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A restriction of the three-dimensional matching problem IDM. in which the
associated bipartite graph is planar, is shown to remain NP-complete. The restric-
tiom 1s inspited by that of Lichtensiein's planar 35AT (Planar formulac and their
uses, SIAM J. Compur, 11 (1982), 319-343). Like Planar 35AT, Planar 3DM is
principally a tool for use in N P-completensss proofs for planar restnctions of other
problems. Several examples of its applications in this respect are given.  © 1836

Avademic Pross, Inc

1. INTRODUCTION

In a recent paper, Lichtenstein [5] showed that a particular version of the
well-known satisfiability problem 3SAT is NP-complete. This version has
an unusual restriction, but it has proved to be a powerful tool in establish-
ing NP-completeness results for planar cases of many hard problems. In his
paper, Lichtenstein remarked that it would be useful to have an analogous
result for exact cover by 3-sets (X3C), and conjectured that this could be
done. Here we confirm a slightly stronger result, for a planar restriction of
three-dimensional matching (3DM), and give some indication of its useful-
ness. The reader is referred to [4] for general background on NP-complete-
NEss.
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2. PLaNar THREE-DIMENsioNaL MATcHING

Three-dimensional matching (3DM) is a “standard” NP-complete praob-
lem [4]. and is used routinely in proving NP-completeness results. An
instance comprises three disjoint sets R, B. ¥ with equal cardinality ¢ and a
set T of triples from R x B » Y. The question is to decide whether there is
a subset of g triples which contains all the elements of R, B. and ¥. We
may associate a bipartite graph with this instance, as follows. We have a
vertex for each element of R, B, and ¥ and each triple in T. There is an
edge connecting a triple to an element if and only if the element is &
member of the triple, This graph, G say. is bipartite with vertex bipartition
I. R\ B U Y. Wewill say that the instance is planar if G is planar. We
will show that Planar 3DM remains NP-complete. The proof is in three
parts. First we show that Planar 3SAT [5] remains NP-complete if exactly
one literal in each clause is required to be true (1-35AT). This is then used
to prove N P-completeness of planar exact cover by 3-sets (X3C [4]) which is
defined analogously to Planar 3DM. Finally we indicate how to modify the
reduction to obtain the NP-completeness of Planar 3DM.

LeMmMa 2.1, Planar 1-35AT is NP-complete.

Proof. By reduction from Planar 3SAT [5]. Suppose a typical clause in
the 35AT instance is C, = {Zp g0 2.}, where 2.z .z are literals. In the
associated graph 7, there will be an edge from C; to each of the variables
appearing in these three lterals, and this graph is planar, The 1-3SAT

instance is then constructed by replacing C, by three clauses
{z,.u;, 0.}, (Z,.u,w]}, {2, 0y, %}

containing four variables. It is casily verified that these three clauses have a
truth assignment with exactly one true literal in each clause if and only if C,
is satisfiable. This construction causes only a linear blow-up in the numbers
of variables and clauses. Note that it is not necessary to assume that C, has
three different literals for this substitution 10 be valid. (It may also be
observed that this reduction is not parsimonious [4], but can be made so at
the expense of one extra clause and variable for each C.) It remains only to
show that this construction preserves planarity. This is illustrated in Fig. 1.
Let (r; denote the graph constructed.

Lemma 2.2, Planar X3C is NP-complese.

£roof. By reduction from Planar 1-3SAT. The proof will be presented in
diagrammatic form, In these diagrams a dot will represent an element and a
small circle a 3-set. An edge joining an clement to a set indicates member-
ship (see Fig. 2). The reader should ignore the broken line appearing in




176 DYER AND FRIEZE

Fio. 1. {a) 3SAT instance; (b) 1-38AT instance.

some of the diagrams, until after the proof that Planar 3DM is NP-com-
plete.

A variable, v, say, in the 1-3SAT instance will he represented by a cyele
of 3-sets. If v; occurs r times in the instance (including negations) then the
cycle has 2r sets with each successive pair of sets sharing an element. This is
illustrated, in the case r = 3, in Fig. 3.

It is clear that any system of which this forms a part can have an exact
cover if and only if the “external” elements of this cycle are alternately
covered by sets of the cycle, with alternate external elements covered by sets
not in the cycle, Either alternation is possible. A successive pair of external
elements will represent the appearance of v, in a clause of the 1-3SAT
instance, and the two possible alternations of these two elements being
covered internally by the cycle or by sets external to the cycle will represent
v, being *true” or “false.” We now augment this cycle with r additional sets
and 2r clements by adding a 3-set to one of the external elements in each
pair as illustrated in Fig. 4. The three elements now correspending to an
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FIGURE 2

appearance of ¢, will be called a “connector.” and either all three, or none,
of the cunnecmr elements will be covered by sets of the augmented v, cycle
as v, is true or false. We take v, to be true if all three connector eleme,nla are
cov:‘:red by the cycle when v, appears uncomplemented in the corresponding
clause.

It is easily verified that negation is handled correctly. We must now
consider the clauses. Fach clause C, is represented by a copy of the
configuration shown in Fig. 5. This has twelve elements and nine sets,

Of the twelve elements, three are *internal” and the remaining nine are in
three groups of three. Each group of three will be called a terminal of C,.
The construction is then completed by identifying the three connector
elements for the appearance of v, in C; with one of the terminals of C,. Let
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Fig. 4. (a} o, appears uncomplemented in the corresponding clause; (b) v, appears
complemented tn the corresponding clause.
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Gy denote the graph comstructed. Since we are reducing from Planar
1-33AT and all our components are obviously planar, it is clear that we
have constructed an instance of Planar X3C. We have only to show that this
instance correctly simulates the 1-35AT instance. This amounts to showing
that there is an exact cover of the C, configuration if and only if exactly one
terminal is covered externally, when we restrict the covering such that either
none or all three of the elements in each terminal are covered externally.
Now, in this configuration, the three internal elements cach appear in three
of the nine sets, and no two appear in the same set. It follows that if this
configuration forms part of an exact cover by 3-sets, then exactly three of its
sets must be used and hence mine of its twelve elements will be covered
internally, Thus exactly one terminal can be left uncovered. Now it can be
verified easily from Fig. 3, using its symmetry, that if any terminal is
covered externally then the remaining nine elements can be covered inter-
nally. Thus there will be an exact cover by 3-sets for this Planar X3C
instance if and only if there is a satislving truth assignment for the Planar
1-35AT instance. This establishes the NP-completeness of Planar X3C,

It may also be noted that the instances of X3C constructed have the
property that each element is in either two or three sets. Thus Planar X3C
remains NP-complete under this restriction.

THEOREM 2.3.  Planar 3DM is NP-camplete.

Proof. An X3C instance is also a 3DM instance if the elements can be
“colored” red(R), blue{ 8), or yellow(Y) such that each 3-set is incident
with one element of each color. We will show how to modify the construc-
tion of Lemma 2.2 so that the instances admit such a coloring. First observe
that the v, cycles (as in Fig. 3) have a coloring in which all the external
elements are colored B. (Simply color internal elements alternately R, ¥).
Thus the connector elements can be colored so that the three elements each
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receive a different color, It is also evident that there is freedom as to which
clements are colored R, ¥, but the B element is fixed. We call this the fixed
connector clement. Now consider the clause of Fig. 3. This has a 3-coloring
in which the three terminals have elements colored (in left-to-right order)
RBY, BYR, and YRE. The three internal elements each receive a different
color. The problem now becomes apparent. When the connector elements
are identified with those of the terminals, the colors may not march because
of the ordering. Now, returning to Fig. 4, it is evident that we could match
the colors if we were free to choose the color of the fixed connector element.
Thus we have only to show that the color of the fixed connector mav be
changed from £ to R or Y without destroying the properties of the
construction. This can be done by augmenting the vaniable cycles (c.f, Fig. 3
to Fig. 4) with the configuration shown in Fig. 6 if the fixed connector
element needs to be colored other than B. (It will be “reflected” if y;
appears negated, similarly to Figs. 4a and b.) Let G, denote the graph
construcied, A coloring is shown which changes the color of the fixed
connector element to R, Similarly it may be changed to ¥ by interchanging
Y. R in this diagram, Thus using this component we can arrange that the
colors match at all terminals. We need only check that the configuration of
Fig. 6 behaves exactly like that of Fig. 4a in its effect on the way the
connector elements are covered. This can be easily verified from the
diagrams. This establishes NP-completeness of Planar 3DM, and again we
may note that every element occurs in either two or three triples.

We have proved the NP-completeness of Planar 3DM. However it must
be stressed that this does not imply NP-completeness for k-dimensional
matching (&4 DM) for k& = 4 by the simple argument used in the general
(i.e., nonplanar) case of this problem. This is due to the fact that this
argument involves an essentially nonplanar construction. Thus we cannot
conclude that Planar & DM is NP-complete for any k > 3, although we
conjecture that this is the case.
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Lichtensicin added the following extra condition for Planar 3SAT- a
simple cycle through all the vertices representing variables can be added
without destroying planarity.

Referring to Figs. 5 and 6 of [5] we see that the cycle added by
Lichtenstein can be diverted to go through all clauses as well as variables
without destroying planarity. Thus we can now assume that such a hamil-
tonian cycle A, has been added to G,. Using H, we will show that a cycle
through the vertices representing elements in Planar 3DM can be added
without destroying planarity.

Consider first the transformation from G, to G,. It is easy 1o see from
Fig. 1 that the visit of H, 10 C; can be replaced by a visit to the new
variables u,, v;, w,, x; of Fig. 1b. This can be done regardless of how the
cycle goes through €. We thus obtain a cycle H; through all the vertices of
G, which represent variables,

H, can then be transformed into a cycle through the vertices representing
elements in G,, using the constructions indicated by the broken lines in
Figs. 3, 5, and 6.

Though we make no use of this cycle in the examples here and in [3]. a
referee has suggested that it may be of some use elsewhere.

3. Examrres

We will present five, fairly simple, applications of Theorem 2.3. We prove
NP-completeness of some graph problems using reduction from 3DM. In
each case the reduction preserves planarity and hence we can conclude that
the problem remains NP-complete for planar graphs.

ExampLe 1. Partitioning the vertex set of a graph into tnangles. An
instance of this problem is a graph G = (V, E ), and we ask the question:
Does there exist a partition of V into Vi Vi, ..., ¥, such that G[¥]] is a
triangle for i = 1,2,..., p?

Proof of NP-completeness for planar graphs, Garey and Johnson [4, pp.
68-69] show that this problem is NP-complete using a reduction from
3DM. Starting with the bipartite graph associated with the instance (as
defined in Sect. 2 above), they replace the three edges incident to each triple
with the configuration shown in Fig. 7. They then show that the resulting
graph can be partitioned into triangles if and only if the 3DM instance
contains a matching. Since the transformation is clearly planar, Theorem 2.3
establishes the NP-completeness of this problem even when restricted to
planar graphs of degree at most 6.

In [3] similar proofs show that the following problems are hard for planar
graphs: partitioning the vertices into paths, stars, trees, or connected
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subgraphs with & (= 3 and fixed) vertices. See also Berman, Leighton, Shor.
and Snyder [1).

ExampLE 2, Fartitioning the edges of a graph into claws. An instance of
this problem presents a graph G = (¥, E), and asks: Does there exist a
partition of £ into E,, E,,..., E, such that each E, induces a subgraph of
& which is a claw (i.e., an 1somorph of K, ,)?

As far as we know, this result is new even for general graphs.

Proof of N P-completeness for Planar graphs.  Consider the bipartite graph
associated with an instance of Planar 3DM. Then each triple has degree 3.
We may also assume that each element has degree 2 or 3. We now maodify
this graph by adding a single edge 1o cach element of degree 3, and two
edges to each element of degree 2, as shown in Fig. 8. We now claim that
this graph has a partition into claws if and only if the 3DM instance has a
matching. Suppose there is a partition.

Since each element has at least one ncident edge which is also incident to
4 vertex of degree 1, each element must be the center of at least one claw if
the graph is partitionable. But each clement now has degree 4, and hence
will be the center of exactly one claw. When these claws are removed from
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the graph, the resulting graph G” will be such that each element has degree 1
in G". It now follows that the only way G* can be partitioned into claws is
for each triple to have degree 00 or 3 in G’. The triples having degree 3
induce a matching in the 3DM instance. Conversely if the 3DM instance
has a matching, this argument can be reversed to exhibit a partition of the
graph into claws. The obvious planarity of the reduction now gives the
desired conclusion.

It may be noted that this reduction actually proves a stronger result, that
the problem is NP-complete for planar bipartite graphs. By considering the
line graph of the bipartite graph constructed for Example 2, we obtain the
simple corollary that partitioning the vertices of a line graph of a planar
graph into triangles i1s NP-complete. In [3] similar proofs show that the
following problems are hard for planar graphs: partitioning the edges into
paths, trees, or connected subgraphs with k (= 3 and fixed) edges.

Exampre 3. Dominating set. An instance of this problem comprises a
graph & = (V, £} and a positive integer K = |I'|. The question is: Does
there exist a dominating set of at most K vertices in G, ie., is there a subset
V"€ ¥V with |F] < K such that every vertex of G is either a member of
or adjacent to a member of 77

Garey and Johnson [4] comment that they have shown this problem to be
NP-complete for planar graphs by reduction from VERTEX COVER.
However, since the VERTEX COVER problem is polynomially solvable for
bipartite graphs, it would not appear that their methods could give the
following result.

Proof of NP-completeness for bipartite planar graphs.  Again we consider
the associated bipartite graph for a Planar 3DM instance. Now we attach 1o
cach triple an independent path of two edges, as shown in Fig. 9. If the
3DM instance has 3¢ elements and ¢ triples, we set K = g + r. Now the
constructed graph has a dominating set of size at most X if and only if

FIGURE 9
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there is a matching for the 3DM instance, Suppose there is a dominating set
of size at most K. For each of the added paths ol length 2. one or the other
of the two added vertices must be in the dominating set. There is clearly no
loss in assuming that the vertex of degree 2 is in the dominating set, and the
vertex of degree 1 is not. Thus all the triples are now covered and we have
used ¢ vertices in the dominating set. We now have {o cover the elements,
We may assume that no element is in the dominating set, since all it could
now cover would be itself, and this could equally well be done by choosing
any triple in which it was contained. Thus there is a dominating set of size &
only if we can choose exactly g triples which cover all the elements. This
will induce a matching. (There is clearly no dominating set of size less than
K.} Again the argument can be reversed to construct a dominating set from
a matching. Since the construction preserves both planarity and bipartite-
ness, Theorem 2.3 gives the conclusion.

We are indebted to Pulleyblank for pointing oul the following application
of Theorem 2.3,

ExaMpLE 4. Minimizing set-ups in precedence-constrained scheduling.
We are given a set of n tasks N = {1,2,.__, »n} of unit time length, which
are 10 be processed on a single machine. There is an associated precedence
digraph D = (N, A), where (i, j) € A implies task i must precede task .
There is a fixed set-up charge if task i immediately precedes task j and
(i. j) & A. The problem is to find a sequence iy, i,... ., i, which minimizes
Nl =rsn(i, i )eAd)

This problem can be re-expressed in several WHYS:

(1) Finding the minimum number of arcs that must be added to an
acyclic digraph in order to produce a hamiltonian path.

A less obvious re-formulation, for a special case. is given in Chaty and
Chen [2].

(ii) If D is bipartite, with all arcs directed from one side of the vertex
partition to the other, then the problem is equivalent to determining the
maximum cardinality of an alternating-cycle free matching in the bipartite
graph D’ obtained by ignoring the orientation of the edges in D,

For the above formulation, Pulleyblank [6] has given the following
reduction. Given an instance R, B, Y. T of 3DM. one replaces a triple
¢ =1{(r, b, ¥) by the configuration shown in Fig. 10, This is clearly planar,
and furthermore has sufficient freedom of embedding in the plane that the
connections can be made without violating planarity. (For example, the
relative positions of the &, y elements can be interchanged without destroy-
ing planarity.) Thus it follows casily from Theorem 2.3 that the problem
remains NP-Complete when D is restricted to be planar.
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Exampre 5. Elimination degree sequence. An instance presents a graph
G =(V, E) and a sequence (d,, d,,..., d,y) of non-negative integers not
exceeding |F| — 1. The question is: Can we number the vertices of G with
the integers 1,2,....|V| so that, for each i, the vertex numbered i has
exactly &, higher-numbered vertices adjacent to it?

Proof of NP-complereness for planar bipartite graphs. The construction is
exactly that used for Example 2, and shown in Fig. 8. The sequence
comprises 4g 3's, followed by 114 — 2¢ ('s. (Note that the constructed
graph has 154 — 2t vertices.) Assume that we can number the vertices as
required. Now it is clear that all degree 1 vertices must have d, =0, and
hence all elements must have o, = 3. This leaves g vertices to receive
d,= 3, and these must be g triples which are numbered before all their
elements. But each element is numbered before all but one of the triples
which contain it. Each such triple has o, = 3. As there are only g triples
with o, = 3 these must induce a maiching, Again the argument is reversible.

The same construction and argument gives the NP-completeness of the
following problem: Given an undirected graph G and a set § of nonnegative
integers, can we direct all the edzes of G so that each vertex has an indegree
in §7 It remains NP-complete if we have to direct the edges to form an
acyclic graph by the same construction, and this version i obviously very
close to the elimination degree sequence problem.

We believe that our main result can be used to give easy NP-completeness
proofs for planar cases of many other problems.
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