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This paper describes a polynomial time algorithm HAM that searches for Hamilton cycles
in undirected graphs. On a random graph its asymptotic probability of success is that of the exis-
tence of such a cycle. If all graphs with n vertices are considered equally likely, then using dynamic
programming on failure leads to an algorithm with polynomial expected time. The algorithm HAM
is also used to solve the symmetric bottleneck travelling salesman problem with probability tending
to 1, as n tends to ee.

Various modifications of HAM are shown to solve several Hamilton path problems.

1. Introduction

We shall give a polynomial time algorithm HAM that searches for Hamilton
cycles in undirected graphs. As one would expect this algirthm is not perfectly reli-
able, i.e. a graph G may have a Hamilton cycle but our algorithm may fail to find one.
However, if G is chosen at random then our algorithm has an asymptotically small
probability of faliure.

To be precise: let I'y denote the set of graphs wih vertex set ¥,={1, 2, ..., n}
and m edges.

We turn I, into a probability space by given each G¢I'y the probability

1/l =1/ [:] where N= [E] . Let G,,,, denote a graph chosen randomly from I'.
Now let

(1.1) m = nlogn/2+nloglogn/2+c,n

for some sequence c,. Komlés and Szemerédi [10] have shown that

0 if ¢, —»—oco
}im Pr(G,,,, is hamiltonian) = {e—¢™* if ¢,—¢
1 if ¢—>+e

= lim Pr(G,,,, has minimum degree at least 2).

n-+oo

——————
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Their proof is essentially non-constructive (see also Bollobés [2] or Frieze [7]
for alternative non-constructive proofs). Polynomial time algorithms which have a
high probability of finding Hamilton cycles have been described by Angluin and
Valiant [1] and Shamir [12]. The algorithm due to Shamir [12], HAMI, say, satisfies

lim Pr (HAM1 finds a Hamilton cyle in G, ,,) = 1

H—+ oo

if ¢,>(1+¢)loglogn for some fixed e=0. We first improve this to obtain the essen-
tially best possible result.

Theorem 1.1. (a) Let m be defined as in (1.1). Then

0 if c" —_—— OO
lim Pr (HAM finds a Hamilton cycle in G, ,) ={e *™* if ¢,—~¢
1

if ¢,—>e
(b) HAM runs in 0(n***) time.
(Note that result (a) cannot be improved, although (b) possibly could.)

We note that the algorithms described in [1] and [12] require the input graph
to have its adjacency lists given in a random order. In our algorithm this is not nec-
essary. Thus the previous algorithms can be viewed as randomised algorithms that
work well on random inputs while our algorithm is a deterministic algorithm that
works well on random inputs.

We next consider the case where each of the 2V graphs with vertices ¥, is
equally likely to be chosen. Under this model the probability of failure is so small
that, if we apply dynamic programming [9] when HAM fails, we obtain the following
result as a corollary of the proof of Theorem 1.1.

Theorem 1.2. There is an algorithm for solving the Hamilton cycle problem with polyno-
mial expected running time.

Our algorithm also has an application in solving the symmetric bottleneck
travelling salesman problem (BT1SP). An instance of B1SP is specified by the assign-
ment of a numerical weight to the edges of a complete graph K, on n vertices. The
objective is to find a hamiltonian circuit for which the maximum edge-weight is
minimised.

Let us assume that edge-weights are drawn independently from the uniform
distribution over [0, 1]. Karp and Steele [11] remark that Shamir’s algorithm can be
used to find a near optimal solution with probability tending to 1. (Throughout this
paper all limits are taken as n—< and this is implied if it is not explicitly stated).
A modification of our proof of Theorem 1.1 gives

Theorem 1.3. There is a polynomial time algorithm BOT satisfying
lim Pr (BOT solves BTSP exactly) = 1.

n—+oco

We shall also consider the use of HAM is finding hamilton paths. There are
3 cases to consider:
(1) find a Hamilton path from vertex 1 to vertex n,
(2) find a Hamilton path from vertex 1 to any other vertex,
(3) find a Hamilton path without specifying either endpoint.
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Let a Hamilton path satisfying the condition (i), i=1,2,3, be of type i
Then we can construct simple modifications HAMPi to HAM, i=1, 2,3, such
that the following result holds.

Theorem 1.4. Let m be defined as in (1.1). Then
lim Pr(HAMPI finds a Hamilton path of type i in G,,,) =

n—sco

= lim Pr(G,,,, contains a Hamilton path of type i) =

n=+oo

= lim Pr (G, ,, contains = i—1 vertices of degree 1) =

n-—-co

0 lf Cpy > —oo
={e~*(1+A+...+4"Y) if ¢,~c where A=e %
l i_f cﬂ —_— -|—oo‘

We can also use the algorithm to find Hamilton paths between all pairs of
vertices. A graph is said to be Hamilton connected if it contains a Hamilton path
joining each distinct pair of vertices.

Theorem 1.5. Let m= nlogn/2+nloglogn+c,n. Then

lim Pr(G,,, is Hamilton connected) =

n=-=oco

= lim Pr(G,,,, has minimum degree at least 3) =

n-—-co

0 if ¢,>—e
=1e *? if ¢,—~c, where 1=e"%
1 if ¢, > +oo.

2. Algorithm HAM

The following idea has been used by many authors: given a path P=(v,, v,, ...,
..., 0) plus an edge e={v;, v;} where 1=i=k—2, we can create another path of
length k—1 by deleting edge {v;, v;+1} and adding e. Thus let

ROTATE (P, €) = (U1, Ugy «uuy Ujy Ugs Ug—1s «es V1)

The algorithm we describe is based on ideas in the proof used in [6]. It pro-
ceeds by a sequence of stages. At the beginning of the k™ stage we have a path P,
of length k, with endpoints w, and w;. We try to extend P, from either w, or w,.
If we fail but {w,, w;}€E then connectivity tells us that we can find a longer path.
Failing this, we do a sequence of rotations which creates new paths that we can try to
extend or close. We apply the same construction to all these paths and so on until
either we have succeeded in obtaining a path of length k+ 1 or we have exceeded a
certain length of rotation sequence. We now give a formal description:

pid
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Algorithm HAM
Input: a connected graph G=(¥,, E) of minimum degree at least 2.

begin

let P be the path (1, w) where w=min {v: {l, v}€E};
k=1

L1 begin {stage k begins here}

Q=P s:=1; t:=1; 6(04):=0;

Rermark: §(Q;) is the number of rotations in the sequence constructing Q, from

1

end
end

repeat
let path Q, have endpoints w,, w; where wo<wy;
for i=0,1 do
begin
Suppose that the edges incident with w; and not contained in Q; are
{Wis X1}s «oes {wi X,} Where x;<xp<...<Xxp;
for j=1 topdo
if x; is not on Q; then
begin
P’I’-"‘l:: Q3+ {W;, xj}; {exten;ﬂ.on}
k:=k+1; goto L1
end
else if x;=w,_; then
begin
let C be the cycle Q,+ {wo, w1};
if C is a Hamiltonian cycle then terminate successfully
else
begin
starting from wy, let u be the first vertex along Q, which is adjacent
to some vertex not in C; let v be the lowest numbered neighbour
of u not in C and let u, and u, be the neighbours of # on C where
u,<uy, then
P =C+{u,v}—{u,u,}; ki=k+1;
goto L1 {cycle extension}
end
end clse
begin
t:=t+1; Q,:=ROTATE (Q,, {wi, x;}); 6(Q:):=6(Q,)+1
end
{next j}
end {next 7}
si=s5+1
until 6(Q,)=2T+1;
{where T=[log n/(logd—loglogd)|+1 and d=2m/n}
terminate unsuccessfully
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We now introduce some notation used in the analysis of HAM. Suppose that
HAM terminates unsuccessfully in stage k on input G. Let END (G)= {v: there
exists, in stage k, a path Q; with v as an endpoint and 6(Q,)=t, 1=r=T. For
x€END (G) let END (G, x)={v: there exists, in stage k, a path Q; with x, v as
endpoints and 6(Q,)=t, 1=t=2T}. We note that

(2.1) G cannot contain an edge {x, y} where x€¢ END (G) and y€END (G, x).

Consider P,, the initial path in stage k. It is the final path in a sequence
PO=p,, PO P® _  PM=P where PU+D is obtained from P® by a single
extension, cycle extension, or rotation. Let W(G)={edges in P®, P®, ., PAO}U
U{{wo, w1}: HAM executes a cycle extension on a path with endpoints w, and wi}.
For XSE let Gy=(¥,, E—X), we can then deduce.

Lemma 2.1. Suppose that HAM terminates unsuccessfully in stage k on input G. If
XS E—W(G) then HAM will also terminate unsuccessfully in stage k on Gy.

[On input Gy HAM will actually generate P, at the start of stage k via the
same sequence P©, PO~ P3)]
The following inequality is straightforward:

(2.2) W(G)| = n(2T+2).

3. Proof of Theorems 1.1 and 1.2

We say that an event A,, depending on n, occurs almost surely (a.s.) if
lim Pr(4,)=1.

e We now prove a structural lemma concerning G=G, ,. Let d=2m/n as
in HAM. A vertex is small if deg (v)=d/20 and large otherwise. For SCV, let
N(S, G)={we¥,—S: there exists v€S such that {v, w}€E}.

Lemma 3.1. The following statements hold a.s., provided c,+>— <:

(@) G,,m contains no more than n*® small vertices.

(b) G, does not contain 2 small vertices at a distance of 4 or less apart.

(c) G, . contains no vertex of degree exceeding 5d.

(d) There does not exist a set of large verices S with |S|=n/d and |N(S, G)|=
=d|S|/300.

Proof. It is much easier to work with the independent model G, , which is a random
graph with vertices ¥,, in which each possible edge is independently included with
probability p and excluded with probability 1—p. It is well known that if p=m/N
then G,,, and G, , have similar properties. We shall calculate with G, ,, p=m/N
and translate our results to G, ,,.

Let E, , denote the (random) set of edges in G, ,. We note first that |E, ,| is
distributed as a binomial random variable with parameters N, p and that conditional
on |E, |=m, G, ,is distributed as G, ,,. It follows from Stirling’s inequalities for
factorials that

(3.1) Pr(|E,, | = m) = (1—-0(1))(N/(2nm(N—m)))'/? =
= (1—o0(1))(2/aN) 2,
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Also for a graph property A
(32)  Pr(G,,, has 4) = 3 Pr(G,,, has 4||E, | = m") Pr(|E, | = m’) =

= %‘Pr (G,,m has A) Pr (|E, | = m’).

Thus from (3.1) and (3.2) we have
(3.3 Pr(G,,, has A) = (1+0(1))(nN/2)}2 Pr (G, , has A).

In our proof we will often use non-integral quantities where we should really
round up or down. It will be clear that such aberrations do not affect the validity of
our arguments.

(a) If G,,, has =n"/3 small vertices then there exists a set S, |S|=n"? such
that each vertex of S is adjacent to no more than d/20 vertices of ¥,— S. Thus

. n\ |42 (n—s y
(3.4) Pr(G,,,has = s = n'® small vertices) = [s] [ > [ k ]p"(l ~p)("“‘”] =

K=0
= (ne/s)*(c((n—s)20ep/d)**® exp (— 19d/20+ sd/n))*
(3.5) = exp (—n'2d[12)

using d=logn. (Note that the summation in (3.4) is dominated by its last term).
Thus, using (3.3) Pr(G,,, has=n'/3, small vertices)=0(n exp (—n'd/12)).
(b) Let A4, denote ‘there exist 2 small vertices at a distance =4 apart’. Then

(3.6) .
n [ (n—2 k n—k—2 3.4 2 2 5.4, —1.5d
Pr(G,,has )= || 2 | , |7 (1-P) (n*p*+n*p®+ np*+ p) = n°ple=1-%,
k=0

For p=2logn/n we can use (3.3) and (3.6). For smaller p in the range
log n/n=p=2log n/n we need a bit more work. It follows from (3.2) that there exists
m’, m—(nlog®n)2=m’=m such that Pr (G, ,, has 4,)=3n°p'e~1%.

Now G, ,, is obtained from G, ,, by adding m—m’ random edges. Thus
Pr (G, , has 4,)=Pr(G,,, has 4,)+mn, Pr(G,,, does not have 4,) where ==
=Pr (one of the m—m’ added edges meets a vertex that is within distance 1 of a
small vertex). That 7, is o(1) follows from (a) and m—m’=(nlog?® n)'/.

(c) Pr(G,,, has a vertex of degree= Sd)én(snd] p=n(e/5)™.

Now use (3.3).

(d) We prove the result for G=G, ,, the result for G, ,, follows from (3.3).
For a set KCV, let Ag be the event that [N(K, G)|=«|K|d, where a=1/300.

We first consider |K| large. Suppose first that n''=k=|K|=n/d. We prove a
stronger result than needed. Now

Pr (there exists K, |K| =k, and 4;) =

=a=() 3 ("7 ma—pr-

t=0
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where p,=(1—(1—p)*)=kp=1 is the probability that a vertex not in K is adjacent
to at least one vertex of K, if |K|=k. For large n, akd=(n—k)p,/2 and so for some
constant ¢=0

e ——
= c(ne/k)*(neukd)™ (kp)™@ exp (— kd +k+akd) =
= c((ne¥/k) (e?a)* e =
= 0(n~?) for any constant y >0,

provided n*!'=k=n/d.

For 1=k=min (n"!, n/d) we use two methods of proof which cover the
range of possibilties. We first assume that p=0(n~%"). If there exists a set K ot
large vertices such that A, occurs then, by considering T=KU N(K, G), there exists
aset T, |T|=t, d20=t=n"'(1+ad) which contains at least 2¢ edges. 1hen for some
constant ¢=0

. 2
Pr(there exist sucha T') = ¢ >/ [Z] [12/12] Pl —p)i—2 =
t
= > (ne*tp¥16) =
t

= 0(n~") for any constant y > 0,

We finally consider p=n~—%% We independently orient the edges of G ran-
domly to obtain a digraph G, i.e. if {u, v}€E, , then we direct from u to v with
probability 1/2 and from v to u with probability 1/2. Let B be the event ’there exists
v€V, such that vis large in G but has outdegree =d/50 in G’. Since d=n’? we find
Pr (B)=0(n"") for any constant y=0. Suppose then that B does not occur and A
occurs for some small set K of large vertices. Then there exists a set K all of whose
vertices have outdegree =d/50 in G’ for which the outdegree of the set K is no more
than «|K|d. Then if k=|K]|

. n\( n akd k
Pr (there exists such a K) = [k] [akd] {(d/SO] (p/2)‘”5“} =

= 0(n~7) for any constant y > 0.

Let I''={G€TI,: G is connected, has minimum degree at least 2 and satis-
fies all the conditions listed in Lemma 3.1}. Suppose that HAM terminates unsuc-
cessfully in stage k on G, ,,. Now let XCE be deletable if:

(i) no edge of X meets a small vertex;
(ii) no large vertex meets more than d/1000 edges of X;
(iii)) XNW(G)=0.

Lemma 3.2. Suppose HAM terminates unsuccessfully in stage k on G=G, . €I};.
Suppose XS E is deletable. Then for, n large,

(3.6) [END (Gy)| = n/1000;
(3.7 |END (Gy, x)| = n/1000 for x¢END (Gy).
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Proof. Consider the execution of HAM on Gy. From Lemma 2.1 we know that HAM
will start stage k with the same P, as for G and terminate unsuccessfully in this stage.
Suppose P, has endpoints w, and w;. Let S,={v: v is large (in G) and there exists
a path Q; with endpoints w,, v such that §(Q,)=t}. We prove (3.6) by showing that

(3.8) | | L_Tj 5,| = n/1000.

We show first that, for n large, S;#0. Let x,, X, ..., Xx; be the neighbours of
wy in Gy where {x,, w;} is an edge of P,=(Q,. Let y; be the endpoint, other than
wo, of ROTATE (P, {w;y, w;}) for i=1,2, ..., h.

Case 1: w, is small.

Then h=1 as G€I, and X is deletable. Also y, is large (Lemma 3.1(b))
and so y,€S;.
Case 2: w, is large.

h=d[20—d/1000—1 for n large. Also at most one of y;, ys, ..., 5 can be
small (Lemma 3.1(b)) and so |S;|=h—1>0 for n large. We show next that, for n
large,

(3.9 |S,| = n/d implies |S,.,| = d|[S,|/1000.
For each vertex v€S, choose one path Qg with endpoints w, and v such
that 8(Qy.)=t. Consider now pairs (v, w) where v€S, and weW (v)=N({v}, Gy).

If {v, w}isnot an edge of Oy, let x(v, w) be the endpoint of ROTATE (Qy), {v, w})
other than w,. If x(v, w) is large then x€S,,,. Let

(@) {v, w}is an edge of Q)

OR
1 if (b) x = x(v,w) is small
2 (v, w) = OR
o W)= (©) {x, w} is not an edge of P.

0 otherwise

Now for each v€ S, there are at most ¢+2 w’s such that a(v, w)=1(1 for
ech of (a) and (b) and ¢ for (c) as Qy, is obtained from P, by ¢ rotations and hence
contains at most 7 edges not in P,). On the other hand, for each we N(S,, Gx) there
can be at most 2 x€S,,; such that for some v€S,, x=x(v,w) and a(v, w)=0,
since x will be a neighbour of w on P,. Thus

IS, 41l = |{x (v, w): vES,, weW(v) and x(v, w) is large}| =
= |{x(v, w): vES,, weW(v) and a(v, w) =0} =
= |{wEN(S,, Gy): there exists v€S, with a(v, w) = 0}|/2 =
= (IN(S,, GOl —(t+2)IS )2 =
= (|N(S,, G)| —(d/1000+¢+2)|S,])/2 =
= (d/300—(d/1000+T +2))[S,l/2 =
=d|S,|/999 for n large.
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Since S;#0 and (3.9) holds, we know that for some t=7T—1 that |S |=n/d.
Let S'S S, be of size [n/d]. Applying the same argument as used to prove (3.9),
using S” in place of S, we have |S,.,|=d|S’|/999=n/1000 for n large. This verifies
(3.6). To prove (3.7) consider x€ END (Gyx), choose a path Q=0Q, having x as
one of its endpoints and 8(Q,)=T and then redefine S,={v: v is large (in G) and
there exists a path Q, with endpoints x, v such that Q is obtained from Q, using ¢
rotations with x as a fixed endpoint}. Now apply the argument used to prove (3.9),
using Q, in place of P, to prove (3.7).

We can now prove Theorem 1.1. Now it is known (see for example Erdds
and Rényi [5]) that if ¢,+»— < then G, , is a.s. connected and in general

2,

Pr(G,,, has a vertex of degree 1) ~ 1 —e—¢~

Thus if ¢,~—<, G, , a.s. has a vertex of degree 1 and so there is nothing to prove.
If ¢,+»—< then, using Lemma 3.1, we have

(3.10) ITy] = (1—0(1))e=¢"%n|T,|.

Now let I's={G: GeI'y, and HAM terminates unsuccessfully on G}. It
follows from (3.10) that to prove Theorem 1.1. we need only show that

@3.10) lim |13l/|To| = 0.

To prove (3.11) we use a colouring argument developed in Fenner and Frieze
[6]. Let now w=[Ad] for some constant A>0. For each G¢€TI, let (G,)), j=1,2, ...,

w
remaining m—w edges blue. Let X=X(G,j) denote the set of green edges. Let

J= m] enumerate all the possible ways of colouring w edges of G green and the

1 if (3.12a) HAM terminates unsuccessfully on G and Gy;
(3.12b) there does not exist e = {x, y}€ X such that
x€END(Gy) and y€END (x);
(3.12c) |END (Gy)| = n/1000 and |[END (Gy, x)| = n/1000
for all x€END (Gy)
0 otherwise.

H(G,j) =4

We show first that for Ger,
J
3.13)  Ja(G,j)=(1-o(1) [?:,1] where m; = m—Q2T+2)n = (1—o(1))m.
Jj=1

To see this let GEI', and let HAM terminate unsuccessfully in stage k on G.
As GerI,, it follows from (2.1), Lemma 2.1 and Lemma 3.2 that if X=X (G, )
is deletable then a(G,j)=1. Let G’=(V’, E") be the subgraph of G induced by
the large vertices and those edges not in W (G). Then (V')=n—n'/® and |E’|=
=m’'=m—n(2T +2). The number of deletable sets is the number of ways of choosing
w edges from E’ subject to the condition that no vertex in ¥ has more than d/1000
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of its incident vertices chosen. Using Lemma 3.1(c) it is not difficult to show that this
is (1—o(1)) [’:] which implies (3.13). (Choose edges of E” independently with prob-
ability 4A/n. One almost surely chooses more than w edges. Furthermore the
number of edges chosen incident with a given vertex is dominated stochastically by
a binomial random variable with parameters [5d| and 44/n).

On the other hand, let H be a fixed graph with vertices ¥, and m—w edges.
Let b(H)=|{(G,j): H=Gx, G€I, and a(G,j)=1}|. We see that

(3.14) b(H)é[N :_:,er] where N’=[§]—[w 120001].

If (3.12a) or (3.12b) do not hold for H (replace Gx by H in these statements)
then by=0. Given (3.12a), (3.12b) there are at most N’'—m+w edges to choose
from in order to unsure (3.12c).

Now
3 Za(G.)= 3 bH).
Thus "
m I .
(1—o)(})ir = 3 Za@.p by @13
=2 f a(G,j) =
GETy j=1
= %‘ b(H) =
= [N ’_wm”] [mf w] by (3.14)
Thus

s rard = o) (V) () A (V) =

= (1+0(1))eN-NIN(1+o(1))* =

= ¢~ A/1000001  for p, large.

We can take any constant value A=0 here and this will complete the proof
of Theorem 1.1(a). To prove part (b) we note that on GéI';, HAM executes
0(n(5d)*T)=0(n***) rotations. Thus, as given, HAM runs in time O(n**%) with
probability 1—o(1). We can easily make it run in time O (n**+*) by imposinga suitable
time limit.

We now turn to the proof of Theorem 1.2. If all graphs are equally likely to
be chosen then this is the same model as G, ,, p=1/2. We use (3.2) where property
A will mean that the given graph is connected, has minimum degree at least 2 and
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yet HAM terminates unsuccessfully. We will show that
(3.16) Pr(G,,12 has 4) = o(1/2").

Since Dynamic Programming requires time O (n?2"), this will prove the theo-
rem. Using Theorem 1. 7(i) of [3], for the tail of the Binomial Distribution we see
that

(3.17) Pr(||E,, /ol —n?/4| = (n*log n)'/2) = o(1/3").
Thus, using (3.2), we need only prove
(3.18) Pr(G,, . has4) = o(1/2") for |m’—n*4| < (n®logn)'.

Letting I';, i=0, 1,2 refer to G,,,  we define I'i={G€l',: G does not sa-
tisfy all the conditions of Lemma 3.1} and I',={G€l,: G is connected, has mini-
mum degree at least 2 and yet HAM terminates unsuccessfully on G}. Then
Pr (G, has A)=|T4|/|Fo| = |T|/IFo|+ T 4= Til/ITo| = |T1/ITo| + |l /IT|. Now let
d’=2m’[n=(1—0(1))n/2 in our range of interest. We see that, for large n, conditions
(b) and (d) of Lemma 3.1 are always true for G, ,. It follows from (3.3), (3.5)
and (3.6) that |I'j|/|[o|=Pr (G, wE€I1)=0(nexp (—n*?/25)+n® exp (—0,74n))=
=o0(1/2"). Putting A=2000002 in (3.15) shows that |I,|/|[\|=0(e™") and this
completes the proof of Theorem 1.2. |

4. Algorithm BOT

We turn now to BTSP. Given an instance of this problem, let the edges of
K, be ordered e, e,, ..., ey where c(e;)=c(e;))=...=c(ey), c(e) being the ‘cost’
of edge e. Let E,={ey, e, ..., ¢} and let G,=(¥,, E;). Note that G, has the same
distribution as G,,.

Algorithm BOT

begin
let p=min {r: G, has minimum degree at least 2};
apply HAM to G,

end

It is clear that if HAM terminates successfully on G, then BOT solves BTSP
exactly. We cannot apply Theorem 1.1. directly as G, as defined in BOT above has
a slightly different distribution to G, , conditional on minimum degree 2. Let m’=
=|nlogn/2+nloglogn/2—nloglogn/2] and m"=m"+[nlogloglogn]. It is
known that G, a.s. is connected and has minimum degree 1 and that G, a.s. has
minimum degree 2. Thus m’<pu<m” a.s. Now for m’<m=m" define the events:

A;, = {G,, is connected and satisfies the conditions of Lemma 3.1, where
d=log n}, ’

B, = {4,, and G,, has minimum degree at least 2},

C,, = {G,, is connected, has minimum degree at least 2 and HAM terminates
unsuccessfully on G, }
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Then, where, M={m: m'<m=m"},
4.1) Pr (BOT fails) = Pr( U C,)+o(l) =
meM

'éPr(( U Cm)ﬂ( ﬂ A,,,))—f—Pr( U A,)+o() =

= > Pr(C,NA )+Pr( U, A,)+o(l) =

mEM

== Pr (Cp1B,) +Pr (. U A)+o() =

= 3 Pr(CplBy)+Pr( U, A,)+o(1).

meM

For x€{a,b,c,d} let A,(x)={G, satisfies condition x of Lemma 3.1}
and let D,={G, is connected}. Now

(4.2) Pr( L_,IM D,) =Pr(D, 1) = o(1).
meg

The calculations in Lemma 3.1 show that

(4.3) Pr( U (A.(@)UA4,(d)) =O0(n"") foranyconstant o >0.
meM

(Although Lemma 3.1 specifically excludes c,—~— <o, the calculations are still valid
for ¢,=—logloglogn.)
(4.9) Pr( U A,,(c)) = Pr(4,-(c)) = o(1).
By considering the addition of the m+ 1’st edge we obtain Pr (Ap+1(B)N A, (B)N
NA4,(@)NA4,(c)=0((logn)*n=*?).  Thus Pr( U (Apm+1(B)N A, ()N A, (a)N
NA,(c))=o0(1). It then follows from (4.3) that Pr( U (A, +1(b)NA4,,(b)))=0(1)

and hence

(4.5) Pr( U Au(b) = Pr (s O)Pr(U (Ania®) N4, (b))
(4.2)—(4.5) yield
(4.6) Pr( U, An) = o(D).

Now in the notation used to prove Theorem 1.1, we have Pr(C,|B,)=
=|Ty|/ITy|= (Il /ITo)) (ITo|/| Ty |)=n—*/1000001 [og ; for any constant A=>0, using
(3.15) and (3.10). By choosing A=2000002 we obtain

@7 S Pr(CulBy) = o(1).
meM

Theorem 1.3 now follows from (4.1), (4.6) and (4.7). 1}
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5. Hamilton Paths

We shall view the problem of finding a Hamilton path from vertex a to vertex
b in a graph G as that of finding a Hamilton cycle in the graph G(a, b)= v (G),
E(G)U{{a, b}}) that contains the edge {a, b}. To ensure that HAM searches for a
Hamilton cycle containing a particular edge {a, b} we make some minor modifica-
tions:

(1) Initialisation

Let G=G,, .(a, b). Let H, be the graph induced by the edge {a, b} and all
edges incident with vertices of degree 2 in G. If H, contains a cycle or a vertex of
degree 3 or more then HAM terminates successfully (success means that HAM has
been able to decide as to whether or not G contains a Hamilton cycle using the edge
{a, b}). Otherwise, if H, consists of vertex disjoint paths, then we say that the degree
2 vertices of G,,,, are compatible with {a, b}. In this case we initialise P, to be the
component of H, containing {a, b}.

(2) Rotations
We omit any rotation that involves deleting an edge of P;.

(3) Cycle Extensions

If HAM wishes to do a cycle extension but can only do so by deleting an edge
of P, then HAM will terminate unsuccessfully, otherwise HAM will choose the
“first” possible ‘legal’ cycle extension. Note that HAM will not terminate unsuccess-
fully in (3) if

(5.1) G,,,, does not contain a path P of length 3 or more which has at most 2 vertices
which have neighbours not in P.

We call HAM with the above modifications HAM (a, b).

Next let I'y(a, b)={G, .: (1) G,,,, satisfies all the conditions of Lemma 3.1
as well as (5.1), (2) G,, .(a, b) has minimum degree at least 2}. Note that it is straight-
forward to show that G, , a.s. satisfies (5.1).

We next indicate the proof of

Lemma 5.1. Pr(HAM (1,n) terminates unsuccessfully |G, n€I'1(1,n))=0(n"")
for any constant y=0.

Proof. (Outline) The proof of Lemma 3.2 requires only small modifications. Consider
first the proof that S;>0. Only Case 1 requires a mention. If P,>(1,n) then by
condition (b) of Lemma 3.1 all neighbours of w, yield legal rotations. If P;=(1, n)
there is only a problem if w, is of degree 2 and 1 or n is a neighbour of w;. But then
we have the contraction that w; is a vertex of P, or 1, n are both neighbours of w;.

For the rest of the proof of Lemma 3.2 the only change is that 7+ 2 is replaced
by t+3. The colouring argument that follows Lemma 3.2 goes through with
only trivial changes, particularly if we separate the cases {1, n}€E(G,,,) and
{1’ n}&E(Gn.m)'

Since A can be chosen arbitrarily large in this argument, we have the stated
O(n~") probability of failure.

Theorem 1.4 and 1.5 are consequences of
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Lemma 5.2. Let m=(nlog n+nloglog n)/2+c,n where c,=—0(1). For 1=i=j=n
let A(i, ) denote the event that G=G,, (i, j) has minimum degree at least 2, the degree
2 vertices of G,,,, are compatible with {i, j } and yet HAM (i, j) fails to find a Hamilton
cycle in G using {i,j}.

Let
n—1 n
A=U U AG).
i=1j=i+1
Then
lim Pr (4) = 0.

n—-oo

Proof. Pr(4)=Pr (4 and G,,, satisfies the conditions of Lemma 3.1 and (5.1))+
n—1 n
+o()=Pr(U U (G,m€l(,j) and HAM terminates unsuccessfully))+
1

i=1 j=i+

+o(l)= [5] Pr(HAM (1, n) terminates unsuccessfully |G, ,€I';(1, n))+o(1)=0o(1). |

Theorem 1.5 follows immediately.

Theorem 1.4(1) follows from the fact that vertices 1 and n are a.s. large, and
have no degree 2 neighbours.

Theorem 1.4(2) and (3) follows from the above and the fact that a.s. no vertex
of degree 1 has a degree 2 neighbour.

6. Conclusions

The results of this paper show that the hamiltonian cycle problem can be con-
sidered to be well-solved in a prohabilistic sense. They can be extended to cover the
problem of finding disjoint hamiltonian cycles by following the approach described
in Bollobds and Frieze [4].

Indeed all one has to do is to repeatedly apply HAM and remove Hamilton
cycles. The proof that this works with the same limiting probability as that of having
minimum degree 2k can be obtained from the proof of Theorem 1.1 with only slight
modifications.

With a few minor changes to the proofs one can show that HAM combined
with Dynamic Programming has polynomial expected running time for G, , if
p>1-1/ 2. For smaller p we find that the probability that there are 2 vertices of
degree 2 which are close exceeds (1/2+¢)". However, by initially covering vertices
of small degree with vertex disjoint paths, if possible, we can obtain a polynominal
expected running time algorithm whenever p is a positive constant. Independently,
Gurevich and Shelah [8] have constructed an O (n) expected running time Hamilton
path algorithm for p constant. Subsequently, a similar result has been obtained by
Thomason [13]. In a future note we hope to show that HAM combined with Dynamic

Programming has O(n) expected running time for G, , if p>1— 1/y2.
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