion of n and let k = �(n) determine the position of the right-most one in this expansion.We 
laim that the following strategy is a win for the player in a postion des
ribed in (a): Removey = 2k 
hips. Suppose this player is A.If m = 1 then x � n and A wins. Otherwise, after su
h a move the position is (n0; y) where where�(n0) > �(n). Note �rst that hn0i = hni � 1 > 0. Thus B 
annot win at this point. Se
ond, B
annot remove more than 2k 
hips and so if B moves the position to (n00; x00) then hn00i � hn0i andfurthermore, x00 � 2�(n00), sin
e x00 must have a 1 in position �(n00). Thus, by indu
tion, A is in anN-position and wins the game.To prove (b), note that after the �rst move, the position satis�es the 
onditions of (a). 2.Let us next 
onsider a generalisation of this game. There are 2 players A and B and A goes �rst.We have a non-de
reasing fun
tion f from N !N where N = f1; 2; : : :g whi
h satis�es f(x) � x.At the �rst move A takes any number less than h from the pile, where h is the size of the initialpile. Then on a subsequent move, if a player takes x 
hips then the next player is 
onstrained totake at most f(x) 
hips. Thus the above 
onsidered the 
ases f(x) = x.There is a set H = fH1 = 1 < H2 < : : :g of initial pile sizes for whi
h the �rst player will lose,assuming that the se
ond player plays optimally. Also, if the initial pile size h =2 H then the �rstplayer has a winning strategy. It will turn out that the sequen
e satis�es the re
urren
e:Hj+1 = Hj +H` where H` = mini�j fHi j f(Hi) � Hjg; for j � 0: (2)Note that Hj+1 � 2Hj : (3)[The reader should 
he
k that if f(x) = x then Hi = 2i. Another 
ase to 
he
k is f(x) = 2x. Thisgives H = f1; 2; 3; 5; 8; : : : ; g i.e. the Fibona

i sequen
e.℄The key to the game is the following result.Theorem 4. Every positive integer n 
an be uniquely written as the sumn = Hj1 +Hj2 + � � �+Hjp (4)where f(Hji) < Hji+1 for 1 � i < p.Proof We prove this by indu
tion on n. If n = 1 then n = H1 is the unique de
omposition.Existen
eAssume that any n < Hk 
an be represented as a sum of distin
t Hji 's with f(Hji) < Hji+1 andsuppose that Hk � n < Hk+1. Inequality (3) implies that n�Hk < Hk.It follows by indu
tion that n�Hk = Hj1 + � � �+Hjp ; (5)where f(Hji) < Hji+1 for i = 1; 2; :::; p� 1. To establish existen
e we need only show that f(Hjp) <Hk. Assume to the 
ontrary that f(Hjp) � Hk. But then for some m � jp we haveHk+1 = Hk +Hm � Hk +Hjp � n;5




ontradi
ting the 
hoi
e of n.UniquenessWe will �rst prove by indu
tion on p that if f(Hji) < Hji+1 for 1 � i < p thenHj1 +Hj2 + � � �+Hjp < Hjp+1: (6)If p = 2 then we are saying that if f(Hj1) < Hj2 then Hj1 +Hj2 < Hj2+1. But this follows dire
tlyfrom Hj2+1 = Hj2 +Hm where f(Hm) � Hj2 i.e. Hm > Hj1 .So assume that (6) is true for p � 2. NowHjp+1+1 = Hjp+1 +Hm and f(Hjp) < Hjp+1implies that m � jp + 1.Thus Hjp+1+1 � Hjp+1 +Hjp+1> Hjp+1 +Hjp +Hjp�1 + � � �+Hj1after applying indu
tion to get the se
ond inequality.This 
ompletes the indu
tion for (6).Now assume by indu
tion on k that n < Hk has a unique de
omposition (4). This is true for k = 2and so now assume that k � 2 and Hk � n < Hk+1. Consider a de
ompositionn = Hj1 +Hj2 + � � �+Hjp :It follows from (6) that jp = k. Indeed, jp � k sin
e n < Hk+1 and if jp < k then Hj1 +Hj2 + � � �+Hjp < Hjp+1 � Hk, 
ontradi
ting our 
hoi
e of n. So Hk appears in every de
omposition of n.Now (3) and n < Hk+1 implies n�Hk < Hk and so, by indu
tion, n�Hk has a unique de
ompositon.But then if n had two distin
t de
ompositions, Hk would appear in ea
h, implying that n�Hk alsohad two distin
t de
ompositions, 
ontradi
tion. 2One simple 
onsequen
e of the uniqueness of the de
omposition is thatHk 6= Hj1 +Hj2 + � � �+Hjp (7)for all k and sequen
es j1; j2; : : : ; jp where f(Hji) < Hji+1 for i = 1; 2; :::; p� 1.It follows from the above Lemma that the integers n 
an be given unique \binary" representationsby representing n = Hj1 +Hj2 + � � �+Hjp by the 0-1 string with a 1 in posiitons j1; j2; : : : ; jp and0 everywhere else. We 
all this the H-representation of n. This then leads to the followingTheorem 5. Suppose that the position is (n; �). Then,(a) This is an N-position if n =2 H = fH1; H2; : : : ; g.(b) This is a P-position if n 2 H.Proof(a) The winning strategy is to delete a number of 
hips equal to Hj1 where j1 is the index of therightmost 1 in the H-representation of n.
6



All we have to do is verify that this strategy is possible. Note that if A deletes Hj1 
hips, then B
annot respond by deleting Hj2 
hips, be
ause Hj2 > f(Hj1) and so it is only A that 
an redu
ethe number of 1's in the H-representation of n.The thing to 
he
k is that if A starts in (n; �) then A 
an always delete Hj1 
hips i.e. the positions(m;x) that A will fa
e satisfy f(x) � Hk1 wherem = Hk1+Hk2+� � �+Hkq . We do this by indu
tionon the number of plays in the game so far. It is true in the �rst move and suppose it is true for(m;x) and A removes Hk1 and B removes y where y � minfm�Hk1 ; f(Hk1)g < Hk2 . Nowm�Hk1 � y = Hk2 � y +Hk3 + � � �+Hkq= H`1 +H`2 + � � �+H`r +Hk2 + � � �+Hkqand we need to argue that H`1 � f(y). But if f(y) < H`1 then we haveHk2 = y +H`1 +H`2 + � � �+H`r= Ha1 + � � �+Has +H`1 +H`2 + � � �+H`rwhere f(Has) � f(y) < H`1 , 
ontradi
ting (7). Thus A 
an remove H`1 in the next round, asrequired.(b) Assume that n = Hk. After A removes x 
hips we haveHk � x = Hj1 +Hj2 + � � �+Hjp
hips left.All we have to show is that B 
an now remove Hj1 
hips i.e. Hj1 � f(x). But if this is not the 
asethen we argue as above that Hk = Ha1+ � � �+Has+Hj1+Hj2+ � � �+Hjp , where x = Ha1+ � � �+Hasand f(Hj1) � f(x) < Hj1 , 
ontradi
ting (7). 2GeographyStart with a 
hip sitting on a vertex v of a graph or digraph G.A move 
onsists of moving the 
hip to a neighbouring vertex. In edge geography, moving the 
hipfrom x to y deletes the edge (x; y). In vertex geography, moving the 
hip from x to y deletes thevertex x.The problem is given a position (G; v), to determine whether this is a P or N position.Complexity Both edge and vertex geography are Pspa
e-hard on digraphs. Edge geography isPspa
e-hard on an undire
ted graph. Only vertex geography on a graph is polynomial time solvable.
2 Undire
ted Vertex Geography { UVGTheorem 6. (G; v) is an N-position in UVG i� every maximum mat
hing of G 
overs v.Proof (i) Suppose that M is a maximum mat
hing of G whi
h 
overs v. Player 1's strategy isnow: Move along M-edge that 
ontains 
urrent vertex.If Player 1 were to lose, then there would exist a sequen
e of edges e1; f1; : : : ; ek; fk su
h that v 2 e1,e1; e2; : : : ; ek 2M , f1; f2; : : : ; fk =2M and fk = (x; y) where y is the 
urrent vertex for Player 1 andy is not 
overed by M . But then if A = fe1; e2; : : : ; ekg and B = ff1; f2; : : : ; fkg then (M nA) [Bis a maximum mat
hing (same size as M) whi
h does not 
over v, 
ontradi
tion.7



(ii) Suppose now that there is some maximum mat
hing M whi
h does not 
over v. Then if (v; w)is Player 1's move, w must be 
overed by M , else M is not a maximum mat
hing. Player 2'sstrategy is now: Move along M-edge that 
ontains 
urrent vertex. If Player 2 were to lose thenthere exists e1 = (v; w); f1; : : : ; ek; fk; ek+1 = (x; y) where y is the 
urrent vertex for Player 2 and yis not 
overed by M . But then we have de�ned an augmenting path from v to y and so M is not amaximum mat
hing, 
ontradi
tion. 2Note that we 
an determine whether or not v is 
overed by all maximum mat
hings as follows: Findthe size � of the maximum mat
hing G. This 
an be done in O(n3) time on an n-vertex graph. Then�nd the size �0 of a maximum mat
hing in G� v. Then v is 
overed by all maximum mat
hings ofG i� � 6= �0.
3 Undire
ted Edge Geography { UEG on a bipartite graphAn even kernel of G is a non-empty set S � V su
h that (i) S is an independent set and (ii) v =2 Simplies that degS(v) is even, (possibly zero). (degS(v) is the number of neighbours of v in S.)Lemma 3. If S is an even kernel and v 2 S then (G; v) is a P-position in UEG.Proof Any move at a vertex in S takes the 
hip outside S and then Player 2 
an immediatelyput the 
hip ba
k in S. After a move from x 2 S to y =2 S, degS(y) will be
ome odd and so there isan edge ba
k to S. making this move, makes degS(y) even again. Eventually, there will be no S : �Sedges and Player 1 will be stu
k in S. 2We now dis
uss Bipartite UEG i.e. we assume that G is bipartite, G has bipartion 
onsisting of a
opy of [m℄ and a disjoint 
opy of [n℄ and edges set E. Now 
onsider the m� n 0-1 matrix A withA(i; j) = 1 i� (i; j) 2 E.We 
an play our game on this matrix: We are either positioned at row i or we are positioned at
olumn j. If say, we are positioned at row i, then we 
hoose a j su
h that A(i; j) = 1 and (i) makeA(i; j) = 0 and (ii) move the position to 
olumn j. An analogous move is taken when we positionedat 
olumn j.Lemma 4. Suppose the 
urrent position is row i. This is a P-position i� row i is in the span ofthe remaining rows (is the sum (mod 2) of a subset of the other rows) or row i is a zero row. Asimilar statement 
an be made if the position is 
olumn j.Proof If row i is a zero row then vertex i is isolated and this is 
learly a P-position. Otherwise,assume the position is row 1 and there exists I � [m℄ su
h that 1 2 I andr1 = Xi2Inf1g ri(mod 2) or Xi2I ri = 0(mod 2) (8)where ri denotes row i.I is an even kernel: If x =2 I then either (i) x 
orresponds to a row and there are no x; I edges or(ii) x 
orresponds to a 
olumn and then Pi2I A(i; x) = 0(mod 2) from (8) and then x has an evennumber of neighbours in I.Now suppose that (8) does not hold for any I. We show that there exists a ` su
h that A(1; `) = 1and putting A(1; `) = 0 makes 
olumn ` dependent on the remaining 
olumns. Then we will be ina P-position, by the �rst part.Let e1 be the m-ve
tor with a 1 in row 1 and a 0 everywhere else. Let A� be obtained by adding e1to A as an (n + 1)th 
olumn. Now the row-rank of A� is the same as the row-rank of A (here we8



are doing all arithmeti
 modulo 2). Suppose not, then if r�i is the ith row of A� then there exists aset J su
h that Xi2J ri = 0(mod 2) 6=Xi2J r�i (mod 2):Now 1 =2 J be
ause r1 is independent of the remaining rows of A, but then Pi2J ri = 0(mod 2)implies Pi2J r�i = 0(mod 2) sin
e the last 
olumn has all zeros, ex
ept in row 1.Thus rank A� = rank A and so there exists K � [n℄ su
h thate1 = Xk2K 
k(mod 2) or e1 + Xk2K 
k = 0(mod 2) (9)
where 
k denotes 
olumn k of A. Thus there exists ` 2 K su
h that A(1; `) = 1. Now let 
0j = 
jfor j 6= ` and 
0̀ be obtained from 
` by putting A(1; `) = 0 i.e. 
0̀ = 
` + e1. But then (9) impliesthat Pk2K 
0k = 0(mod 2) (K = fkg is a possibility here).. 2Ti
 Ta
 Toe and extensionsWe 
onsider the following multi-dimensional version of Ti
 Ta
 Toe (Noughts and Crosses to theEnglish). The board 
onsists of [n℄d. A point on the board is therefore a ve
tor (x1; x2; : : : ; xd)where 1 � xi � n for 1 � i � d.A line is a set points (x(1)j ; x(2)j ; : : : ; x(d)j ), j = 1; 2; : : : ; n where ea
h sequen
e x(i) is either (i) ofthe form k; k; : : : ; k for some k 2 [n℄ or is (ii) 1; 2; : : : ; n or is (iii) n; n� 1; : : : ; 1. Finally, we 
annothave Case (i) for all i.Thus in the (familiar) 3 � 3 
ase, the top row is de�ned by x(1) = 1; 1; 1 and x(2) = 1; 2; 3 and thediagonal from the bottom left to the top right is de�ned by x(1) = 3; 2; 1 and x(2) = 1; 2; 3Lemma 5. The number of winning lines in the (n; d) game is (n+2)d�nd2 .Proof In the de�nition of a line there are n 
hoi
es for k in (i) and then (ii), (iii) make it upto n+ 2. There are d independent 
hoi
es for ea
h i making (n+ 2)d. Now delete nd 
hoi
es whereonly Case (i) is used. Then divide by 2 be
ause repla
ing (ii) by (iii) and vi
e-versa whenever Case(i) does not hold produ
es the same set of points (traversing the line in the other dire
tion). 2The game is played by 2 players. The Red player (X player) goes �rst and 
olours a point red.Then the Blue player (0 player) 
olours a di�erent point blue and so on. A player wins if there isa line, all of whose points are that players 
olour. If neither player wins then the game is a draw.The se
ond player does not have a wnning strategy:Lemma 6. Player 1 
an always get at least a draw.Proof We prove this by 
onsidering strategy stealing. Suppose that Player 2 did have a winningstrategy. Then Player 1 
an make an arbitrary �rst move x1. Player 2 will then move with y1. Player1 will now win playing the winning strategy for Player 2 against a �rst move of y1. This 
an be
arried out until the strategy 
alls for move x1 (if at all). But then Player 1 
an make an arbitrarymove and 
ontinue, sin
e x1 has already been made. 2

9



3.1 Pairing Strategy 266664
11 1 8 1 126 2 2 9 103 7 � 9 36 7 4 4 1012 5 8 5 11

377775
The above array gives a strategy for Player 2 the 5 � 5 game (d = 2; n = 5). For ea
h of the 12lines there is an asso
iated pair of positions. If Player 1 
hooses a position with a number i, thenPlayer 2 responds by 
hoosing the other 
ell with the number i. This ensures that Player 1 
annottake line i. If Player 1 
hooses the * then Player 2 
an 
hoose any 
ell with an unused number. So,later in the game if Player 1 
hooses a 
ell with j and Player 2 already has the other j, then Player1 
an 
hoose an arbitrary 
ell. Player 2's strategy is to ensure that after all 
ells have been 
hosen,he/she will have 
hosen one of the numbered 
ells aso
iatded with ea
h line. This prevents Player1 from taking a whole line. This is 
alled a pairing strategy.We now generalise the game to the following: We have a family F = A1; A2; : : : ; AN � A. A move
onsists of one player, taking an un
oloured member of A and giving it his 
olour. A player wins ifone of the sets Ai is 
ompletely 
oloured with his 
olour.A pairing strategy is a 
olle
tion of distin
t elements X = fx1; x2; : : : ; x2N�1; x2Ng su
h thatx2i�1; x2i 2 Ai for i � 1. This is 
alled a draw for
ing pairing. Player 2 responds to Player1's 
hoi
e of x2i+Æ; Æ = 0; 1 by 
hoosing x2i+3�Æ. If Player 1 does not 
hoose from X, then Player2 
an 
hoose any un
oloured element of X. In this way, Player 2 avoids defeat, be
ause at the endof the game Player 2 will have 
oloured at least one of ea
h of the pairs x2i�1; x2i and so Player 1
annot have 
ompletely 
oloured Ai for i = 1; 2; : : : ; N .Theorem 7. If ����� [A2GA����� � 2jGj 8G � F (10)then there is a draw for
ing pairing.Proof We de�ne a bipartite graph �. A will be one side of the bipartition and B = fb1; b2; : : :; b2Ng. Here b2i�1 and b2i both represent Ai in the sense that if a 2 Ai then there is an edge(a; b2i�1) and an edge (a; b2i). A draw for
ing pairing 
orresponds to a 
omplete mat
hing of B intoA and the 
ondition (10) implies that Hall's 
ondition is satis�ed. 2Corollary 8. If jAij � n for i = 1; 2; : : : ; n and every x 2 A is 
ontained in at most n=2 sets of Fthen there is a draw for
ing pairing.Proof The degree of a 2 A is at most 2(n=2) in � and the degree of ea
h b 2 B is at least n.This implies (via Hall's 
ondition) that there is a 
omplete mat
hing of B into A. 2Consider Ti
 ta
 Toe when 
ase d = 2. If n is even then every array element is in at most 3 lines(one row, one 
olumn and at most one diagonal) and if n is odd then every array element is in atmost 4 lines (one row, one 
olumn and at most two diagonals). Thus there is a draw for
ing pairingif n � 6, n even and if n � 9, n odd. (The 
ases n = 4; 7 have been settled as draws. n = 7 requiredthe use of a 
omputer to examine all possible strategies.In general we haveLemma 7. If n � 3d � 1 and n is odd or if n � 2d � 1 and n is even, then there is a draw for
ingpairing of (n; d) Ti
 ta
 Toe. 10



Proof We only have to estimate the number of lines through a �xed point 
 = (
1; 
2; : : : ; 
d).If n is odd then to 
hoose a line L through 
 we spe
ify, for ea
h index i whether L is (i) 
onstanton i, (ii) in
reasing on i or (iii) de
reasing on i. This gives 3d 
hoi
es. Subtra
t 1 to avoid the all
onstant 
ase and divide by 2 be
ause ea
h line gets 
ounted twi
e this way.When n is even, we observe that on
e we have 
hosen in whi
h positions L is 
onstant, L isdetermined. Suppose 
1 = x and 1 is not a �xed position. Then every other non-�xed position isx or n � x + 1. Asuning w.l.o.g. that x � n=2 we see that x < n � x = 1 and the positions withx in
rease together at the same time as the positions with n � x + 1 de
rease together. Thus thenumber of lines through 
 in this 
ase is bounded by Pd�1i=0 �di� = 2d � 1. 2
3.2 Quasi-probabilisti
 methodWe now prove a theorem of Erd}os and Selfridge.Theorem 9. If jAij � n for i 2 [N ℄ and N < 2n�1, then Player 2 
an get a draw in the gamede�ned by F .Proof At any point in the game, let Cj denote the set of elements in A whi
h have been
oloured with Player j's 
olour, j = 1; 2 and U = A n C1 [ C2. Let� = Xi:Ai\C2=; 2�jAi\U j:
Suppose that the players 
hoi
es are x1; y1; x2; y2; : : : ;. Then we observe that immediately afterPlayer 1's �rst move, � < N2�(n�1) < 1.We will show that Player 2 
an keep � < 1 through out. Then at the end, when U = ;, � =Pi:Ai\C2=; 1 < 1 implies that Ai \ C2 6= ; for all i 2 [N ℄.So, now let �j be the value of � after the 
hoi
e of x1; y1; : : : ; xj . then if U;C1; C2 are de�ned atpre
isely this time,�j+1 � �j = � Xi:Ai\C2=;yj2Ai 2�jAi\U j + Xi:Ai\C2=;yj =2Ai;xj+12Ai 2�jAi\U j

� � Xi:Ai\C2=;yj2Ai 2�jAi\U j + Xi:Ai\C2=;xj+12Ai 2�jAi\U j
We dedu
e that �j+1 � �j � 0 if Player 2 
hooses yj to maximise over y, Xi:Ai\C2=;y2Ai 2�jAi\U j.
In this way, Player 2 keeps � < 1 and obtains a draw. 2In the 
ase of (n; d) Ti
 Ta
 Toe, we see that Player 2 
an for
e a draw if (see Lemma 5)(n+ 2)d � nd2 < 2n�1whi
h is implied, for n large, by n � (1 + �)d log2 dwhere � > 0 is a small positive 
onstsnt.
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Shannon Swit
hing Game Start with a 
onne
ted multi-graph G = (V;E).Two players: Player A goes �rst and deletes edges and player B forti�es edges making them invul-nerable to deletion by B. Player B wins i� the forti�ed edges 
ontain a spanning tree of G.Theorem 10. Player B wins i� G 
ontains two edge disjoint spanning trees.Proof (a) Here we assume that G has two edge disjoint spanning trees T1; T2 We prove thisby indu
tion on jV j. If jV j = 2 then G must 
ontain at least two parallel edges joining the twoverti
es and so B 
an win. Suppose next that jV j > 2. Suppose that A deletes an edge e = (x; y)of T2 red. This breaks T2 into two sub-trees T 02; T 002 . B will 
hoose an edge f = (u; v) 2 T1 with oneend in V (T 02) and the other end in V (T 002 ). Now 
ontra
t the edge f . In the new graph G�, both T1and T2 be
ome spanning trees T �1 and T �2 and they are edge disjoint. It follows by indu
tion thatB 
an win the game on G� and then wins the game on G by un
ontra
ting the edge f . Of 
oursef is 
hosen �rst of all still!If A 
hooses an edge x in neither of the trees then B 
an 
hoose an arbitrary edge f of T1. Now lete be any edge of the unique 
y
le 
ontained in T2 + e. B 
an 
ontinue playing on G� x as thoughe was the deleted edge. We 
an 
ontra
t f as before and apply the above indu
tive argument.(b) For this part we use a Theorem due to Nash-Williams:Theorem 11. Let k be a positive integer. Then G 
ontains k edge disjoint spanning trees i� forevery partition P = (V1; V2; : : : ; V`) of V we havee(P) = jE(P)j = X1�i<j�` e(Vi; Vj) � k(`� 1): (11)
Here E(P) is the set of edges joining di�erent parts of the partition and e(Vi; Vj) is the number ofedges joining Vi and Vj.Let us apply Theorem 11 with k = 2. If G does not 
ontain two edge disjoint spanning trees, then it
ontains a partition P = (V1; V2; : : : ; V`) with e(P) � 2`�3. A starts by deleting an edge e 2 E(P).B will fortify an edge f = (u; v). If u; v join di�erent sets in the partition P then we 
an mergethem and 
onsider P 0 whi
h has one less part and satis�es e(P 0) � e(P)� 2 (edegs e; f have gonefrom the 
ount). Otherwise B 
hooses an edge entirely inside a part of P and the number of partsdoes not 
hange, but e(P) goes down by one. Eventually, we 
ome to a point where one part isjoined to the rest of the graph by a single edge (2`� 3 = 1 when ` = 2) and A wins by deleting thisedge. 2Sket
h of proof of Theorem 11If P = (V1; V2; : : : ; V`) is a partition and T is a spanning tree then T 
ontains at least ` � 1 edgesof E(P) and the only if part is straightforward.Suppose now that (11) holds for all partitions. Let F be the set of edge disjoint forests 
ontainingthe maximum number of edges. If F = (F1; F2; : : : ; Fk) 2 F and e 2 E n E[F ℄ then every Fi + e
ontains a 
y
le. If e0 belongs to this 
y
le then F 0 2 F where F 0j = Fj for j 6= i and F 0i = Fi+e0�e.We say that F 0 is obtained from F by a repla
ement.Consider now a �xed F 0 = (F 01 ; F 02 ; : : : ; F 0k ) 2 F and let F0 be the set of k-tples in F that 
an beobtained from F 0 by a sequen
e of repla
ements. Then letE0 = [F2F0(E n E([F ℄):
Claim 1. For every e0 2 E nE([F 0℄ there exists a set U � V that 
ontains the endpoints of e0 andindu
es a 
onne
ted tree in F 0i for 1 � i � k. 12



Assume the 
laim for the moment. Suppose that not every F 0i is a spanning tree. Then G 
ontainsat least k(jV j � 1) edges (from (11) applied to the parttion of V into singletons) and so there existse0 2 E n E[F 0℄. Shrink the verti
es of the set U in the 
laim to a single vertex vU to obtain agraph G0. Apply indu
tion to G0 to get a set of k disjoint spanning trees T 01; T 02; : : : ; T 0k of G0. Nowexpand vU ba
k to U . Ea
h T 0i expands to a spanning tree of G. In this way we get k edge-disjointspanning trees of G.Proof of Claim 1Let G0 = (V;E0) and let C0 be the 
omponent of G0 that 
ontains e0. Let U = V (C0). First verifythat if F = (F1; F2; : : : ; Fk) 2 F0 and F 0 is obtained from F by a repla
ement and x; y are the endsof a path in F 0i \ U then x; y are joined by a path xFiy � U . (Exer
ise).We now show that F 0i \ U is 
onne
ted. Let (x; y) be an edge of C0. Sin
e C0 is 
onne
ted, weonly have to show that F 0i 
ontains a path from x to y, all of whose verti
es belong to U . Butthis follows by using the exer
ise and ba
kwards indu
tion starting from some F 2 F0 for whi
h Fi
ontains the edge (x; y). 2
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