Part 1

COMPUTER SCIENCE

AN ALGORITHM FOR FINDING A MATROID BASIS
WHICH MAXIMIZES THE PRODUCT OF THE WEIGHTS OF
THE ELEMENTS

T. I. FENNER and A. M. FRIEZE

Department of Computer Department of Computer
Science, Birkbeck College, Science and Statistics,
University of London, Queen Mary College,
Malet Street, London University of London,
WCIE 7HX, England London El 4NS, England
Abstract.

Consider the problem of finding a spanning tree in an edge-weighted connected graph that
maximizes the product of its edge weights, where negative edge weights are allowed. We generalize
this problem to matroids and give a polynomial time algorithm for its solution.

1. Introduction.

Given a connected graph G with vertex set V and edge set E, with integer
edge weights, there are a number of very efficient algorithms for finding a
maximum weight spanning tree, where the weight of a tree is the sum of the
weights of the edges of the tree. These algorithms can be extended to solve
problems in which we are interested in maximizing the ratio of two different tree
weights — see Chandrasekaran [1] and Megiddo [7].

At the Silver Jubilee Conference on Combinatorics in Waterloo 1982, B.
McKay raised the question of whether there exists a polynomial time algorithm
for finding a maximum weight spanning tree when the weight of a tree is the
product of the weights of the edges in the tree. If all the edge weights are non-
negative then the problem can easily be solved using Kruskal’s algorithm;
however, in the general case, when we allow negative weights, it is no longer
apparent that a polynomial time algorithm exists.

As Kruskal’s algorithm is a special case of the Greedy algorithm for matroids,
(see Edmonds [2], Gale [5], Rado [8], and Welsh [10]), it is not surprising that
the problem referred to above can be solved in the context of matroids.

Here we use only the most elementary properties of matroids, which can be
found for example in Lawler [6] or Welsh [11].

Received September 1984. Revised March 1985.

AN ALGORITHM FOR FINDING A MATROID BASIS. .. 435

2. Matroid formulation of the problem.

We assume throughout that M = (E,.#) is a matroid, where E is the ground
set of M and .7 is the set of independent sets of M. We denote the set of bases
of M by #.

Let Be#, then for e¢ B and f e B we write B+e for B U {e} and B+e—f
for (B u {e})—{f}. In addition we denote the unique circuit contained in B+e
by C(B,e).

Let Z denote the set of integers and Z* the set of non-negative integers. Let
w:E — Z, then for Be% we define w(B) = Heeﬂw(e).

ProeLEM 1: Find B* such that w(B*) = max {w(B): Be #}.

The algorithm to be described assumes that M is given in terms of an
independence oracle, i.e. there is some procedure which for each I = E answers
the question “is I in .#7" in time bounded by a polynomial in [I|. Let
E* ={eeE: w(e) >0} and E- = E—E". For convenience we refer to the
members of E* as white elements and those of E~ as black elements. We define
a partition of # by letting #, = {Be#: |B nE"| is even} and &, = #—4,,.
The members of %, and %, are called even and odd bases, respectively. Thus, if
w'(e) = |w(e)| for ee E,

w'(B) for Be#4,

(L) W)= {—w‘(B) for Be#,

Hence we can solve Problem 1 in polynomial time if the following problem is
solvable in polynomial time.

ProsLEM 2: Let w:E —Z* be a non-negative weight function and let
E =E* UE™ be a partition of E into white and black elements respectively.
Show 4, (defined as above) is empty or find Bf € #, where

2) w(B¥) = max {w(B): Be4,}.

Given an algorithm for solving Problem 2, we can splve Problem 1 as follows:
use the Greedy algorithm to find B* where w'(B*) = max {w'(B):Be#}. If
B* €%, then B* solves Problem 1; otherwise we solve Problem 2 for w'. If &, is
non-empty then B¥ solves Problem 1; otherwise we use the Greedy algorithm
to find B¥ where w(B})= min{w'(B): Be#,}, in which case B} solves
Problem 1.

It is therefore of interest to record the following simple result, although it is
not needed in the sequel.

Tueorem 1: The following statements are equivalent: (a) B, + 9P and
B, + D . (b) There exists a circuit C which contains both black and white elements,
ie. E* does not separate M.

436 T. I. FENNER AND A. M. FRIEZE

Gabow and Tarjan [4] consider a problem closely related to Problem 2, that
of finding a minimum weight basis with a specified number of black elements. It
is, in fact, possible to use their algorithm repeatedly to solve Problem 2.
However, our approach leads to a much simpler algorithm which is also more
efficient.

3. The algorithm and its analysis.

We now present an algorithm for solving Problem 2.
Greedy — Exchange Algorithm (GEA)

StepA: sort E = {e,,..e,} so that w(e,;) < w(e;) <... < w(e,); using the
Greedy Algorithm compute B, where w(B,) = max {w(B): Be%4}; if B,e#%,,
terminate, with Bf = B,.

Step B: {find the best exchange of fe€B, for e¢ B, with e and f coloured
differently}; let X = {(e,f): e¢ B, feC(B,e) where ¢ and f are coloured
differently} ; if X = ¢ then 4, is empty, otherwise define é, f and B, = B,+é—f
by w(B,+é—f)= max{w(B,+e—f): (e,f)eX}; terminate with B} = B,.

End of GEA.
We next introduce some notation: for B = {¢, ,e,,e; } €4, where

i€y -

Iy < s b, et 2(B) =l 5y i) £ 2

We define a total ordering < on # by B < B' if and only if w(B) < w(B’) or
w(B) = w(B') and #(B) is lexicographically smaller than /(B’).

In addition we write e < ¢ if e = ¢; and €' = ¢; where i < j.

It is well known that the basis B, computed in Step A is the greatest element
of # with respect to <.

We now prove the correctness of the algorithm.

LemMma 1: Suppose %, and 2%, are non-empty and B, < B, where
B, = max{Be%,} for k=0,1. For e¢B,, let X(e)={feC(Bye): f<e
and f is coloured differently to e}. Let e* =max{e:X(e)+ ¢} and
f* =min{feX(e*)}. Then e* and f* are well defined and B, = B,+e*— f*.

Proor: As B, < B, there exists ee B, —B, and feC(B,e) such that
B, < By+e— f. However, from the definition of B,, B,+e—fe %, and hence
X(e) # @, which implies that e* and f* are well defined.

Next let B = By+e*— f* The lemma will be proved if we can show that
B = B,. So let us assume that B # B,. It follows that there exists ee B, — B and

AN ALGORITHM FOR FINDING A MATROID BASIS. .. 437

feC(B,e) such that B < B' = B+e— /. The definition of B, implies that B' e 4,
as B, < B< B.
We note that

(3a) fr<e*: f*eC; = C(By,e*); e* and f* are coloured differently.
(3b) f <e; feC, = C(B,e); e and [are the same colour.

If /* =e then fe X(e*) and f < f* contradicting the definition of f*. Thus
/* # e which implies that e¢ B,. Let C; = C(By,e). Then, if feC; we have
B, < By+e— f €4, which contradicts the definition of B, ; therefore

(4) J¢Cs
and thus, by (3b),

(5) C, # C,.
Thus C3; & B+e, but C; < By+e, so

(6) f*eC;.

By (5), C; & By+e, so e*e C,. We shall complete the proof by showing that
f¢Cy; for then feC,—C, and e*e C, n C,, so there exists a circuit C” such
that fe C" = (C; u C,)—{e*} < By+e. But then C”" = C; contradicting (4).

Proof that f¢C,.

Suppose e and f* are the same colour; if f* <e, (6) would imply
By, < By+e— f*ed,, contradicting the definition of B,. Thus /' < e < f* < e*.
Now if feC, then feX(e*), which would contradict our choice of f*.

Suppose, on the other hand, that e and f* are coloured differently; we show
that e* > f. If f* > e this follows directly from (3); if /* < e then (6) implies
f*eX(e), so e < e* by the definition of e* and again e* > [by (3). If feC,,
we have By, < By+e*— f €4, contradicting the definition of B,. O

It is now easy to prove.

THeEOREM 2: The Greedy-Exchange Algorithm solves Problem 2.

Proor: If the algorithm terminates in Step A with Bf = B, then clearly B}
satisfies (2). If this is not the case then B, = B,, where B, is as in Lemma 1. It
follows from Lemma 1 that, if #, # @, we can obtain B, from B, by exchanging
one pair of elements. Thus Step B either correctly determines that %, is empty
or finds Bf satisfying (2).]

The algorithm is clearly polynomial, the execution time being dominated by
O(n?) calls to the oracle.

438 T. I. FENNER AND A. M. FRIEZE

The spanning tree problem considered in Section 1, which is a special case of
Problem 1, can be solved in time O(|E|log #(|E|,|V|)) by using the algorithm of
Fredman and Tarjan [3] with the improvement of Gabow, Galil and Spencer
[3] to find the optimal weight spanning trees (in place of the Greedy
Algorithm). Step B of the Greedy-Exchange Algorithm can be implemented in
time O(|E|«(|E|, |V|)) by using the method described in Tarjan [9] for finding the
second best spanning tree. (Here f(m,n) is defined to be min {illog”n < m/n};
we note that, for m = n, a(m,n) < log f(m, n) < log*n.)

Acknowledgement.
We thank the referee for pointing out the relevance of references [3] and [4],

thus improving the time bound for Problem 1 to that above.

REFERENCES

. R. Chandrasekaran, Minimum ratio spanning trees, Networks 7 (1977) 335-342.

. J. Edmonds, Matroids and the greedy algorithm, Mathematical Programming 1 (1971) 127-136.

. M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network optimization

algorithms, Proceedings of 25th Annual IEEE Symposium on Foundations of Computer Science
(1984) 338-346.

4. H. N. Gabow and R. E. Tarjan, Efficient algorithms for a family of matroid intersection problems,
Journal of Algorithms 5 (1984) 80-131.

5. D. Gale, Optimal assignments in an ordered set: an application of matroid theory, Journal of
Combinatorial Theory 4 (1968) 176-180.

6. E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston,
New York (1976).

7. N. Megiddo, Combinatorial optimization with rational objective functions, Mathematics of
Operations Research 4 (1979) 414-424.

8. R. Rado, Note on independence functions, Proceedings of the London Mathematical Society 7
(1957) 300-320.

9. R. E. Tarjan, Sensitivity analysis of minimum spanning trees and shortest pathi trees, Information
Processing Letters 14 (1982) 30-33.

10. D. J. ‘A. Welsh, Kruskal's algorithm for matroids, Proceedings of the Cambridge Philosophical
Society 64 (1968) 3-4.

11. D. J. A. Welsh, Matroid Theory, Academic Press, London (1976).

w2

