
Learning from a Sample in Online Algorithms

C.J. Argue Alan M. Frieze Anupam Gupta Christopher Seiler
Departments of Computer Science and Mathematics

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

We consider three central problems in optimization: the restricted assignment
load-balancing problem, the Steiner tree network design problem, and facility lo-
cation clustering. We consider the online setting, where the input arrives over
time, and irrevocable decisions must be made without knowledge of the future.
For all these problems, any online algorithm must incur a cost that is approxi-
mately log |I| times the optimal cost in the worst-case, where |I| is the length of
the input. But can we go beyond the worst-case? In this work we give algorithms
that perform substantially better when a p-fraction of the input is given as a sam-
ple: the algorithm use this sample to learn a good strategy to use for the rest of
the input.

1 Introduction

The area of sequential decision-making (a.k.a. online algorithms) is a central direction in algorithms
under uncertainty: faced with a sequence of requests arriving over time, an algorithm needs to make
decisions without knowing the future. Given this lack of information, how can it make near-optimal
decisions? An enormous amount of work has been done on problems in this area over the past
decades, and we know near-optimal worst-case bounds for many problems of interest in clustering,
online resource allocation, scheduling, and network design.

However, these worst-case bounds are often pessimistic (perhaps by definition): they focus on the
hardest, pathological instances. Can we give algorithms that work for instances that arise in practice,
which tend to be very far from the worst case? There have been many attempts to formalize this
question: see the textbook by Roughgarden [2020] for several approaches to go beyond the worst-
case.

In this paper we focus on online algorithms with a sample (AOS) framework of Kaplan et al. [2020,
2022]: a similar model was defined by Lattanzi et al. [2021] based on Kumar et al. [2019]. In this
model, we assume that an arbitrary instance I is chosen, perhaps by an adversary. A random sample
S containing a p-fraction of the instance is then presented to the algorithm, as part of a “training
phase”. Having used this sample to learn something about I , the algorithm faces the rest of the
instance R := I \ S (in its adversary-chosen order). This is essentially the “testing phase”. The
algorithm needs to service these requests, and ensure that for each input I ,

ER[ cost of algorithm A on R ] ≤ g(p) · ER[ optimal cost for R ]. (1)

Here the expectation is taken over both the p-random sample S (and hence its complement R),
as well over the internal randomness of the algorithm A. Can we design algorithms that use this
small random sample (just an p fraction) to extract enough information to substantially improve its
performance?

We show the answer is “yes” for three combinatorial optimization problems in load-balancing, clus-
tering, and network design:
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1. Load-Balancing: Jobs arrive over time; each job j can be assigned to one of some subset
N(j) ⊆ [m] of some m fixed machines. Minimize the maximum load of any machine.

2. Clustering: In facility location, clients arrive in a metric space, and we want to cluster
them (and open one facility in each cluster). Minimize the total cost to open facilities and
connect clients to them.

3. Network Design: In Steiner tree, points of a metric space arrive one by one, and need to
be connected up to form a spanning tree. Minimize the total length of the tree edges.

All three problems have been studied in the worst-case setting, where it is known that for any online
algorithm there are instances where the algorithm’s cost must be least≈ Ω(log |I|) factor larger than
the optimal cost; here |I| is the size of the instance. In this paper we want guarantees which do not
depend on the instance size |I|, but only on the fraction p of the input in the sample.

Our Contributions. Our main results are that given an p-sample, the performance improves
considerably. For the load-balancing problem, we show that our LEARN-&-LOAD algorithm can
achieve a load of

(1 + ε) E[Opt(R)] +O

(
log3 m

pε4

)
(2)

for any ε > 0, where m is the number of machines. Hence, if the optimal load is not too small
(at least poly-logarithmic in the number of machines) then an online algorithm can achieve a load
that is arbitrarily close to this optimal load. Contrast this with the worst-case setting (i.e., without a
sample), where such a result is provably impossible: for any online algorithm we can give instances
I where Opt(I) is as large as we want, and yet the algorithm’s load is at least (log2 m) ·Opt(I). So
having access to the random samples is provably very powerful.

For clustering (facility location) and network design (Steiner tree), we get algorithms whose cost is

O(log 1/p) · E[Opt(R)].

So when p > 0 is a constant, say, our cost no longer depends on the size of the input. Indeed, setting
p := 1/|I| means we get a sample of a single element (which is conceptually like not having any
sample at all), and we match the worst-case bounds. In this sense, our results interpolate between
the AOS framework and the worst-case.

Our Techniques. One of the main contributions of the LEARN-&-LOAD algorithm is conceptual:
we show that a low-round parallel algorithm to compute a suitable parameter vector θ can be used
to get a generalization bound. Let us explain. We use an observation of Agrawal et al. [2018],
Lattanzi et al. [2020] that for any load-balancing instance R, there exists a weight vector θ ∈ Rm

such that assigning each job j fractionally to machines i ∈ N(j) using the proportional allocation
xij :=

θi∑
i′∈N(j) θ(i

′) achieves an essentially optimal allocation. Now we could try to use PAC-style
arguments: compute the empirical risk minimizer using the sample S, and use it for the real requests
R. Then apply uniform-convergence bounds to show generalization. Applying this idea gives a
bound of

(1 + ε)E[Opt(R)] +
m poly(logm/ε)

p
.

Notice that this result suggests we need the optimal load to be very large—larger than the number
of machines m—for it to exceed the second term and thereby get non-trivial results. This is unde-
sirable: we want to see improved results for much smaller values of Opt (like the bound of (2) we
will eventually show), and PAC-style bounds on covering numbers don’t seem to give such tighter
bounds. (Bounds on covering numbers seem to need an exponential dependence on the dimension
m, which leads to poly(m) bounds.)

A different approach would be to view the maximum load of an instance R as a function of θ, and
use the requests from the sample phase S to implement SGD update steps, whence the convergence
guarantees of stochastic gradient descent by Nemirovski and Yudin [1983] would imply generaliza-
tion bounds [Hardt et al., 2016, Hardt and Recht, 2021]. However, this approach fails because the
maximum load of R (as a function of θ) is neither concave nor convex.

Our approach is different: we show that (a) a multiplicative-weights update algorithm to compute an
optimal θ for the instance R requires only a poly-logarithmic number of rounds (based on the work
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of Ahmadian et al. [2021]), and (b) each round can be implemented using a robust load query to the
instance R. The eventual idea becomes very clean: we partition the sample S into poly-logarithmic
mini-samples, and use each mini-sample to implement one robust load query to R. (Here we use that
S and R are both samples from I .) We hope this idea of using a low-round algorithm to compute θ
as a learning algorithm might prove useful in other contexts.

The algorithm for clustering and network design follow a different conceptual message: that of using
(a suitably scaled version of) the sample S to build an anticipatory solution F , and to then augment
this solution F to get the solution for the real requests R.

1.1 Related Work

The AOS model was formalized by Kaplan et al. [2020, 2022]; a closely related model was given
by Correa et al. [2021], who consider the items to be independently sampled with probability p
(instead of a random pn-sized subset being chosen as the sample). Independently, Lattanzi et al.
[2021] considered the semi-online setting of Kumar et al. [2019] where part of the input is given
offline and the rest is online; they studied the case where a random p-fraction is presented offline.
They consider the correlation clustering problem and show how the AOS model overcomes strong
impossibility results. One difference between these two models is that the semi-online model seeks
to bound the algorithm’s cost on I to Opt(I), i.e., instead of (1), it aims to show that

ER[ cost of A on I ] ≤ h(p) · optimal cost for I . (3)

We focus on definition (1), but our techniques are malleable and extend to definition (3) as well.

Similar models have been studied in other contexts. In the random-order model and the secretary
problem from optimal stopping theory widely used in online algorithms and algorithmic mechanism
design, the input is adversarially chosen but presented to the algorithm in an uniformly random
order. The major difference from the AOS model is that the second part R also appears in random
order. However, some algorithms (which are called order-oblivious by Azar et al. [2014]) for the
random-order model do not use this randomness of R’s order, and hence can be implemented in the
AOS model as well. For example, the algorithm of Dynkin [1963] for the secretary problem, and
the algorithms of Devanur and Hayes [2009], Agrawal et al. [2014], Molinaro and Ravi [2012] for
online allocation problems; see Gupta and Singla [2020] for a discussion of random-order models.

Our work falls in the broad area of ML-Augmented Algorithms (see, e.g., the survey by Mitzen-
macher and Vassilvitskii [2020] or the works by Mahdian et al. [2007], Lykouris and Vassilvtiskii
[2018]), where the algorithm takes some (machine-learned) advice and uses this to give an improved
performance. Here we crucially address the question of how to learn this advice from the given data.
This has been done in a handful of previous works, e.g., by Devanur and Hayes [2009], Agrawal
et al. [2014], Molinaro and Ravi [2012], Lavastida et al. [2021] for order-oblivious algorithms for
online allocation, but these works use PAC-style ideas which we try to go beyond. Indeed, we hope
our work further focuses attention on the learnability of the ML advice in these settings.

The idea of proportional allocation for load-balancing and matchings was first proposed by Agrawal
et al. [2018], and extended by Lattanzi et al. [2020], Li and Xian [2021]. Ahmadian et al. [2021] gave
a distributed algorithm to compute a weight vector θ which gives small maximum load with a small
number of rounds of communication; we present an arguably simpler version of their arguments
in Section 2.5, and show it also works when we are just given noisy statistical access to the instance.

The online Steiner tree problem was proposed by Imase and Waxman [1991], who gave optimal
algorithms and matching lower bound results. The online facility location problem was proposed by
Meyerson [2001], and the upper and lower bounds were improved by Fotakis [2008]. The algorithm
in Meyerson [2001] also works in the random order model, but it is not order-oblivious. Garg et al.
[2008] show that Steiner tree does not have any improved algorithms in the random-order model;
in contrast they give constant-competitive algorithms when the input consists of i.i.d. samples from
a known distribution; Dehghani et al. [2018] claim an extension to non-identical distributions. Our
algorithm for Steiner tree in the sampling model is inspired by theirs (“build a solution on the sample,
and then augment”). Azar et al. [2022] give a framework for network design with predictions; their
ideas imply an alternative O(log 1/p)-competitive guarantee for Steiner tree (using a more involved
algorithm than ours). Their approach does not seem to extend to facility location or load balancing.
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2 Load-Balancing with a Sample

In the online load-balancing problem (sometimes called the restricted assignment model with par-
allel machines) the input consists of m machines which are fixed, and the online request contains n
jobs arriving over time. Each job specifies a subset of the m machines that it be assigned to. (We
consider unit-sized jobs and identical machines for simplicity, see §2.4 for extensions.) The algo-
rithm must assign the job to one of these machines. The load of a machine is the total size of jobs
assigned to it, and the goal is to minimize the maximum load over all machines.

It is convenient to think of machines being the vertices of a hypergraph H , and denoting them by
u, v, etc.; let V denote the set of machines, with |V | = m. Each job is a hyperedge e ⊆ V ,
containing the machines it can be assigned to. Let E denote the set of jobs, with |E| = n. We
seek an assignment φ : E → V satisfying φ(e) ∈ e for each job/edge e ∈ E; the load of machine
v ∈ V is |φ−1(v)|. The goal is to minimize E[maxv |φ−1(v)|], the (expected) maximum load over
all machines, where the expectation is taken over any random choices we make in finding φ.

Given an instance I of load-balancing, a fractional assignment of these jobs is a matrix X ∈ Rn×m

given by the following linear program:

PLB :=
{ ∑

v∈E xev = 1 ∀e ∈ E∑
e:v∈e xev ≤ L ∀v ∈ V

xev ≥ 0
}
.

The smallest value of L for which this LP is feasible is the optimal fractional load FOpt(I); if we
restrict xev to integers, then this smallest value of L is the optimal (integer) load Opt(I). Both can
be found offline using flow techniques, though our focus is in the online setting. Henceforth we use
the notation load(X) := ∥

∑
e xe∥∞, where xe ∈ Rm is the row of X corresponding to the job e,

denoting its fractional assignment.

Our approach is to compute a fractional assignment X online, and use independent randomized
rounding to convert it (also online) into an integer assignment φ.
Lemma 2.1. Given a fractional X, randomized rounding outputs an (integer) assignment φ with

E
[
max

v
|φ−1(v)|

]
≤ (1 + ε) load(X) +O(ε−2 log(m/ε)).

Proof. Randomized rounding sends job e to a machine v independently with probability xev: the
expected load of each machine v is µv :=

∑
e xev , and a concentration bound implies that

Pr
[
|φ−1(v)| ≥ (1 + ε/2) load(X) +O(ε−2 log(m/ε)

]
≤ ε

2m2
.

Taking a union bound over all m machines increases the failure probability to at most ε
2m . Finally,

the maximum load is at most n and the fractional load must be at least n/m, so the contribution to
the expectation in the event of failure is at most is at most ε

2m · n ≤ ε/2 load(X).

Given this rounding algorithm, we can focus on finding a fractional assignment online with low
load(X) close to FOpt(I) ≤ Opt(I). The randomized algorithm above can be derandomized, and
also better additive losses can be obtained, see work by Li and Xian [2021]; however, these change
only the lower order terms in our proofs.

2.1 The Proportional Allocation Strategy

To find a fractional assignment, we use an important idea by Agrawal et al. [2018], Lattanzi et al.
[2020]. They show that for any instance I and any threshold λ > FOpt(I), there exists a weight
vector θ ∈ R+ such that the fractional assignment

xev :=
θv∑
u∈e θu

achieves load(X) ≤ λ. We denote the vector of individual machine loads corresponding to this θ,
and the maximum load, as

L(I, θ) := 1⊺X =
∑
e

xe, and load(X) = ∥L(I, θ)∥∞.
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While θ can be found using a convex program, this does not help us prove generalization bounds
for the AOS model. In the rest of this section we show that (a) the natural multiplicative-weights
algorithm to compute θ converges in O(log2 m/ε2) rounds, even with restricted and slightly noisy
access to the instance I, and then (b) how this result gives an algorithm in the AOS model.

To model the restricted/noisy access to the input I, we consider the following framework:
Definition 2.2 (Robust Oracle). Given any function f and a parameter k, a (k, ε)-robust oracle for
an instance I returns a value V such that

(1 + ε)−1 ·max(f(I), k) ≤ V ≤ (1 + ε) ·max(f(I), k).

In fact, we will consider such an oracle only for statistical queries, where we apply a function f to
each element of the dataset I (in our case the jobs/edges of the instance), and then return their sum,
so this can be viewed as a variant on the well-known SQ model of Kearns [1998] (see Reyzin [2020]
for a survey). Note two differences with the standard SQ model: we look at multiplicative instead
of additive errors, and the answers are meaningful only when they are at least the parameter k.

We state the algorithms in Section 2.2 assuming robust oracle access. Our implementation of these
oracles succeeds with high-probability (over the random sample), hence we give a high-probability
cost bound in Theorem 2.5.

2.2 Fractional Load Balancing Using Robust Oracle Access

In this section we show how given only robust oracle queries to an unknown instance I, we can com-
pute a parameter vector θ which achieves a near-optimal load for I, using only poly-logarithmically
many queries to this oracle. This will be used in the next section to get our algorithm for load-
balancing in the AOS model.

Algorithm 1 starts with an estimate θ0 of the optimal weight vector (say, the all-ones vector). In each
round t it asks for an estimate of the maximum load given the current weights θt−1; if the load (or
rather, the estimate) for some machine is too high, the algorithm reduces the weight on that machine
by a factor of (1+ε). Lattanzi et al. [2020] showed that this algorithm converges, but the interesting
fact of Ahmadian et al. [2021] is that it converges in few rounds of updates, and we will show how
this is useful for our purposes.

Algorithm 1: Robust Algorithm to Compute Weights
Input: number of machines m, robust oracle for instance I.

1.1 initialize θ0v ← 1 for all v ∈ V

1.2 Ẑ ← estimate for optimal load FOpt(I) from (k, ε)-robust oracle
1.3 for t = 1, 2, . . . , T do
1.4 X̂t−1 = (X̂t−1

1 , . . . , X̂t−1
m )← estimate for loads L(I, θt−1) from (k, ε)-robust oracle.

1.5 forall v ∈ V do
1.6 if X̂t−1

v > (1 + ε)4 · Ẑ then θtv ←
θt−1
v

1+ε else θtv ← θt−1
v

1.7 return weight vector θ̂ ← θT .

Theorem 2.3 (Load Balancing using Robust Queries). For any k ≥ 0, let γ := max(k,FOpt(I)).
Fix ε ∈ (0, 1) and define T := 1 + ln(2m/ε) lnm

ln(1+ε) ln(1+ε/2) = O
( logm log(m/ε)

ε2

)
. The parameter vector θ̂

returned by Algorithm 1 ensures that the maximum fractional load is

∥L(I, θ̂)∥∞ ≤ (1 + ε)7 · γ.

If we had direct access to the instance I, we could use directly use the work of Ahmadian et al.
[2021]. Since we access I only though robust oracles, we need a bit more care: we give the short
and arguably simpler proof in Section 2.5.

2.3 The AOS Algorithm for Load-Balancing

Lemma 2.4 (Sampling Lemma). Given any instance I and δ ∈ (0, 1), let Iδ be the sub-instance
obtained by picking a random δ fraction of jobs in I. Then
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i. For k = Ω(ε−1 logm), with probability 1− 1/poly(m),

(1 + ε)−1 ≤ max(k,FOpt(Iδ))
max(k, δ FOpt(I))

≤ (1 + ε).

ii. For any fixed weight vector θ, L(Iδ, θ) ∈ δ(1± ε) L(I, θ)±O(ε−1 logm) with proba-
bility 1− 1/poly(m).

Lemma 2.4 implies that taking a uniformly random subset of δ-fraction of the input and using that
to estimate (a) the optimal load or (b) the fractional load L(I, θ) for any fixed weight vector θ gives
us a (k, ε)-robust estimate (after rescaling by 1/δ) with probability at least 1− 1/poly(m), as long
as k = Ω(logm/ε2).

Let T be the number of rounds required for Algorithm 1, given by Theorem 2.3. If FOpt(I) =

Ω(Tp
logm
ε2 ), taking the p-sample and breaking it randomly into T parts implies that each sample is

a δ-sample for δ := p/T . As long as the expected optimal value on each of these parts is much
larger than k, our estimates are within a factor (1 + ε) of the correct values. This means that the
fractional load of our assignment will also be close to FOpt(I), as long as FOpt(I) = Ω((T/p) ·
(logm/ε2)) = Ω( log

3 m
pε4 ).

To summarize, the final algorithm is the following:

Algorithm 2: LEARN-&-LOAD

Input: Sample S that is a random p-fraction of I
2.1 Randomly partition S into mini-samples S1, S2, . . . , ST of size |S|/T
2.2 run Algorithm 1 but use St to estimate L(I, θt−1) in each round t.

Theorem 2.5. For suitably small ε ∈ (0, 1), the LEARN-&-LOAD algorithm achieves on any in-
stance I a fractional load of (1+O(ε)) ·FOpt(I)+O( log

3(m/ε)
pε4 ) with probability 1− 1/poly(m),

in the AOS model.

2.4 Load-Balancing: Extensions

The above analysis extends with almost no changes to jobs whose sizes pv lie in [0, 1]. Extending to
the related machines setting requires a bit more work. Here, each machine v has a speed sv ≥ 1, and
the load of a machine is the total volume

∑
e xev assigned to it, divided by the speed. So the goal

is to minimize maxv(
∑

e xev/sv). Again, each job can only be assigned to a subset of machines.
Keeping the same notation, the machines form a set V of vertices, and the jobs are hyperedges
denoting which machines they can be assigned to. In this case, there exist weights θ ∈ Rm such that
the scaled proportional allocation

xev := sv ·
θv∑
u∈e θu

· 1(v∈e)

gives a near-optimal fractional load. Moreover, for each job e we can drop some of the slower
machines from the allowed set to ensure that maxv∈e sv

minv∈e sv
≤ (m/ε), at the expense of increasing the

optimal fractional load by at most a 1+ε factor. Moreover, if the speeds of all machines in an instance
I ′ satisfy maxv sv

minv sv
≤M (we say such instances have aspect ratio M ), then the proof of Theorem 2.5

extends to show that O( log
2(Mm/ε)

ε2 rounds of updates suffice. (See the supplementary material for
details.) However, this is not enough, since the parameter M can be exponential in m, even allowing
for 1 + ε-approximations.

To handle this, we can perform an instance decomposition: we show how to take any instance I and
find a collection of K = O(1/ε) “nicer” subinstances I1, . . . , IK , each of which has aspect ratio
bounded by (m/ε)1/ε, such that each instance contains all the machines, and each job belongs all but
one of these K instances. Solving each of these instances Ik to get assignments xk

ev , and then setting
xev = 1

K−1

∑
k x

k
ev gives a fractional assignment whose load is at most (1+ 1/(K − 1)) = (1+ ε)
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times the maximum load of each of these subinstances, which is itself near-optimal. The number of
rounds increases by approximately a factor of 1/ε2.

We sketch this decomposition, which is of independent interest: define the speed class of a machine
v to be cv := ln sv . Since we assumed that speeds are at least 1, the classes of all machines are
non-negative. Assume 1/ε is an integer, for simplicity, For each job e define its window We :=
[minv∈e cv,maxv∈e cv]. Now for each “shift” k ∈ {0, 1, . . . , 1/ε − 1}, define F k := {(k + i/ε) ·
ln(m/ε) | i ∈ Z}, and define Ik to be set of all jobs e whose window We does not contain a value
in F k. Note that F k partitions the machines into groups whose speeds classes differ by at most
1/ε ln(m/ε), and keeps only jobs whose allowed machine falls within each group. (We can now
re-normalize the machine speeds for each group of machines separately, so that the slowest speed in
each group is 1, and now the maximum speed is at most (m/ε)1/ε.) Finally, by our preprocessing
each job has a window of width at most ln(m/ε), so this window intersects only one of the F k sets,
and hence the job belongs to all but one of the subinstances. This completes the extension of our
result to the case of machines having different speeds; the guarantees suffer by only a factor of 1/ε2.

2.5 Proof of Theorem 2.3

Finally, we give the proof for Theorem 2.3, mostly to emphasize its simplicity. It relies on two
lemmas: a quasi-monotonicity property (Lemma 2.6) and an expansion lemma (Lemma 2.7). We
state these two lemmas here and prove Theorem 2.3, and defer their proofs to the appendix.

Recalling Algorithm 1, let Dt
v denote the number of times that machine v’s weight has been de-

creased by the end of iteration t, so that θtv = (1 + ε)−Dt
v . Define Xt

v := L(I, θt)v to be the actual
load on machine v when using weights θt, and let X̂t

v be the robust estimate we get in our algorithm.

We first show that if v’s weight is decreased at least once then the load is not too small; and if it is
not decreased at least once then the load is not too large.
Lemma 2.6 (Quasi-Monotonicity). Let γ = max(k,FOpt(I)). The following guarantees hold:

(A) If Dt
v > 0, then Xt

v ≥ (1 + ε)γ, and
(B) if Dt

v < t, then Xt
v ≤ (1 + ε)7γ.

Lemma 2.7 (Expansion Lemma). Let α = ln(2m/ε)
ln(1+ε) . Define A := {v ∈ V | Dt

v ≥ s} for some
s > 0, and let B := {v ∈ V | Dt

v ≥ s− α}. Then

|B| ≥
(
1 +

ε

2

)
· |A|.

Proof of Theorem 2.3. Consider the end of round T ; we claim that each vertex has DT
v < T . If

so, the second claim of Lemma 2.6 guarantees each vertex has load Xt
v at most (1 + ε)7 γ. So,

for a contradiction, suppose there do exist vertices with DT
v = T , i.e., whose θ parameter has been

reduced in each round. If we define M(s) := |{v | DT
v ≥ s}|, this means M(T ) ≥ 1. Now

applying Lemma 2.7 repeatedly,

M(T − jα) ≥
(
1 + ε/2

)j ·M(T ) ≥
(
1 + ε/2

)j
.

Hence, if T > α · logm
log(1+α/2) , we have M(1) > m, which gives a contradiction. This means there

are no vertices with DT
v = T , which completes the proof.

3 Clustering and Network Design in the AOS Model

The online Steiner tree and facility location problems are both fundamental questions in discrete
optimization, for which can use the sampling in the AOS model to give an improved performance of
O(log 1/p), whereas the worst-case performance must depend on the size of the instance. For the
rest of this section, we assume that p ≤ 1/2, so that the sample is a small part of the entire instance.

Both these problems are subadditive covering problems: any superset of a solution is another so-
lution; moreover, given any two instances I1, I2, the union of their solutions is also a solution to
the union of their instances. This implies that Opt(I1 ∪ I2) ≤ Opt(I1) + Opt(I2). Now for
instance I, if S is a p-sample for p ≤ 1/2, and R the remaining requests, this fact implies that
E[Opt(R)] ≥ 1/2 ·Opt(I).
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3.1 Online Steiner Trees

Let (V, d) be a finite metric space with a fixed root node r, where the points v1, v2, . . . , vn of V
are revealed one-by-one. At time t we find out the distances from vt to the preceding points vs
(for s < t), and must connect vt to one of them. (Think of v0 = r.) The goal is to build a
minimum-length spanning tree for {v0, v1, . . . , vn}. This problem is often called the online Steiner
tree problem; the optimal competitive ratio for this problem is Θ(log n) due to Imase and Waxman
[1991]. In the AOS model, the set V is randomly partitioned into the sample S and the “real”
points R, where |S| = pn. We then see the sample up-front, followed by the points in R in some
adversarial order. The goal is to build a minimum-length tree that contains all the points in R; it can
also contain any subset of S. The proposed algorithm is simply an augmented greedy algorithm:

Build a minimum-length spanning tree T connecting the sample S. Now if the
points in R are denoted r1, r2, · · · , then connect rt to the closest point in S ∪
{r1, . . . , rt−1}.

In other words, after we buy an MST on the sample, we simply run the greedy algorithm. (This
algorithm is directly inspired by that of Garg et al. [2008] for the case of i.i.d. samples from a known
distribution.)
Lemma 3.1. For p ≤ 1/2, we have E[Alg(R)] ≤ O(log 1/p) ·Opt(V ) ≤ O(log 1/p) · E[Opt(R)].

Proof. The cost of the MST on the sample is Opt(S) ≤ Opt(V ), so it suffices to bound the aug-
mentation cost for requests in R. Consider the minimum-length spanning tree T ∗ for V ; taking an
Eulerian tour and shortcutting repeated vertices gives a cycle C∗ of length at most 2Opt(V ) con-
necting all points in V . The sample S breaks this cycle into paths; for each edge e ∈ C∗, let Le be
the number of vertices on this path containing e, and let de denote its length.

Claim 3.2.
E[Alg(R)] ≤ O

(
E
[∑

e

de logLe

])
≤ O

(∑
e

de logE[Le]

)
.

Proof. The proof is very similar to showing that the greedy algorithm is O(log k)-competitive on
sequences of length k; we give it here for completeness. Let P be one path in the partition of C∗,
where P = ⟨s = u0, u1, u2, . . . , ua−1, ua = s′⟩ with s = u0 and ua = s′ belonging to S, and all
other ui ̸∈ S. Let A = {u0, . . . , ua}. Taking alternate edges partitions P into two matchings, each
of length at most

∑
e∈P de. Consider the matching M with at least half the edges in P : for each

edge e = (ui, uj) ∈ M , the cost of connecting the later-arriving of the two (say uj) greedily is at
most d(ui, uj) ≤ de. Hence the total cost for connecting all these later-arriving vertices is at most∑

e∈P de. This accounts for half the vertices on P ; now dropping all these later-arriving vertices
from A, and repeating the argument log2 A times shows that the total cost incurred for nodes in P is
at most O(log2 |P |) ·

∑
e∈P de. Finally, summing over all the paths completes the proof of the first

inequality. Then using Jensen’s inequality along with the concavity of the logarithm function gives
the second inequality of the claim.

Finally, S is a random subset of pn points from V (giving a hypergeometric distribution), so the
number of hops from the edge e to the closest vertex in each direction in S is bounded above by a
geometric random variable with parameter p, which has expectation 1/p. This means E[Le] ≤ 2/p,
and now Claim 3.2 and the fact that E[Opt(R)] ≥ Ω(Opt(V )) for p ≤ 1/2 completes the proof.

3.2 Facility Location

In the facility location problem, again a metric space (V, d) is revealed online; we maintain a set
F ⊆ V of opened facilities at each time, and for each revealed vertex vj , we can (a) add vj to the set
of opened facilities at cost f , or (b) assign vj to a previously opened facility i ∈ F at cost d(vj , i).
The objective is to minimize the sum of the facility-opening costs and the assignment costs, namely

|F | · f +
∑
j∈V

d(j, F ).

Here d(f, F ) := min{d(j, i) | i ∈ F}.
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Our AOS algorithm is the following: given a random sample S ⊆ V with pn clients, let the real
set R := V \ S be the remaining (1 − p)n clients. In the first stage, imagine each client in S to
have demand 1/p; use a constant-factor approximation to the facility location problem to find F̂
minimizing

|F̂ | · f +
∑
j∈S

d(j, F̂ ) · (1/p).

Now in the second stage, run Meyerson’s algorithm on the remaining clients. Specifically, define
F ← F̂ ; now for each client j ∈ R, let δj be the distance d(j, F ). Open a facility at j with
probability min(1, δj/f) (and therefore add j to F ), else pay at most δj to connect to this facility.
Note that the expected cost for each j ∈ R is at most min(1, δj/f) · f + (1−min(1, δj/f)) · δj ≤
2min(f, δj).
Lemma 3.3. For p ≤ 1/2, we have E[Alg(R)] ≤ O(log 1/p) ·Opt(V ) ≤ O(log 1/p) · E[Opt(R)].

Proof. Consider the cost of the optimal solution F ∗ for the first stage: the expected cost is at most

|F ∗| · f +
∑
j∈V

d(j, F ∗) · Pr[j ∈ S] · (1/p) = Opt(V ).

Hence the constant-factor approximate solution F̂ incurs a cost of at most O(Opt(V )) in the first
stage. It now suffices to bound the cost incurred in the second stage, i.e., on the clients in R.

Consider the optimal solution for V , and let i∗ be an open facility which serves some subset (“clus-
ter”) of clients; by renumbering, let these clients be Ci∗ := {1, 2, . . . ,m} ⊆ V in order of increasing
distance from i∗. Let the total connection cost of these clients be Zi∗ :=

∑m
j=1 d(j, i

∗). Some of

these clients j1 < j2 < . . . < jk belong to the sample S; let the facility in F̂ serving client ja be
denoted ia ∈ F̂ . First, for a client j ∈ (ja, ja+1),

δj = d(j, F ) ≤ d(j, F̂ ) ≤ d(j, i∗) + d(i∗, ja) + d(ja, ia) ≤ 2 d(j, i∗) + d(ja, ia), (4)
since ja < j and hence its distance to i∗ is no larger. By our observation above, the expected cost
incurred by such j is at most 2min(δj , f) ≤ 2δj . Summing over such clients, all indices a ≥ 1,
and over all optimal facilities i∗, the first term on the right of (4) sums to at most twice the optimal
connection cost; and the summation for the second term has each ja appear at most 1/p times in
expectation, so its expected value is at most the connection cost of the first-stage solution, and hence
at most O(Opt(V )). Hence the expected connection cost for these clients j ≥ j1 is O(Opt(V )); it
remains to bound the connection cost of “close” clients C ′

i∗ := {1, 2, . . . , j1−1}. We claim that this
cost is at most O(log j1)·Zi∗ ; now using the fact that E[j1] = O(1/p) and Jensen’s inequality on the
logarithm function, the expected cost is at most O(log 1/p) · Zi∗ for this cluster, which completes
the proof.

The proof of the O(log j1) · Zi∗ bound mimics that given by Meyerson [2001]: let z be the average
cost of these “close” clients in the subset C ′

i∗ . We group these clients j into annulii based on their
δj values being in the intervals [0, z], (z, 2z], · · · , (2k−1z, 2kz], · · · ; we can restrict the exponent
k to at most log2 j1, else the connection cost of that single facility would be too high. Let G be
the subset of clients in some interval (2k−1z, 2kz]: the expected cost incurred until the first facility
is opened (say at location j′) in this subset is at most 2f after which the expected costs are at
most O(d(j, j′) ≤ O(d(j, i∗)). The sum over the clients in G is at most the cost of this cluster in
expectation. Hence each annulus costs at most O(Zi∗); there are log2 j1 annulii, which proves the
O(log j1) · Zi∗ bound.

A better competitive ratio of O( logn
log logn ) using a primal-dual algorithm was given by Fotakis [2008];

we leave it as an open problem to extend our result to give an O( log 1/p
log log 1/p ) algorithm.

4 Conclusions

There are several directions for future work. The current bounds for load-balancing are not tight: our
techniques cannot be directly improved, but we hope that future work can improve the bounds on
the additive load. While we can extend our results to related machines (where the size of a job j on
machine i is 1/si for some “speed” si), we do not know how to extend our results (and specifically
the expansion lemma) to unrelated machines where each job j has a size pij ∈ [0, 1] for machine i.
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A Proofs from Section 2.3

Proof of Lemma 2.4. Consider the optimal fractional assignment X∗ for I; for a machine i, let
the load on this machine be λ. Now using the same assignment for the random sample Iδ gives
an expected load of µ := δλ on machine i, and the probability that this load deviates from the
expectation by γ := max(εµ, k) is at most

2 exp

(
− γ2

2µ+ γ

)
.

Suppose εµ > k where k = O(ε−1 logm), this quantity is at most

2e−ε2µ/3 ≤ 2e−εk/3 ≤ 1/poly(m).

ELse k ≥ εµ, and so the probability is at most

2e−εk ≤ 1/poly(m).

This proves the lemma.

B Proofs from Section 2.5

Proof of Lemma 2.6. By induction on t; for t = 0 the value Dt
v = 0 and the claims are vacuously

true. Hence we consider iteration t ≥ 1 that generates θt from θt−1, and look at two cases.

Case 1: Dt
v = Dt−1

v . Since the algorithm did not update the weight for machine i in iteration t, we
must have had X̂t−1

v ≤ (1 + ε)4 · Ẑ. By the estimation guarantee, X̂t−1
v ≥ (1 + ε)−1Xt−1

v and
Ẑ ≤ (1 + ε)γ, so Xt−1

v ≤ (1 + ε)6γ. Since all weights are non-increasing and change by at most
a (1 + ε) factor, the new load Xt

v ≤ (1 + ε)Xt−1
v —at worst, the weight for machine v may remain

the same whereas weights for other machines may decrease. Thus Xt
v ≤ (1+ ε)7γ. This proves the

second claim.

For the first claim, if Dt
v > 0 then Dt−1

v = Dt
v means we can use the induction hypothesis to infer

Xt−1
v ≥ (1+ε)γ. Moreover, Xt

v ≥ Xt−1
v , since θtv = θt−1

v and all other weights are non-increasing.
So we have Xt

v ≥ (1 + ε)γ.

Case 2: Dt
v = Dt−1

v + 1. Since the algorithm updated the weight, X̂t−1
v > (1 + ε)4 Ẑ. From

the estimation guarantee, we have Ẑ ≥ (1 + ε)−1γ, and in particular, Ẑ ≥ (1 + ε)−1k. This
gives X̂t−1

v ≥ (1 + ε)3k. The estimation guarantee now means that max(Xt−1
v , k) = Xt−1

v , since
otherwise we would have X̂t−1

v ≤ (1 + ε)k. Moreover, the estimation guarantee says Xt−1
v ≥

X̂t−1
v (1 + ε)−1, so combining the above facts we get Xt−1

v ≥ (1 + ε)2γ. Since the weight θtv
decreases by a factor of at most (1 + ε), while other weights are non-increasing, we have Xt

v ≥
(1 + ε)γ, which proves the first claim.

For the second claim, if Dt
v < t, then Dt−1

v < t−1. By the induction hypothesis, Xt−1
v ≤ (1+ε)7γ.

Furthermore, Xt
v ≤ Xt−1

v (since we decreased the weight for machine v by (1 + ε), and at worst
the weights of all the other machines can decrease by the same amount, so Xt

v ≤ (1 + ε)7γ as
desired.

Proof of Lemma 2.7. Since Dt
v ≥ s > 0 for all v ∈ A, we have Xt

v ≥ (1 + ε)γ by Lemma 2.6.
Thus, it follows that ∑

v∈A

Xt
v ≥ (1 + ε)|A| · γ.

Let xt
ev denotes the load that job e puts on machine v using weights θt; that is,

xt
ev =

θtv∑
u∈e θ

t
u

· 1(v∈e).

This implies that the load Xt
v =

∑
e x

t
ev . We can now rewrite the LHS as∑

v∈A

Xt
v =

∑
v∈A

∑
e⊆B

xt
ev +

∑
v∈A

∑
e ̸⊆B

xt
ev. (5)
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For a fixed job/edge e ∋ v with e ̸⊆ B, it follows that there exists an machine w ∈ e with Dt
w <

s− α. Since Dt
v ≥ s, we have

xt
ev =

θtv∑
u∈e θt(u)

≤ θtv
θtw
≤ (1 + ε)−s

(1 + ε)−(s−α)
= (1 + ε)−α =

ε

2m
.

Each of m machines has load at most FOpt(I), so there are at most mFOpt(I) edges. In particular,
deg(v) ≤ mFOpt(I) for all machines v, and so it follows that∑

v∈A

∑
e ̸⊆B

xt
ev ≤

∑
v∈A

ε

2
· FOpt(I) = ε

2
· |A| · FOpt(I). (6)

Subtracting (6) from (5), ∑
v∈A

∑
e⊆B

xt
ev ≥

(
1 +

ε

2

)
|A| · FOpt(I). (7)

Finally, we have ∑
v∈B

∑
e⊆B

xt
ev = |{e ∈ E | e ⊆ B}| ≤ |B| · FOpt(I),

where the second inequality uses that the optimal value is the density of the densest sub-hypergraph.
Combining this with (7), we get

|B| · FOpt(I) ≥
∑
v∈B

∑
e⊆B

xt
ev ≥

∑
v∈A

∑
e⊆B

xt
ev ≥

(
1 +

ε

2

)
|A| · FOpt(I),

which yields our desired claim when divided by FOpt(I).

If d is an upper bound on the degree of any machine, i.e., the maximum number of jobs that go
to any machine, then the same argument shows that it suffices to set α = ln 2d/(εFOpt(I))

ln(1+ε) , or the

weaker bound of α = ln 2d/ε
ln(1+ε) .

C A Concentration Bound

Theorem C.1 (Concentration Bound). Let X1, X2, . . . , Xn be independent random variables taking
values in [0, 1]. Let X :=

∑n
i=1 Xi, µ = E[X] and U ≥ µ. For every δ > 0, we have

Pr[X > (1 + δ)U ] ≤ Pr[X > µ+ δU ] <

(
eδ

(1 + δ)1+δ

)U

≤ e−(δ2U)/(2+δ),

and
Pr[X < µ− δU ] < e−δ2U/2.

D Proofs for Related Machines

In the related machines setting, recall that each machine v has a speed sv ≥ 1, and the load of a
machine is the total volume

∑
e xev assigned to it, divided by the speed. So the goal is to minimize

maxv(
∑

e xev/sv). Again, each job can only be assigned to a subset of machines. Keeping the
same notation, the machines form a set V of vertices, and the jobs are hyperedges denoting which
machines they can be assigned to.

Lemma D.1 (Proportional Assignment for Related Machines). There exist weights θ ∈ Rm such
that the scaled proportional allocation

xev := sv ·
θv∑
u∈e θu

· 1(v∈e)

gives a near-optimal fractional load.

14



Proof. Consider the convex program

max
∑

ev(xev log(xev/sv)− xev)∑
v∈E xev = 1 ∀e ∈ E∑

e:v∈e xev ≤ Lsi ∀v ∈ V

xev ≥ 0 .

Now the KKT condition for this implies that

log(xev/sv) = −λv + µe + νev.

Now using complementary slackness gives us for each v ∈ e,

xev = sv ·
e−λv∑
u∈e e

−λu
.

Setting θv = exp(−λv) completes the proof.

Another intuitive way of seeing is to imagine splitting each machine of speed sv into sv ·M unit-
speed copies for some very large M . (This factor of M is handle divisibility issues, where sv values
are not integers.) The optimal fractional assignment for this old related machines instance and this
new unit-speed instance correspond to each other, up to scaling by a factor of M (and the small
additional loss due to divisibility issues, which we put aside for now). Given an optimal weight
vector for this unit-speed setting, all the copies of the same original machine can be assumed to have
the same weight (by symmetry), and hence the total amount of job e going on copies of machine v
becomes the expression above.

Bounding Width. Given any related machines instance I, for each job e define a new job

e′ := {v′ ∈ e | sv′ ≥ (ε/m) ·max
v∈e

sv}.

Let I ′ be the instance with just these new jobs; by definition maxv∈e′ sv
minv∈e′ sv

≤ (m/ε) for all e′ ∈ I ′.

Lemma D.2. FOpt(I) ≤ FOpt(I ′) ≤ (1 + ε) FOpt(I).

Proof. Since we constrain each job to go on a subset of its original set of machines, the optimal load
can only increase. But by how much? Fix any fractional assignment X for I. Consider any machine
v and consider any job e for which this is the fastest machine in e. (Break ties arbitrarily.) Let e′
be the new version of e as above: let δe =

∑
u∈e\e′ xeu be the volume of e going to machines that

are not allowed any more in e′: move all this volume to v. I.e., set x′
e′v = xev + δe for this fastest

machine, x′
e′u = xeu for all u ∈ e′, u ̸= v. Now the total load for v increases by at most

(1/sv) ·
∑

e:v=argmaxu∈e{su}

δe.

This sum is at most the total volume of jobs assigned to machines that are slower than v by a factor
m/ε. There are m such machines, and each has load at most FOpt(I), so the total increase in the
load for v is at most (ε/m) ·m · FOpt(I), as claimed.
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