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graph of maximum total weight in an edge-
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tics for this problem.
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1. Introduction

In this paper we are concerned with a specific
graph theoretic problem. The reader is referred to
Harary [9] for an explanation of the graph-theo-
retic terminology used here. Consider a graph G =
(V, £) with vertex set V¥ and an edge weighting
function w: E — R which assigns a real number to
each edge in E. For each subset S of E define

w(S)= ) w(e).

ecE

Then the problem is to find a planar subgraph of
G which has maximum total weight. That is, to
find E’ C E such that the graph (V, E’) is planar
and w(E") is as large as possible. We call this the
planar subgraph problem. We will now explain
why this problem is of interest in industrial en-
gineering.

1.1. An application in industrial engineering

The facilities layout problem of industrial en-
gineering is concerned with the design of a system
of physical facilities such as machines on a factory
floor. For further details see, for example,
[1,2,10,14,15]). The question of layout design
manifests itself in many other applications such as
the design of hospitals [4], universities [3] and
office blocks [16]. One of the important subprob-
lems involved is the question of which facilities
should be located adjacently. It is common to
begin the layout process by defining a relationship
chart. Each entry of this chart (called a closeness
rating) defines the desirability (measured by an
arbitrary real number) of locating a pair of facili-
ties adjacently. The problem is to find a layout
which maximizes the sum of the closeness ratings
corresponding to adjacent pairs of facilities. This
subproblem can be modelled in graph theoretic
terms. Consider a weighted graph G = (V, E) with
an edge weighting function w. Each vertex in V
represents a facility of the system to be laid out
and each edge in E corresponds to the possibility
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of locating the facilities identified by its endpoints
adjacent to each other. Each edge weight is the
appropriate closeness rating. Each subgraph of G
characterizes the adjacency structure of a possible
layout. Usually, the facilities are to be laid out on
a plane surface such as a building site or a factory
floor. When this is the case, it is necessary that any
subgraph of G characterizing the adjacency struc-
ture of a feasible layout must be planar. Thus the
finding of the adjacency structure of the most
desirable layout (ie the one which maximizes the
sum of closeness ratings for adjacent facilities) is
the graph-theoretic optimization problem de-
scribed in the previous section. A special case of
practical interest occurs when all edge weights are
either zero or one. That is, all candidates for
adjacency are equally desirable and we wish to
maximize the number of desirable adjacencies.

1.2. The complexity of the problem

It is clear from the following theorem that the
planar subgraph problem is NP-hard even in the
zero—one case.

Theorem. Given a graph G = (V, E) and positive
integer K < |E| the problem of determining whether
there exists a subset E' C E with |E’| = K such that
G’ =(V, E’) is planar is NP-complete.

This result is due to Liu and Geldmacher [13].
See also Garey and Johnson [70, p. 197] for further
information. This result reinforces recent attempts
to devise polynomially time-bounded heuristics for
the problem with good performance guarantees. In
the next section we briefly describe some existing
heuristics and in the following section we analyse
their performance.

2. Heuristics for the planar subgraph problem

We assume that each edge weight in G is non-
negative. It i1s also convenient to assume that G is
complete by putting in missing edges with zero
weight. In this case it is clear that there will be an
optimal solution for any instance of the planar
subgraph problem which is a maximal planar
graph,, i.e. a triangulation. We thus confine our-
selves to heuristics which attempt to identify the
triangulation of G of maximum total edge weight.

We will describe three heuristics. Heuristics 1 and
2 are variants of a ‘one vertex at a time’ approach.
Heuristic 3 is the well-known Greedy Heuristic
[12] applied to this problem.

2.1 Heuristic 1 (H1)

One of the earlier approaches to the planar
subgraph problem was presented by Foulds and
Robinson [5]. Their heuristic avoids the com-
plicated testing of subgraphs of G for planarity.
This is achieved by building up the final triangula-
tion, one vertex at a time, by inserting each new
vertex into a face of the existing triangulation. The
procedure begins by creating an initial tetra-
hedron, i.e. a triangulation with four vertices, which
is the complete graph on four vertices K.

This is done as follows. Define

Wi(v)=)Y w(e), (veV). (2.1)

veEe

Arrange the vertices in V in order of nonincreasing
W, values. The four vertices with the highest ¥,
values are chosen to make up the initial K,.
Vertices are then inserted one at a time in the
order created. As each vertex is inserted into the
triangulation it is inserted into the face which
causes the largest increase in edge weight of the
triangulation. To make this clear suppose vertex
v€E V is to be inserted next. All faces in the
triangulation built up so far are examined. The
face xyz with vertices x, y, and z yielding the
largest sum (or score)

w(xv)+w(yv)+w(zv)

is identified. Then edges xv, yv, and zv are added
to the triangulation along with vertex v and faces
xyv, xzv and yzv. Note that xyz is no longer a face
of the updated triangulation. This process is con-
tinued until all vertices have been inserted.

2.2 Heuristic 2 (H2)

This differs from Heuristic 1 only in the initial
ordering of the vertices. If all edge weights are
distinct we now define W, by

WZ(U)=1?ax1v(e). (veV). (2.2)

If the edge weights are not distinct and, without
loss of generality V= {1,2,...,n} then we can
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implicitly perturb the weight of edge xy to w(xy)
+ &* + ¢ where ¢ is small enough to make all edge
weights distinct. This can be achieved explicitly by
defining the weight of edge xy, x>y to be
(w(xy), x,y) and then using the lexicographic
ordering of these triples to compare edge weights.

2.3 Heuristic 3 (H3)

This is the Greedy Heuristic, and was first
proposed for the planar subgraph problem by
Foulds et al. [6]. It begins with an edgeless graph
on the vertices of V. The edges of G are ordered in
nonincreasing order of weight. Each edge is
accepted in this order as part of the triangulation
unless it causes the subgraph being built up to
become nonplanar. In this case the edge is rejected.
The heuristic terminates when a triangulation
spanning V has been constructed. The repeated
tests for planarity require significant computa-
tional effort despite Hopcroft and Tarjan’s linear-
time algorithm [11].

Foulds and Robinson [5] have proposed a series
of filters which lessen the number of times the
planarity algorithm has to be used.

3. Worst case analyses

Let P denote an instance of the planar sub-
graph problem. For any heuristic H let E(H, P)
denote the set of edges chosen by the heuristic and
let £*(P) denote the maximum weight edge set.
The ratio

w(E(H, P))
w(E*(P))

is a measure of the quality of the solution pro-
duced by H. The worst case ratio p,, is defined to
be

Pnzigf(RH(P))- (3.2)

This value has now been analysed for a large
number of heuristics for a variety of combinatorial
optimisation problems—see [7] for example. It
gives us a guaranteed value for the quality of our
solution in comparison with the optimum. p,, is
clearly no more that 1 but usually it is much less
and gives a pessimistic measure of the quality of
H. In the next section we also look at a random
model and analyse ‘typical’ values of R, (P) for a
heuristic similar to our first two.

RH’(P)= (3-1)

In the following results H1, H2, H3 denote the
three heuristics of Section 2. Our first result shows
that H1 can be arbitrarily bad in the general case,
but has a performance guarantee in the zero-one
case.

Theorem 3.1.

(@ pm =0,
(b) Let

P =inf (R, (Q))
Q

where the infimum now is over problems Q in
which w(e)=0 or 1 for all edges e. Then

1/6 <py; <2/9.

Proof. Here, as in all our examples, we will restrict
the edge set of G to those edges of positive weight.
Let m be a positive integer and let A,
As,...,A,,, B be (m+ 1) disjoint sets of size m.
Let A=U" A4, V=AUB and let B=
{b1,by,....b,}. The set of edges E is defined as
follows: There is an edge of weight 1 joining each
pair of vertices in A. There is an edge of weight m
joining each vertex in 4, to b, for i=1, 2,...m.
Using (2.1) we see

Wi(v) =m*+m—1,
=mc

VE A,

vE B. (3‘3)

Now G=(V, E) contains a planar subgraph
(V, E*) with w(E*)> m®. (Simply take the edges
incident with B.) We see from (3.3) that H1 first
uses all the vertices of A and then the vertices of B.

After the vertices of 4 have been used the
weight of the triangulation produced will be 3m?
— 6. The vertices of B are then added one by one.
The increase in weight or score produced is at
most 3m each time. Thus H1 produces a graph
(V, E) where w(E) < 6m?— 6.

It follows that

Py < (6m*—6)/m* forallm> 0,

which proves (a). This example can be easily mod-
ified so that all the W,(v) are equal, thus implying
that a heuristic of this type which relies on order-
ing the vertices according to (2.1), in any fashion,
will be arbitrarily bad in the worst case.

We first show that g, > 1/6. Let G, = (V, E,)
where E, = {e € E:w(e)=1}. In this case W,(v)
is simply the degree dg (v) of vertex v and H1
orders the vertices in decreasing order of degree.
Suppose this order is vy, v,,...,0

*1¥n*
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Let A = {i: there exists j < i such thatv,v, € E, }
and let B=V — 4.

We note first that when H1 inserts a vertex of A
into the triangulation the score is at least one.
Thus if H1 chooses (¥, E) then w(E) > |A|. Also
w( E’) < 3n — 6 for any planar subgraph (V, E’) of
G and so we can prove p;, > 1/6 by showing
|A| = n/2 or, equivalently, | 4| = | B|.

Note next that x, y € B implies w(xy)=0, i.e. B
is a stable set in G,. Now

lAl= X 1

a€A

): dc,(a)/d(;,(a)

aE€EA

T X

ac€A beB d(;](a)

(as dg(a)> 0)

w(ab)

WV

(since w(ab) =1

w(ab) e ests
plies d (b)
% agA bgﬂ dG1(b) <
= d(;,(a))
w(ab)
SOy
beEB acA d(;l(b)
=|B| as B is stablein G,.

Figure 1.

Thus | 4| > | B|. From the above proof we can easily
see when | 4| =|B|. The first inequality is equality
if A4 is stable also, ie G, is bipartite, and the second
if each component of G, is regular.

We show p;; < 2/9 by considering the follow-
ing example: Let M, be the following graph (k >
3): M, has 3k vertices v(i,j), i=0, 1,...,k—1,
J=0,1, 2, and v(4, j) is adjacent to v(i’, j’) if and
onlyif j#; and i—i'=0, +1 (mod k).

It is easy to see that M, is 6-regular and con-
nected and consequently has exactly 9% edges. It is
also easy to see that M, is 3-colourable, the three
colours corresponding to the three j-values. It will
be convenient to write R,, B,, Y, for v(i, 0), v(i, 1)
and v(i, 2) respectively in order to emphasize this
colouring. It also follows that M, is nonplanar,
since it has too many edges, but it can be em-
bedded without crossings in the torus. (In fact it
triangulates the torus.) However M, does contain a
planar triangulation 7, containing all the vertices
and hence (9% — 6) edges. (The graph 7, is shown
in Figure 1 below.) In fact 7, omits only the six
edges connecting Ry, By, Y, to R, _y, B,_;, Y, _,
from M.

The example graphs are then essentially the
following graphs M
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M; has the same vertex set and all the edges of

M, and in addition the k edges of the form

(R;, B,) such that (p — i) = 6 (mod k). Thus all

R,, B; are now of degree 7, but the Y; still have

degree 6. M; has 10k edges, and obviously still

contains 7.

In order to simplify the arguments, we will aug-
ment M, with the following fixed graph F:

F has eight vertices, v,, v,,...,03 and v, is

adjacent to v, if and only if r<3 or s<3.

Hence vy, v,, v, are of degree 7 and v,, vs,...,04

are of degree 3. F has 18 edges and a planar

subgraph of 15 edges (Figure 2).

The graph G, is then the disjoint union of F with
M;. Obviously G, is not connected, but it could be
made 3-connected if desired, without significantly
changing the argument below adding the edges
(v4, Yp), (vs, Y1), (v, Y,). Now G, has (10k + 18)
edges and contains a planar subgraph with (9% - 6
+15)=9(k + 1) edges.

For convenience we will make the assumptions
k>7 and k=1 (mod 3). The first assumption is
simply that k needs to be large enough to avoid
special cases, and the second is made to allow the
R, vertices of M; to be traversed in increments of
3 in i (mod k). In fact it is only necessary to have
k =0 (mod 3), but we will choose k=1 for defi-
niteness. We now assume the vertices of G, are
ordered as follows, consistent with nonincreasing
degree:

U1,0,5,04,
Rg,R3,Rg,Rsyr...,Ry_1 Ry, R, ...,
R3i—]""’Rk—2’R1’R4"’"R3i+l""’Rk—3’

Figure 2. .'

By,B,,B,,...,B,_,,
) A5 A0 ANUNS A

04,05,...,08.

The initial triangle is v,, v,, v; with a score of 3.
Now consider the introduction of the R, vertices.
None of these is adjacent to any of v, v,, v; or to
each other. Thus they each score zero and hence
can be placed in any triangle. R, subdivides the
initial triangle and we will then assume R ; is
placed in the triangle with vertices v,, v;, R, _;.
(We assume subscript arithmetic is mod k
throughout.) See Figure 3 for the triangulation
after all the R vertices have been introduced.

Now consider the insertion of the B vertices.
Since none of these is adjacent to v,, v,, v;, they
could score at most 1 if placed in any triangle with
two of these as vertices. The other triangles have
vertices of the form v, (or v;), R;, R, ;. No B, is
adjacent to both R, and R, ; and thus could score
at most 1 in any of these triangles. Furthermore, if
any such triangle was previously subdivided by
vertices this could not improve matters, since the B
vertices are all nonadjacent to B;. Thus each B,
scores exactly 1, since it must score at least 1 by
being placed in any triangle with an adjacent R
vertex. We will therefore assume B, is placed in the
triangle with vertices v,, R,_¢, R;_; and scores 1
from its adjacency to R, _g. There is one exception
to this: For B, there is no triangle with vertices v,,
R, _;, Ry. Thus B, will be placed in the triangle
vy, U3, R, _ 5 and again scores 1 from its adjacency
to R, _;. Figure 4 shows the triangulation after all
B vertices have been inserted.

We must now insert the Y vertices. The trian-

e
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Clearly no Y vertex is adjacent to more than one
vertex in any of these triangles. Again it cannot
help if such a triangle has been previously subdi-
vided by other Y vertices. Thus each Y vertex
scores exactly 1. We need not consider exactly
where they are placed in the triangulation. Finally
the 5 vertices v,, vs,...,v; are inserted and can
each score at most 3. (In fact they cannot all score
3 but we will not refine the estimate further.) The
total score is thus at most

3+hkX0+kX1+AkX1+5%X3=2k+18,

and the ratio of this to the number of edges in the
optimal planar subgraph in G, is therefore at most

(2k+18)/9(k+1)—>2/9 ask— oo.

There is an obvious gap between this upper bound
Fisure3; and the lower bound of 1/6 for py,. It is likely
that neither is tight. In fact similar methods to
those used in this example can (probably) be used
to slightly reduce the upper bound below 2/9
using more complicated triangulations of the torus
RiesRussaBiass and additional edges and vertices. However it ap-
pears difficult to obain anything approaching 1/6
by this type of example.

gles without at least two vertices from v,, v,, vy are
of one of the forms:

U, R B gs U2, Ry 3, Biigs

i i

V3. Ry 3. B3 U3, R, Ry, 5.
We now consider our second heuristic H2 and
o show that this has a performance guarantee even
in the general weighted case. We also have here an
exact result.

Theorem 3.2. p,y, = ¢.

We prove this by a sequence of lemmas. First let
W, be defined as in (2.2) and for S € V' let W,(S)
=ZX,esW(v).

Lemma 3.1. If G=(V, E) is a planar graph then
w(E) < 3W5(V).

Proof. Since G is planar it has a vertex of degree
< 5. We argue by induction using such a vertex, v,
say.

(i) If v, has degree < 3, then clearly the weight
of all its incident edges is at most 3W,(u,). Let G’
be the graph obtained by deleting v, and its inci-
dent edges, G' = (V’, E’). Thus

w(E)<w(E)+3W;(v,)
<3IW(V) + 3, (v,)

n

Figure 4.
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Figure 5.

by the inductive hypothesis, where Wj is the W,
function on G’. (Note that the w function coin-
cides.) Clearly

Wi (V') < Wo(V’')  and
W, (V) =W, (V') + W, (v5),

giving the result.

(i1) If v, has degree 4, let its adjacent vertices be
a, b, ¢, d where w(uv,, a) is of maximum weight
amongst the four edges, and a, b, ¢, d are in cyclic
order around v,. Form G’ by deleting v, and its
incident edges, but inserting an edge (a, c) of
weight w(uv,, ¢). See Figure 5. Clearly G’ is still
planar and the argument goes through similarly to
case (i), since 3 edges have been deleted.

(iii) v, has degree 5. This is similar to case (ii),
but we insert two edges. (See Figure 6.) Again a is
the vertex such that w(uv,, a)= W,(v,).

As a basis for the induction, when |V|=2,
w(E)= Wy(V)/2.

Corollary 3.1. If G is an arbitrary graph and TC E
is the set of edges in a maximum weight planar
subgraph, then w(T) < 3W, (V).

Proof. Obvious, since the vertex weights in the
whole of G are all at least as large as those in the
subgraph (¥, T'). These inequalities are strict if all

e d

Figure 6.

edge weights are positive. Assume now that G =
(V, E) is our complete weighted graph with un-
equal non-negative edge weights. (See below for
the case of equal weights.) The vertices are sorted
in order of W,(v) nonincreasing before applying
the heuristic. Let E be the edges of G selected by
the heuristic.

Lemma 3.2. w(E) > 1 W,(V).

Proof. By induction on the number of vertices,
n=|V|. Let v, be the last vertex in the ordering.
Thus W,(v)= W;(v,) for all v € V and, in view of
the unequal edge weights hypothesis, there is at
most one vertex such that W,(v)= W,(v,) and
v # v,. Clearly in this case this vertex must be v, _,,
and w(v,, v,_;)= W,(v,) = W;(v,_;). Consider v,.
There are two cases:

(i) Wi(v,_,)= W,(v,). In this case delete v,,

v, _, and all their incident edges (all of which have

[

weight < W,(v,)) to give G'. In G’ the weights of
Uy, Uy,...,U,_, are unchanged therefore. Let E’ be
the edges in the triangulation after v, _, is inserted.
Thus by the induction

w(E") =3 Wy (V').

Now as v,_; and v, are inserted, between them
they must score at least W, (v, ). Thus

w(E) = w(E’)+ Ws(v,)
> 3w, (V) +3(Walv,_) + Wz(”»))
=3 W, (V).

(it) Wy(v,_,)> W,(v,). In this case delete only
v, and its incident edges to give G’, with E’ being
the triangulation after v, _, is inserted. Now u,
must score at least W,(v,). Then

w(E)=w(E")+ W,(uv,)
>3 (V') + Wy(u,)

since W,(u,) = 0.
As basis, when n = 3 it is obvious we must have

w(E)=w(E)=w(e)+w(e;)+w(e;)
where w(e,) > w(e,)> w(e;) since
Wr(V)=2w(e;) +w(e,),

W (V) =w(e) +3w(e,)
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and
st'(f)—iWZ(V)=%w(ez)er(e_,);O

as required.

It follows directly from Corollary 3.1 and
Lemma 3.2 that p,;, > 1/6 when restricted to un-
equal edge weights.

As previously mentioned, if any edge weights
are equal we must resolve the ties. This can be
done by numbering the vertices initially from 1 to
n in arbitrary order, and letting w'(i, j) = w(i, j) +
e+ ¢! if (i,j)€ E, where ¢ is a ‘small’ perturba-
tion. If the problem is solved with the weights w’
this corresponds to resolving ties as follows: If
(i, j), (k, I') are two different edges of G with i <,
k<[ then w'(i, j) > w'(k, |) corresponds to either:

(1) w(i, j)=>w(k, ),

(i) w(i, j)=w(k,!) and i > k,

(i) w(i, j)=w(k,l),i=k and j> L
Thus the ordering of the edges (i, /) with i </ is
lexicographic in the triples [w(i, j).i, j]. With this
ordering the unequal weights case carries over. The
weight for vertex 7 is then

lex max{[w(i,/),i,j]:(i,j) € E and

and smaller of i, j is last},
and the vertex ordering respects this lexicographic
order.
To prove py, < ¢ we consider the following

Figure 7.

example. Let the graph L, be as follows: L, has
2k + 2 vertices: vy, 0y,..., 0y 5, U; is adjacent to v,
(i<j)ifj=i+1,2k+1o0r2k+2.

Now L, is a planar trianguation with 6k edges.
See Figure 7 for L.

We assume that all edges of L, have essentially
unit weight, but are perturbed slightly so that
w(vy, 4, 0y,) fori=1, 2,...,(k +1) is decreasing
with increasing i, and all these weights exceed any
other edge weight. Thus W(v,,_,)= W(v,,) and
W(v,,) is decreasing with i.

Again to simplify the arguments, we will aug-
ment L, with a single disjoint triangle K; with
vertices V, V,, V;. The edge weights of K; are
again essentially unity, but perturbed so that they
exceed any edge weight in L,. We will assume
without loss of generality that W,(V,) = W,(V,)>
W, (1), and these vertex weight exceed any in L,.

Let G; be this augmented (weighted) graph,
which is planar with (6k + 3) edges. Thus G} has
total edge weight approximately (6« + 3). We will
ignore the effects of the perturbation in weight
calculations except insofar as they determine the
vertex ordering; clearly in the limit as the per-
turbations tend to zero this is valid. Again it will
be observed that G} is not connected, but could be
made so by the addition of suitable weighted edges
without changing significantly the following argu-
ment.

We will now assume the vertices are ordered as
follows, consistent with nonincreasing vertex
weight:

Vs Vo, Va sV, 0y UgyUsg s Ugs Uy v Uy

i3
Vaimpse s Ups Vo195 U2p 425 V24 41 -

The initial triangle is K, with a total score of 3.
Then v, will subdivide this triangle, scoring O.
Now v, can score at most 1 from its adjacency to
v,. We therefore assume it is placed in the triangle
vy, V5, V; scoring 1.

Now inductively we will suppose that im-
mediately prior to the insertion of vy, (i < k) we
have constructed within K, the central path I, v,,
Uyy..-,0s;_2, U5;_3 With each of these vertices con-
nected to both V, and V; (see Figure 8) and that
the total score is (i — 1) + 3.

Now consider the insertion of v,, and v,, ;.
When v,, enters it scores 0, since it is not adjacent
to any vertex currently in the triangulation. We
will thus assume it is placed in the triangle V;, V5,
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Figure 8.

v,;_; extending the central path.

Now v,;_, is inserted. It is adjacent to only
v,;_, and v,; in the triangulation. However v,,_,
and v,; are not both vertices of the same triangle,
since they are separated by v,,_; in the central
path. Thus v,;_, can score at most 1. We therefore
place it in the triangle V,, V;, v,; and it scores 1
from its adjacency to v,; since

w(y;_15 03;) > w( 0,21, Vg_3).

The total score has therefore increased to (i + 3)
and the inductive hypothesis is clearly maintained.
It follows that after v,,_, is inserted the total
score is (k + 3). Finally v,, , , and v,, ., are intro-
duced and score at most 3 each. (In fact v,,, , can
score at most 2 but this refinement is unimportant.)
Hence the total score is at most (k + 9). The ratio
of the weight of the triangulation constructed to
the optimal (i.e. the whole of G;) is therefore at
most

(k+9)/(6k+3)>1 ask— oo.

An objection to this example which might be
raised is that the vertices vy, ., Uy, have very
high degree, and that a slight modification of the
heuristic to take account of this might perform
better. However this does not seem to be the case.
We have more complicated examples, in which the
vertex degrees remain bounded, which tend to the
ratio 1/6 in the limit.

We now consider Heuristic H3. We again have
an exact result.

Theorem 3.3. p;; = 3.

Proof. As already observed, Heuristic H3 is in fact
the Greedy Heuristic [12] applied to the indepen-
dence system consisting of the sets of edges of G
which induce planar graphs.

It follows from general results on the greedy
heuristic for independence systems [12] that the
worst case occurs when all edge weights are 0 or 1.
Thus, if the graph has n vertices, let U, be the
subgraph of unit-weight edges. The problem is
then that of determining a maximum (edge) cardi-
nality planar subgraph in U,. Suppose U, has ¢
connected components, then its maximum cardi-
nality planar subgraph has at most (37 — 6¢) edges.
The greedy heuristic always constructs an edge
maximal planar subgraph (EMPS) of U,. However,
any such EMPS of U, must contain a spanning
tree of each of the components of U,, so the
cardinality of the heuristic subgraph is at least
(n — ¢). Thus the worst-case ratio is at least

(n—c)/(3n—6c)>1 foranyc>1.

We will now exhibit a family of graphs G¥ for
which there is an EMPS containing (as k — )
only one-third the number of edges in the maxi-
mum planar subgraph. Since the edges in this
EMPS could be ordered first, it then follows that
the ratio 1/3 is a tight worst-case bound for the
greedy heuristic in this problem.

The graph G¥ is based on the graph M, used in
Theorem 3.1. We will assume for convenience k =
4r (ie. k=0 (mod 4)). Let M} be the graph
obtained by disconnecting from the rest of M, the
two triangles R, By, Y, and R,,, B,,, Y,,. This
removes 24 edges from M,. Thus M} has (9% — 24)
edges and is planar, since it is a subgraph of 7.

We now add to M} the following edges to give
Gt:

(i) All edges of the form (R, R;,,), (B;, B;,,),
(Y, Y,,) fori=0, 1,...,(k — 1). (Subscript arith-
metic is again mod k.) There are 3k such edges
forming 3 disjoint circuits which we will label Cyg,
Cp, Cy respectively.

(i) The three edges (R,,, B,), (B, Y.),
(Y,,, B.). Thus G} has 3k vertices and (12k — 21)
edges. It contains a planar subgraph with at least
(9k — 24) edges.

Let H, be the subgraph of G} containing all the
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Figure 9.

vertices, the edges added in (i), (ii) above (i.e. those
not in M), and the two triangles with vertices R,
By, Y, and R,,, B,,, Y,,. Thus H, has (3k +9)
edges, and is in fact planar. (See Figure 9.)

We now show that H, is an EMPS of G}. The
edges of G¥ not in H, are the remaining edges of
M. The symmetry, assume that an edge of M of
the form (R, B;) can be added to H, without
destroying planarity. We must have |i —j| < 1 and
i,j#0,2r.

Consider the subgraph of F, induced by the R,
B vertices, then it follows that the situation is as
shown in Figure 10.

We will assume R, is on the chain R, R,...., R,,
of Cx and B, on the chain B,, B,,...,B, of C,.
Symmetrical arguments hold in the other possible
cases. Therefore we complete the argument by
showing that the graph of Figure 10 is nonplanar.
Suppose we omit all vertices on the chain R,,, ,,
Ry, 5.....R;,_, from this graph, and consider
any chain of degree 2 vertices as an edge. We
obtain the graph shown in Figure 11. However this
graph is the bipartite complete graph K, ;. (The
two vertex sets are R, B;, B,, and B, R;, B,.)

Thus the graph of Figure 10 is nonplanar by
Kuratowski’s criterion. Thus H, is an EMPS of

Figure 10.
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Figure 11.

G}. The ratio of the number of edges in H, to
those in M} is

(3k+9)/(9% —24) > ask— oo,

completing the analysis. Since H3 clearly has a
much better worst-case performance guarantee
than H1 or H2, we ought to point out that while
H1 and H2 can be very simply implemented in
O(n?) time, it is not clear that H3 can be imple-
mented in anything better than O(n?) time, even
using a sophisticated planarity testing algorithm
[11].

4. A random model

We consider now a simple random model for
our problem. In particular we assume that the
edge weights are distributed independently as uni-
form [0,1] random variables. This distributional
assumption may seem unduly restrictive, but our
results generalise easily to independent edge
weights chosen from any probability density re-
stricted to a bounded interval of the nonnegative
reals. However, we restrict ourselves to the uni-
form [0,1] case for simplicity of presentation. The
heuristic we consider is a simplification of H1 or
H2 above. The vertices are' considered in their
given order 1, 2,...,n and then inserted into the
best position in the current triangulation as in H1
or H2. We will label this heuristic HO. (Its worst-
case behaviour can be shown to be arbitrarily bad
even in the zero-one case.) Let V,, V* be the
random variables which take the value of the

heuristic and optimal solutions respectively under
our random model. Then, in the notation of (3.1),
Ryo=V,/V} is also a random variable. We will
show that

lim Pr(R,o<1-n"%")=0, (4.1)
n— oo
i.e. HO is asymptotically arbitrarily good with
probability tending to 1. To prove (4.1) we need
only show

lim Pr(V,<3n-n%)=0 (4.2)
n— o0
and use the fact that V* <3n—6 in view of the
upper bound on the edge weights.

Let T, be the triangulation after vertex v, is
added. To prove (4.2) we examine the increase in
weight of the current triangulation T _, when we
add v, k=4, 5,...,n. Now for any triangle f of
T, _, the score Z from placing v, in f is the sum of
three independent uniform [0,1] variables. It is
easy to show that

Pr(Z<3-a)=1-a%/6. (4.3)

We associate now an auxiliary graph G, = (F, 4,,)
with T,. The vertices of F, are the triangles of 7,
and f, f, € A, if the triangles f,, f, have a common
vertex. Let a(G,) denote the size of the largest
stable set of G,. We will show later that if m =
18n°3 log n, then for large n

Pr(a(G,) <m forany k> n?)=0(n"2).(4.4)

Let Z, = w(T,)—w(T,_,) be the score of vertex
v,. It follows from (4.3) that

Pr(Z, <3-n""a(G,_,) = m)

<(1-n"3/6)"

<exp(—mn%3/6)=n"3,
If now
Z,= Zn: Z,

k=n"%+1

is the total score of all vertices v, for k> n%?, it
follows using Boole’s inequality that
Pr(Z, < 3n-n%%a(G,) >m forall k> n®)<n?

which, together with (4.4) implies (4.2).
It remains only to prove (4.4). Let D,, D;
denote the maximum degrees of T,, G, respec-
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tively. Since the degree of fin G, is exactly six less
than the sum of the degrees of its three vertices in
T,, we have D; <3D,—6. Now, from an easy
inequality on the chromatic number of a graph [9],
it follows that

a(G,) = |Fl/(D; +1)=(2k —4)/(D; + 1)
>2(k-2)/(3D,—5)
= 2(k—2)/(30,—5)

since D, < D, fork<n

Now if D, <6n'/? log n and k > n"? it follows
that, for large enough n, «(G, )= m. Thus if we
can prove

0.9

Pr(D,>6n'?logn)=0(n"?) (4.5)

we will have proved (4.4) and hence (4.1).

Let d;, be the degree of v, in 7. Since v, is
equally likely to be placed in any of the (2k —4)
triangles of 7} and v, is adjacent to d ; of these, we
have the following conditional distribution for
dj.k-;—]'

Pr(d, s =p+1ld,=p)=p/(2k-4),
Pr(d; . =pldy=p)=1-p/(2k—4). (4.6

We also have du = 3. For notational convenience,
we will suppress the suffix j and write X, =d ;.

Also for any integer x write
xP=x(x+1)(x+2)- - (x+i—-1),

and let p\' = E(X{"). Clearly p), = E(X]), the ith
moment of X, about the origin, satisfies p', < p{’.
Now, from (4.6),

(:) P

, p
+p“{]—2k— }

4
i o () i
P {1+2k—4}

E( X)X, =

Thus

[ (z)
Py “[

ZA 4
i i
_P+2k—4H1+2k—6]

i (i)
[1+21 4];1} ;

However
pO=34 . (i+2)=1(i+2)

and

[]+5f:2l‘{]+2j14]

sexpr—i—ﬂv R _i ]
| 2k—4 2j—4

S 4 8 S
L J

< ex 7.1]0 u
3 p‘Z gj—3

i =l
j=3

Thus

; , k—217?
pia <3(i+2)! T—ﬁ?] g
or

; _ k—317
M’\H:+a!7j3l 4 (4.7)

Consider the moment generating function M(1)=
E(e'*) of X,.
We have
o0 J
M(t)= 3 u I—,

4 -

o0
Z (r)

-0
<P Y (i+1)(i+2)|¢

i=0

(using (4.7))

-p- 5]

(for small enough ¢).

Now it follows from a well-known generalisation
of the Markov inequality (see, for example, Grim-
mett and Stirzaker [8]) that

Pr( X, = x)<e "“M(t).
Thus

_a71,2]-3
Pr(szx):’}e_""[l—t[lj_;] ] |
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and putting, for example,

J_3 1/2
Pr(X,>x)<8exp —%[m ]x :

and since j > 4 and k < n we obtain

Pr( X, > x) < 8 exp[ — +n~ /%]

Hence

Pr( X, > 6n'/?log n) < 8 exp(—3 log n)
=8n3,

Therefore, using Boole’s inequality,

Pr(D, > 6n'/? log n) < nPr( X, > 6n'/* log n)

— Qi) (4.8)

which establishes (4.5). We note that since

Pr(V, <3n—n"?)=0(n"2),

The Borel-Cantelli lemma [8] implies that

Pr(nlinzo v,/ Vi=1)=1

which is a somewhat stronger result than (4.1).

Finally we may observe that the degree inequal-
ity (4.8) does not depend strongly on our distribu-
tional assumptions. It will be true for any joint
distribution of the edge-weights which is invariant
under permutation of edges. Thus our results have
many easy generalisation.

5. Conclusions

We have analysed the worst-case behaviour of
some heuristics for determining a maximum weight
planar subgraph in a graph with nonnegative edge
weights. Whilst we have proved that the worst case
of these heuristics may be quite bad, we have also

shown that (under certain assumptions) even a
very simple heuristic might be expected to perform
almost optimally ‘on the average’. The one tanta-
lising gap in our analysis is the disparity between
the upper and lower bounds in Theorem 3.1(b). It
appears to be a difficult problem to resolve this.
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