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An O(n?) algorithm is described for solving algebraic assigment problems.

1. Introduction

In a recent series of papers [1]-[6]- Burkard and Zimmermann and others have
introduced an algebraic approach for solving certain network flow problems. This
provides a unifying framework within which otherwise distinct problems can be
tackled by similar methods.

In particular the algebraic assignment problem was introduced in Burkard et al.
[2]. In that paper an O(n*) algorithm was given for its solution. In Burkard and
Zimmermann [4] an O(n?) algorithm was constructed which is a generalisation of
an algorithm of Tomizawa [10] for the classic assignment problem.

This paper gives an O(n?) algorithm which is based on the algorithm of Dinic
and Kronrod [7].

2. The problem

The algebraic structure described here was defined in Burkard and
Zimmermann [4].

Let S be a non-empty set with a binary relation + and an order relation =
satisfying

(la) S is totally ordered by =;

(1b) (S.+) is a commutative semi-group;

(1c) S contains an identity e;

(1d) b=e implies a=<a+b for all a;

(le) a<b implies there exists ¢ =e¢ such that a+c=b;

(1f) a+c=Db+c implies a=b ora+c=b+c=c;
where a, b, ¢ € S throughout (as usual = denotes the inverse relation of =).

We shall denote the ¢ in (le) by b—a. It is unique because if b=a+c=a+c',
then ¢ =c¢' from (1f). If b= a, then we let b—a=e.
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Definition (general linear assignment problem (GLAP)). Let(S, +, <)satisfy (1) and
let ¢; €8 for i, je N={1,2,...,n}. Find a permutation i of the set N which
minimises

2. Cioty = Cram+ Copt* * Tt Crp
ieN

over all permutations ¢ of N.

Let MIN denote the minimum of this “sum’.

Several examples of GLAP are given in [2]. It suffices here to note that

(2a) if S =R the set of reals and + and =< have their normal interpretation, then
GLAP is the classic assignment problem;

(2b) if S =R U{—<<}, a + b =max (a, b) and =< is the usual ordering, then GLAP
is the bottleneck assignment problem [8].

One can deduce from the axioms (1) that the following decomposition is
possible: there exists a totally ordered index set I (whose order relation can be
written =< without confusion) and a function i:S — I satisfying:

(3a) a<b implies i(a)=<i(bh);

(3b) i(a+b)=max (i(a), i(b));

(3¢) i(a)<i(b) implies a+b=0b;

(3d) a+c=b+c and i(a)=i(b)=i(c) implies a = b.

This decomposition is described in [9]. For completeness we give a justification
for (3) in an Appendix.

For example (2a) I ={0} and i(a)=0 for a € S. For example (2b) I = R U{—o}
and i(a)=a.

For the next section we need the following simple lemmas.

Lemma 1. Let a, b, c €S satisfy
(4a) atcsb+c;
(4b) i(c)=min (i(a), i(b));
then a<b.

Proof. If i(c)<min (i(a), i(b)), then the result follows directly from (3c) and (4a).
If i(a)<i(b), the result follows from (3a). If i(c)=i(a)=1i(b), then a >b would
imply a+c=b+c and hence a+c =b+c and hence a = b. Finally if i(a) > i(b) =
i(c) we have i(a+c¢)=i(a)>i(b)=i(b+c) which implies a+c¢>b+c.

Lemma 2. a<b and c=d implies atc<b+d.

Proof. at+tc=<a+(b—a)+c+(d—c)=b-+d.
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3. The algorithm
The algorithm described is based on the following simple theorem:

Theorem 1. Let u;, v, w, €S for i, je N satisfy
(5a) w+vsc;tw;
(5b) i(w;)=<i(min).

If permutation s satisfies
(6) w;+vy6)= Cyy+ Wy for i€ N,

then r solves GLAP.

Proof. Let ¢ be any permutation of N, then

Y Gt 2 Wo= 2 Wi+ ) v, (using Lemma 2)

ieN ieN ieN ieN
= 2. u; + 2. Uiy
IeN ieN
= 2, Cig(iy T Z, Wy = 2, Ciwiy T Z. W i)
ieN ieN ieN ieN

Now let a=YicnCuiy D =2ienCow a0d € =Yicn Wom- (5b) implies i(c)=
min (i(a), i(b)). Now apply Lemma 1.

We now describe the algorithm which can be seen to be based on that of Dinic
and Kronrod [7].

Step 1:

w:=e, I€N,; wi:=e, JEN;

Ui 1= Cpp =min (¢;:ieN), jeN.
Define any : N — N U{0} which satisfies
(7a) (i)=yr(i")=j#0 implies i =i"=p(j), and
(7b) i=p(j) implies ys(i) # 0.
Note that given ¢ satisfying (7a) e.g. y =0 it is easy to satisfy (7b). For if i = p(j)

and (i)=0 one can put (i) =].
Step 2. Find i, such that ¢s(i;))=0-if no such i, exists output y(i) for
i=1,...,n as an optimal permutation and terminate’! —

m:=c;;+w, JEN; q(j): =iy JEN;

tol

I:={i;} and J:=9

Step 3: For each j¢J compute d; = m; — v; (see 10d) and let d, = min (d; : j¢ J).

! The optimal objective value can then be computed.
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Step 4:
wi=w+d, iel; w:=w+d, jel

If k¢ y(N) go to Step 6, otherwise

Step 5: For j¢JU{k}

(a) compute ¢; =d; —d, and then let mj=1v; +e¢;;

(b) compute f; = C,u; + W; — (4,4, +v;) and then let mi=v,+f;;
then m;:=min (m}, m7) and

q(j):=p(k) if mj>mj.
I:=1U{p(k)} and J:=J U{k} go to Step 3

Step 6: Define the bi-partite digraph G = (I, JU{k}, E} where
E={(q(j), ):jeJU{kRU{(G, p(j):je T}

Construct the unique path P = (iy, jo, . - ., is, J, = k) from i, to k using any labelling
method. Then p(j,): =i, and (i,):=j, for r=0,1,...,5 go to Step 2.

4. Validity of the algorithm

We observe first that (7) holds throughout. We observe also that u;, = e in Step
2 and that jeJ < p(j)el throughout. This is a consequence of ensuring (7b)
initially.

We next show that throughout the algorithm

(8a) uytv,<c;+w, IjEN;

(8b) UtV =cCoiyitwW, JEN
and that on each completion of Step 4

(9) Uqaoy+ Uk = Cquon + Wi
and that on each completion os Step 5

(10a) w,+m;<c;+w, i€l jélt;

(10b) u,tv=cupitw, JEJ;

(10¢) uyp+m=copit+w, JEJ;

(10d) mj=v;,, jéJ.

It is trivially true that (8) holds on completion of Step 1. It is also trivial (given
u;, = e) that (10) holds on completion of Step 2.

We now show that these relationships hold after the updates in Step 4, 5. We
use to  to indicate an updated value. (Note that the value of v; is constant
throughout.)

ieljed, &+v=u+d +v,<c;+w+d,=c;+W;
ielj¢l, di+tv=ut+dty<utd+ty=w+msc;+w =c;+W;

igLjeN, +uy=u+v<c;+w=c;+W.
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Thus (8a) remains true

A

J€J, U@t =yt d U =cpgy W+ d =c¢

p(i) pG)i pii T Wis

JES, it = Uy 0= Cpp T W=

o) T Wi

P
Thus (8b) remains true.

fgey T Uk = Uggey + di + U = Ugey + M = Cauor T Wie = Cquone T Wi
Thus (9) is true.

ieLj¢l], G+m<su+d.+tmi=u+msc;+w=c;+W;

- )I A W= — o
JEJ,  lpay T 1y < Upao+ MY = Coaoi T Wi = Couoi T Wi

Thus (10a) remains true.

jed, dpty=uptdty=c

ati T W+ = Cqpi + Wi

This together with (9) implies (10b) remains true.

; e i . _ ,
JEJ, gy MG = gy dic + M= Ugy+ My = oy T W) = Cqipi + W

or

e | | SPRRTRRT e I, e
= Uy T M = G T W = Couyi T W

Thus (10c) remains true. Inequality (10d) remains true because ;=
v; +min (e, f;).

We next show that path P exists in Step 6. We can show that on completion of
any Step 4 a path exists from i, to k if G is defined as in Step 6.

On the first execution of Step 4 after a Step 2 we have P =(i,, k). Assume
inductively that paths exist up to a certain execution of Step 4. Now either
q(k)=1i, and P=(iy, k) or q(k)=iel It follows that there exists keJ with
f:p(lE). By assumption there is a path P from i, to k and then P=(P, i, k).

It follows from (9) and (10b) that (8b) continues to hold after ¢ and p are
changed in Step 6.

The algorithm must terminate as each execution of Step 6 increases the number
of indices i such that (i)#0 by 1 and furthermore Steps 3-5 can be gone
through at most n times before jumping to Step 6.

Step 1 can be completed in O(n?) time and each of Steps 2-6 can be completed
in O(n) time.

There can be no more than n executions of Step 6 and associated with each of
them there is 1 execution of Step 2 and no more than n executions of Steps 3-5.

Thus the algorithm terminates in O(n?) time.

It follows from (7a) and (8) that on termination (5a) and (6) hold.

It remains only to verify (5b). It holds initially as i(e)=<i(a) for ae S (see
Appendix). So assume it holds prior to execution of Step 4.

Now for j¢J m; =v; = v, +d; implies i(d;)=<i(m;) and (10a) implies that i(m;)=<
max (i(¢;), i(w;)) for i € I. The induction hypothesis implies i(w;)=<i(min).
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Therefore i(d,)=<i(min) or i(d,)<min(i(c;):iel, j¢J). Assume the latter
inequality. Now |I|=|J|+ 1. It follows that for any permutation ¢ there exists
te N such that tel, ¢(t)¢J. Thus i(d,)<i(cw) and hence i(dp)<i(¥;cn Cpiy)
and so again i(d,)=<i(min). Thus

Theorem 2. The algorithm described above finds an optimal permutation in O(n?)
time.

Appendix

Let the relation p on S defined by
apb<—<>a=b or a+bé¢{a, b}

p is clearly reflexive and symmetric.

(A1) p is transitive. Suppose apb and bpc and b# q, c.
atc=a—a+b+c=a+b—b+c=b or a+b=a (contradiction),
a+tc=c—ctat+tb=c+b—c+b=c or a+b=b (contradiction).

Thus p is an equivalence relation.

(A2) a<b<c and b# e and apc — apb.
atb=a—a<el(elseatb=b>a)— b=e (addinge —a toboth sides);
a+b=b—a+c=a+b+(c—b)=b+(c—b)=c (contradiction).
As usual let [a] denote the equivalence class of a.
(A3) ata=a—[al={a}. lfa# b, thenatb=a+a+b—a+b=bora+b=a.

We note next that bse—a+b=<aasa=a+b+(e—b)=a+b. We note also
that a+b=e—a<cecorb=secorb=secasa b>e—at+tb=a>e.

(A4) a#b and apb and a+b+#e
or — apla+b)
a=band a+a# a.

Case 1: a>e>b—a>a+b>b— apla+b) by (A2).
Case 2: a=b>e—a+b>a—a+a+b>a. But

at+a+b=a+b—a+b=a or a+b=>b (contradiction).
Case 3: e>a=b
at+a+b=a—at+b=e¢;

atat+b=a+b—a=e (contradiction).
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If a or b=e there is nothing to prove.

(AS) a,b<€—>apb.
at+b=a—b=e.

Next let S;={aeS:a=<e or apb for some b<e}. Define I ={S,}U{[a]:a¢ S,}
and i:S—1 by

i(a)=S, aes,
=[a] a¢ So-

The ordering in I is defined by i, <i, if a€i,, bei,— a<b. This is well-defined
by (A2).

We next verify (3).

(3a) This is trivial.

(3b, 3c) Suppose first i(a)=i(b), then i(a+b)=i(a) from (A3) and (A4) and
the remark preceding it. Suppose next i(a)<i(b), then b>e and a+b=a or b. If
a+b=a and a <e, then b=e¢ (contradiction). If a=e, then a+b=b>a. Thus
a+b=>b is the only possibility.

(3d) The possibilities for a, b, ¢ are:

(i) c=e: a=>b trivially.
(if) c#e and a#c and apc: a+c#c from the definition of p and so a =b by
(1€).

(i) c#e and a=c¢: a+c=c implies [a]={a} and a>e as a<e implies
ap(e—a) and a# (e—a). Thus i(b)=i(a) implies b= a.
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