
Efficient algorithms for three-dimensional

axial and planar random assignment problems

Alan Frieze∗ Gregory B. Sorkin†

October 6, 2013

Abstract

Beautiful formulas are known for the expected cost of random two-dimensional assignment
problems, but in higher dimensions even the scaling is not known. In three dimensions and
above, the problem has natural “Axial” and “Planar” versions, both of which are NP-hard. For
3-dimensional Axial random assignment instances of size n, the cost scales as Ω(1/n), and a
main result of the present paper is a linear-time algorithm that, with high probability, finds a
solution of cost O(n−1+o(1)). For 3-dimensional Planar assignment, the lower bound is Ω(n), and
we give a new efficient matching-based algorithm that with high probability returns a solution
with cost O(n log n).

1 Introduction

An instance of the (two-dimensional) assignment problem may be thought of as an n × n cost
array Mi,j , a candidate solution is a permutation π : [n] 7→ [n], its cost is

∑n
i=1Mi,π(i), and an

optimal solution is one minimizing the cost. If the cost matrix represents, for example, the costs
of assigning various jobs i to machines j, where each machine can accommodate only one job,
then the problem’s solution represents the cheapest way of assigning the jobs to machines. It may
equivalently be formulated as an integer linear program, minimizing the sum of selected elements
consistent with the selection of exactly one element from each row and from each column, i.e.,
minimizing

∑
i,jMi,jXi,j where Xi,j ∈ {0, 1}, (∀i)

∑
j Xi,j = 1 and (∀j)

∑
iXi,j = 1. This is a

network flow problem, thus its linear relaxation with Xi,j ∈ [0, 1] has integer extreme points, and
the problem may be solved in polynomial time.

The random assignment problem, in its most popular form, is the case when the entries of the
cost matrix C are i.i.d. Exp(1) random variables (independent, identically distributed exponential
random variables with parameter 1). Since the problem can be solved in polynomial time, the focus
for the random case is on the cost’s expectation as a function of n,

f(n) = E
[

min
π

n∑
i=1

Mi,π(i)

]
= E

[
min
Xi,j

∑
i,j

Mi,jXi,j

]
with Xi,j ∈ {0, 1} subject to the row and column constraints above. This problem has received a
great deal of study over several decades. It was considered from an operations research perspective
in the 1960s [Don69], an asymptotic conjecture f(n) → π2/6 = ζ(2) was formulated by statistical
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physicists Mézard and Parisi in the 1980s based on the mathematically sophisticated but non-
rigorous “replica method” [MP85, MP87], an exact conjecture f(n) =

∑n
i=1 1/i2 was hazarded by

Parisi in the late 1990s [Par98] a generalization to partial matchings and non-square matrices was
made by Coppersmith and Sorkin [CS99], the Mézard–Parisi conjecture was proved by Aldous in a
pair of papers in 1992 and 2001 [Ald92,Ald01], and the Coppersmith–Sorkin conjecture was proved
simultaneously in 2004 by two papers using two very different methods, by Nair, Prabhakar and
Sharma [NPS05], and Linusson and Wästlund [LW04]. A further generalisation of these conjectures
was made by Buck, Chan and Robbins in 2002 [BCR02] and proved by Wästlund in 2005 [Wäs05].
The study of other aspects of the random assignment problem and related problems is ongoing, for
example by Wästlund in [Wäs09].

In higher dimensions there are two natural generalizations of the assignment problem. For
example in three dimensions, the Axial assignment problem is, given an n × n × n matrix (or
“tensor” or “array”) C, to find a solution Xi,j,k minimizing

∑
i,j,kMi,j,kXi,j,k where Xi,j,k ∈ {0, 1}

and there is one selected value per “plane” of the array, of which there are three types, 1-, 2-, and
3-planes according to which coordinate is fixed:

(∀i)
∑
j,k

Xi,j,k = 1, (∀j)
∑
i,k

Xi,j,k = 1, (∀k)
∑
i,j

Xi,j,k = 1. (1)

Equivalently, the Axial problem is to determine minπ,σ
∑n

i=1Mi,π(i),σ(i), the minimum taken over
a pair of permutations. The Planar three-dimensional assignment problem is similar but with one
selected value per “line” of the array, with three types of lines:

(∀i, j)
∑
k

Xi,j,k = 1, (∀j, k)
∑
i

Xi,j,k = 1, (∀i, k)
∑
j

Xi,j,k = 1. (2)

The generalizations to higher dimensions are clear. In three dimensions and higher, the Axial and
Planar assignment problems are both NP-hard. The Axial case in three dimensions was one of the
original problems listed by Karp [Kar72]. The complexity of the Planar problem was established
by Frieze [Fri83].

The multi-dimensional random assignment problem we consider here is the case when the entries
of the cost matrix are i.i.d. Exp(1) random variables. In this random setting, there are two natural
questions. First, are there polynomial-time algorithms that find optimal or near-optimal solutions
w.h.p.?1 Second, what is the expected cost of a minimum assignment? A random two-dimensional
assignment instance has limiting expected cost ζ(2), and Frieze showed that the expected cost
of a minimum spanning tree in the complete graph with random Exp(1) edge weights tends to
ζ(3) [Fri85], so it is tantalizing to wonder if there might be similarly beautiful expressions for the
expected cost in multi-dimensional versions of the random assignment problem. However, we do
not even know how the cost scales with n.

Some of the characteristics and applications of these problems are discussed in a recent book
by Burkard, Dell’Amico and Martello [BDM09]. Little is known about the probabilistic behavior
of these problems for dimension at least three, and even less about polynomial-time algorithms
for constructing good solutions. First consider the Axial problem with constraints (1). Grundel,
Krokhmal and Pardalos [KGP07] replace the Exp(1) assumption with more general distributions.
Where F (x) is the probability that Mi,j,k ≤ x, their result most relevant to our discussion is that
if F−1(x) = O(xβ) for some β > 0 as x → 0+ then the minimum value ZAd,n → 0 w.h.p. It is not

difficult to prove ZAd,n → 0 w.h.p. for Mi,j,k = Exp(1) (see Remark 2), but we are interested in

1A sequence of events En, n ≥ 0 is said to occur with high probability (w.h.p.) if limn→∞Pr(En) = 1.
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the precise convergence rate. Kravtsov [Kra05] describes a class of greedy algorithms that work
well if Exp(1) is replaced by uniform over {1, 2, . . . , nα} where α < 1 depends on the particular
algorithm. The lower bound of 1 means that the minimum is at least n and this is not a difficult
target, asymptotically.

The Planar problem with constraints (2) was considered by Dichkovskaya and Kravtsov [DK07].
Here they discuss a “greedy” algorithm similar to that proposed by us. Their analysis is quite
different and their distribution is (as with [Kra05]) uniform over {1, 2, . . . , nα} where α < 1. This
makes the minimum at least n2 and again this is not a difficult target, asymptotically.

Statistical physicists Martin, Mézard and Rivoire conjecture in [MMR05] that the Axial problem
has an asymptotic expected cost of c/n, based on “cavity” calculations; see also [MMR04]. However,
there is no nice constant like ζ(2) predicted, and no certainty that the conjectured scaling is correct.

2 Summary of results, methods, and limitations, and outline

2.1 Axial assignment

For the Axial D-dimensional assignment problem, there is an easy lower bound of Ω(1/nD−2) on
the expected cost (see Theorem 1). Our main result (Theorem 2) is for the case D = 3. Here we
give an algorithm that runs in time linear in n and yields w.h.p. a solution of cost O(1/n1−o(1)),
an no(1) approximation to the best possible. Not only is this the first nearly tight upper bound
obtained algorithmically, it is the only good bound except for one (see Theorem 1) following from
a recent non-constructive result on hypergraph factors by Johansson, Kahn and Vu [JKV08].

Our algorithm may be compared with one in [CS99] for 2-dimensional assignment. There,
a bipartite matching was augmented by an alternating path of bounded length, with care taken
in regard to “conditioning” of the cost matrix. Here, partial assignments are augmented with
a “bounded-depth alternating-path tree”, a tree in which a newly added element displaces two
previously selected elements, those two elements are replaced in a way displacing four selected
elements, and so on, until all the displaced elements are replaced by elements in a non-conflicting,
“unassigned” set (see Figure 1).

For dimensions D ≥ 4 the algorithm can still be applied, but it produces a solution whose
expected cost is of order Ω(n−1), just as in the 3-dimensional case; for D ≥ 4 this is far from the
upper bound of O(n2−D log n) given in Theorem 1.

2.2 Planar assignment

Our second main result (Theorem 3), establishes high-probability lower and upper bounds for the
cost of a Planar 3-dimensional assignment. A lower bound of Ω(n) comes from attending to only
the first constraint in (2). We then show that a 3-dimensional Planar assignment consists of n
2-dimensional assignments, with constraints between them. An upper bound is derived from a
greedy algorithm that solves the 2-dimensional assignments sequentially, respecting the constraints
between them. These 2-dimensional assignment instances have a somewhat complex structure, but
a general result of Dyer, Frieze, and McDiarmid [DFM86] is insensitive to the details and yields an
upper bound of O(n log n).

As for the Axial case, though, our approach to the Planar problem falters for dimensions D ≥ 4.
The natural generalization is to a greedy algorithm that sequentially solves n (D− 1)-dimensional
instances, but even for D = 4 such an algorithm can fail, reaching an instance that has no solution,
regardless of cost.
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+(i, j, k)

−(j, j, j) −(k, k, k)

+(j, p, q) +(k, r, s)

−(p, p, p) −(q, q, q) −(r, r, r) −(s, s, s)

+(p, ξ1, ξ2) +(q, ξ3, ξ4) +(r, ξ5, ξ6) +(s, ξ7, ξ8)

Figure 1: Diagram showing how a depth-2 “augmentation” (or alternating-path tree) increases an
assignment’s cardinality by 1. This is the basis of algorithm BDAPTA(2); see Section 4.2. Without
loss of generality we assume that all current assignment elements are of the form (u, u, u) Adding
new first coordinate i to the partial assignment, using element (i, j, k), implies deletion of previous
assignment elements (j, j, j) and (k, k, k). Their first coordinates j and k are then reassigned
respectively to elements (j, p, q) and (k, r, s), displacing four more existing assignment elements
(p, p, p) etc. Their first coordinates are finally reassigned to unused second and third coordinates
by using elements (p, ξ1, ξ2) etc.

2.3 Structure of the paper

Our results for Axial assignment are formally stated in Section 3. There, Theorem 1 gives a simple
lower bound, and a non-constructive upper bound that is also proved easily but only by relying
on some heavy machinery. Theorem 2 gives our main Axial result, a constructive upper bound for
3-dimensional assignment (D = 3) coming from a bounded-depth alternating-path tree algorithm
BDAPTA=BDAPTA(d), where 2d is the depth of the search tree. The algorithm and its analysis are
undeniably complicated. To provide intuition, BDAPTA(2) is described and analyzed in Section 4.
The general algorithm BDAPTA(d) is analyzed in Section 5, completing the proof of Theorem 2.
Difficulties for dimensions D > 3 are sketched in Section 6.

The Planar problem is considered in Section 7. In Section 7.1, Theorem 3 states a simple lower
bound and a constructive upper bound. These are proved in Sections 7.2 and 7.3 respectively.
Difficulties for dimensions D > 3 are sketched in Section 8.

3 Multi-dimensional Axial assignment results

3.1 Simple bounds

Theorem 1. The minimum, ZAD,n, of the D-dimensional Axial random assignment problem satisfies

Ω

(
1

nD−2

)
≤ ZAD,n ≤ O

(
log n

nD−2

)
w.h.p.
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Proof. Clearly

ZAD,n ≥
n∑

i1=1

min
i2,...,iD

Mi1,...,iD .

Each summand is distributed as Exp(nD−1) and so has expectation 1/nD−1 and variance 1/n2D−2.
The summands are independent, and the Chebyshev inequality can be used to show that the sum
is concentrated around the mean.

For the upper bound we use a recent result of Johansson, Kahn and Vu [JKV08] on perfect
matchings in random D-uniform hypergraphs. Their result implies that w.h.p. there is a solution
that only uses D-tuples of weight at most K logn

nD−1 , thereby giving an upper bound for “Shamir’s prob-
lem”. While [JKV08] does not deal with D-partite hypergraphs, we have verified that their result
can be extended to this case; this was also done independently by Gerke and McDowell for different
purposes [GM13]. The upper bound for D-dimensional Axial assignment follows immediately.

The proof in [JKV08] is emphatically non-constructive.

3.2 Main result

We remind the reader that a description of the algorithm BDAPTA(d) for 3-dimensional Axial as-
signment (D = 3) will follow in Section 4 (for d = 2) and Section 5 (for general d). Throughout
the paper, we associate the element Mi,j,k with the “triple” (i, j, k).

Theorem 2. Suppose that 1 ≤ d ≤ ε log2 log n where where 0 < ε < 1/2 is a constant. For a
random 3-dimensional Axial assignment instance, w.h.p.:

(a) Algorithm BDAPTA(d) runs in time O(n3).

(b) The cost M(T ) of the set of triples T output by BDAPTA(d) satisfies M(T ) = O(24dn−1+ηd log n),
where ηd = 1

2d+1−1
.

By taking d = ε log2 log n we see that have a linear-time algorithm that w.h.p. gives a solution
of value O(n−1+o(1)). (The exponent’s o(1) is 1

2 log−ε n plus lower-order terms.) As already noted,
we are not aware of any other polynomial-time algorithm that will w.h.p. find a solution of value
O(n−1+o(1)), or indeed any non-trivial bound including the O(n−6/7) that BDAPTA(2) gives.

4 3-Dimensional Axial assignment 2-level algorithm, BDAPTA(2)

In this section we consider a two-level version of the algorithm BDAPTA for 3-dimensional Axial
assignment. In this way we hope to make it easier to understand the general version described in
Section 5. With reference to Theorem 2, the two-level version means taking d = 2, η = η2 = 1/7.
The algorithm has three phases, treated respectively in the next three subsections.

4.1 Greedy Phase

This phase uses a simple greedy procedure, shown below as Algorithm 1, to construct a low-cost
partial assignment of cardinality (1− o(1))n. Let

n1 = n− n1−η and w0 = 2n−2(1−η) log n. (3)

In the following we will pretend that n1 is integral, as we will do throughout when it makes no
difference. There will be cases where integrality is significant, and there we will be precise.
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Algorithm 1 GreedyPhase: construct a cardinality-n1 partial assignment

1: Let B := C := [n], and T := ∅ (respectively the set of unassigned 2- and 3-coordinates, and
the set of triples assigned so far)

2: for i = 1, . . . , n1 do
3: Locate Mi,j,k = min

{
Mi,j′,k′ : j

′ ∈ B, k′ ∈ C
}

4: if Mi,j,k > w0 then Fail
5: Add (i, j, k) to T and remove j from B and k from C
6: Return the set of triples in T as a partial assignment

Lemma 1. With high probability the procedure does not fail, and yields

Z1 :=
∑

(i,j,k)∈T

Mi,j,k ≤
2

n1−η .

Proof. We observe that if (i, j, k) ∈ T then Mi,j,k is the minimum of (n− i+1)2 independent copies
of Exp(1) and is therefore distributed as Exp((n − i + 1)2). Furthermore, the random variables
Mi,j,k, (i, j, k) ∈ T are independent (each drawn from a different 1-plane as given by i).

The procedure fails only if some Mi,j,k > w0. Even in the last round i = n1, the chance that all
(n1−η)2 elements considered are larger than w0 is exp(−n2(1−η)w0) = exp(−2 log n). By the union
bound, the probability of a failure in any round is ≤ n exp(−2 log n) = n−1. We now ignore this
aspect and imagine running the algorithm without the failure condition.

Using the fact that an Exp(λ) random variable has mean 1/λ and variance 1/λ2,

E(Z1) =

n1∑
i=1

1

(n− i+ 1)2
≤
∫ n1+1

x=1

dx

(n− x+ 1)2
≤ 1

n1−η .

Now

Var(Z1) =

n1∑
i=1

1

(n− i+ 1)4
≤ 3

n3(1−η)
= o(E(Z1)2)

and the lemma follows from the Chebyshev inequality.

Remark 2. If we replace n1 by n − ω where ω = ω(n) → ∞ and then do exhaustive search for
the optimum solution in the remaining ω-size problem then we see that (i) the expected optimum

value is bounded by O
(

1
ω + logω

ω

)
(greedy plus exhaustive search costs), and (ii) the running time is

bounded by O
(
n3 + ω2ω

)
. So, if ω = O(log n/ log logn), the algorithm is polynomial and produces

a solution with a cost that is o(1), in expectation and w.h.p..

This justifies our introductory remark that it is not difficult to prove ZAd,n → 0 w.h.p. for
Mi,j,k = Exp(1). (We do not even need the breakthrough result of [JKV08] for this. The early

reult of Schmidt-Pruzan and Shamir [SPS85] would give O
(

1
ω + logω

ω1/2

)
for the cost).

4.2 Main Phase

This phase will increase the size of the partial assignment defined by T to n − 3. The phase will
proceed in rounds. At the start of each round we assume that the assignment elements Tt are
(1, 1, 1), . . . , (nt, nt, nt), which we can arrange simply by permuting the array M . Let A = A(T ) be
the set of 1-coordinates assigned in T and define B and C analogously for the 2- and 3-coordinates.

6



Of course initially A = B = C = {1, . . . , nt} but the notation will be convenient. Also, let
Ā(T ) = [n]−A(T ), the set of unmatched 1-indices, and likewise define B̄ and C̄.

Round t will reduce the number of unmatched elements
∣∣Ā∣∣ by a factor β, from xt to xt+1, while

increasing the total cost of the matching by an acceptably small amount, terminating in the round
τ where

∣∣Ā∣∣ is reduced to 3. Because the sizes x we are dealing with here become small, we cannot
decently ignore integrality even though its effects are minor. Specifically, then, we take

α = 1/65, β = 1− α,

x1 = n− n1 =
⌊
n1−η⌋ =

⌊
n6/7

⌋
, and xt =

⌊
βt−1x1

⌋
for t ≥ 2. (4)

Note that (4) means that xt decreases by 1 in each of the last few rounds, so the last round begins
with xτ = 4. It is clear that

xt ≤ βt−1x1, thus τ ≤ log1/β(x1/4) = O(log n). (5)

Recall from the Greedy Phase that

w0 = n−12/7 log n,

and, for t ≥ 1, let

ρt = n−6/7x
−8/7
t log n,

wt = − log(1− ρt) = (1 + o(1))ρt,

Wt = w0 + w1 + · · ·+ wt.

 (6)

At the start of round t we will have revealed all elements (and only elements) with values ≤Wt−1.
This is true in round t = 1 by the Greedy Phase’s definition. In later rounds t we use the following
“good” elements, comprising a set Gt:

1. Elements in the partial assignment Tt at the start of the round.

2. Elements with Mi,j,k ∈ (Wt−1,Wt]. Conditioned upon Mi,j,k > Wt−1 and all history, a non-
assignment element falls into this category with probability exactly ρt = 1− exp(−wt).

3. Previously revealed non-assignment elements, each taken with probability ρt, the selection
made independently over all such elements.

(In contrast to this “sprinkling” approach, [CS99] used a slightly more complicated “refreshing”
approach to obtain small improvements to the constants.) This selection assures the following
property.

Property 3. Gt comprises only elements of weight ≤ Wt, contains all elements in the partial as-
signment, and (conditioned upon all history) contains each non-assignment element, independently,
with probability ρt.

At the start of round t let At = A(Tt), Āt = Ā(Tt), and likewise for B and C. In round t we
will add [n−xt+ 1, n−xt+1] to At. To add i to At we replace 6 of the triples in Tt by 7 new triples
(see Figure 1):

+ (i, j, k)− (j, j, j)− (k, k, k) + (j, p, q) + (k, r, s)− (p, p, p)− (q, q, q)− (r, r, r)− (s, s, s)+

(p, ξ1, ξ2) + (q, ξ3, ξ4) + (r, ξ5, ξ6) + (s, ξ7, ξ8). (7)
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We call a collection of triples as in (7) an augmentation. Here + indicates addition of a new triple
to the assignment, − indicates deletion of an existing assignment element, j, k, p, q, r, s ∈ At are
all distinct, ξ1, . . . , ξ7 ∈ B̄t are all distinct, ξ2, . . . , ξ8 ∈ C̄t are all distinct, and each of the triples
added in (7) belongs to Gt (thus has cost at most Wt). To explain, we assign a new 1-coordinate i
to a previously used 2-coordinate j and 3-coordinate k (unused ones are too rare and therefore too
costly); these uses of j and k conflict with the previous assignment elements (j, j, j) and (k, k, k)
so we remove those elements from the assignment; 1-coordinates j and k are re-added as (j, p, q)
and (k, r, s) thus colliding with the previous assignment elements (p, p, p), (q, q, q), (r, r, r), and
(s, s, s); and finally 1-coordinates p, q, r, s are re-added as (p, ξ1, ξ2) etc., where the ξi are 2-
and 3-coordinates not previously assigned. One may think of (7) as a binary tree version of an
alternating-path construction; we will control the cost despite the tree’s expansion.

We realise that the algorithm is not yet completely specified but we postpone questions on
index selection for a while longer. We first confirm that if we can always find j, k, . . . , ξ8 as in (7)
then the cost of the assignment produced by the Main Phase is acceptable. Each application of (7)
increases the cost by ≤ 7Wt. Success in a round means doing this xt − xt+1 times, in which case
the additional cost of the Main Phase will be at most 7 times

τ∑
t=1

(xt − xt+1)Wt = x1w0 − xτ+1Wτ +

τ∑
t=1

xtwt,

which (recalling (5)) is at most 7 + o(1) times

n−6/7 log n+ log n
τ∑
t=1

xt(n
−6/7x

−8/7
t )

≤ n−6/7 log n+ n−6/7 log n
τ−1∑
t=0

(βtx1)−1/7.

The last is an increasing geometric series, summing to≤ ((1/β)τ/x1)1/7/(1−β1/7). By (5), (1/β)τ ≤
x1/4, so the expression above is

≤ n−6/7 log n+ n−6/7 log n
(1/4)1/7

1− β1/7

= O(n−6/7 log n). (8)

With reference to Figure 2, we now complete the description of the algorithm by explaining
how we search for j, k, . . . , ξ8 that satisfy (7). We show later that w.h.p. all of our searches succeed.
Since we are considering just round t, we drop the superscripts and write, for example, B rather
than Bt.

We will first show how to construct sets J = S1
1 , . . . ,Ξ8 = S3

8 , then show how to draw from
these sets αx collections of elements j ∈ J , . . . , ξ8 ∈ Ξ8, each such collection augmenting the
assignment as per (7). Within each augmenting set, each chosen element will force the choice of
the two elements below it. For convenience, especially in the general case but even for the depth
k = 2 case now, it is convenient to think of these sets as S1

1 , . . . , S
3
8 as shown in the figure.

We construct the sets S`m from bottom up. At the bottom level, ` = 3, “equipartition” B̄
into sets Ξ1,Ξ3,Ξ5,Ξ7. To be precise, partition B̄ into sets Ξ1, . . . ,Ξ7 each of size

⌊∣∣B̄∣∣ /4⌋, and
a fifth “discard” set. (Normally we would ignore integrality, but for instance in the second-last
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J = S1
1 K = S1

2

P = S2
1 Q = S2

2 R = S2
3 S = S2

4

Ξ1 = S3
1 Ξ2 = S3

2 Ξ3 = S3
3 Ξ4 = S3

4 Ξ5 = S3
5 Ξ6 = S3

6 Ξ7 = S3
7 Ξ8 = S3

8

Figure 2:

round B̄ will have size 5.) Similarly, equipartition C̄ into Ξ2,Ξ4,Ξ6,Ξ8. Note that for x ≥ 4,
x− 4 bx/4c < 4 ≤ 4 bx/4c, thus x < 8 bx/4c, and thus each set Ξ has cardinality at least x/8.

For ` < 3, each set U = S`m in Figure 2 is constructed from its two child sets V = S`+1
2m−1

and W = S`+1
2m and from a set X of “available” 1-coordinates (soon to be defined precisely) by

invoking a procedure Triples(X,V,W ). Recall that G = Gt is the set of “good” elements for this
round. Intuitively, we want Triples(X,V,W ) to be something like the set of all elements x ∈ X
for which there are a v ∈ V and w ∈ W such that (x, v, w) is of low cost, i.e., something like
proj1 ((X × V ×W ) ∩G) , where proji denotes the projection of a set onto its ith coordinate. The
more complicated definition of Triples below enables Property 4 and simplifies the analysis later.

Algorithm 2 Triples: construct set U from sets X,V,W of available 1-, 2-, and 3-indices

1: Input V,W,X.
2: if |X| < n− n19/20 then Fail
3: Partition X = X ′ ∪ X ′′ where |X ′| = n′ := n − 2n19/20 and |X ′′| ≥ n19/20 (think of X ′′ as a

“reserve” set from which elements are shifted into X ′ to preserve |X ′|)
4: Let U? := ∅
5: for each pair of elements v ∈ V , w ∈W in turn do
6: for each element x ∈ X, in turn do
7: if (x, v, w) ∈ G then
8: U? := U? ∪ {(x, v, w)}
9: if X ′′ = ∅ then Fail

10: Where x′′ is the first element of X ′′, let X ′ := (X ′ \ x) ∪ {x′′}, and let X ′′ := X ′′ \ x′′
11: Let U := proj1(U?)
12: Return (U?, U,X)

Claim 11 will show that failures within Triples are highly unlikely.

Property 4. Triples has the properties that (1) each element u ∈ U appears in exactly one triple
(u, v, w) ∈ U? and thus is linked to a unique v ∈ V and w ∈ W , and (2) each pair v, w occurs in
Bin(n′, ρ) triples in U? and these binomials are independent for all v and w.

Proof. The first property is immediate. The second comes from observing that in the algorithm’s
Lines 6–10 the size of X ′ is kept constant at n′, while Property 3 means that each of the n′ elements
considered is, independently, present in G with probability ρ.
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Given Triples, it is straightforward to define all the sets in Figure 2. This is done by Set-
Construct, shown as Algorithm 3 below.

Algorithm 3 SetConstruct: for Main Phase round t, construct all sets S`m
1: Input: sets A, B, and C of assigned 1-, 2-, and 3-indices. (Elsewhere, notationally, we have

assumed A = B = C = [n− xt].)
2: Let X := A and x := n− |X|
3: “Equipartition” B̄ into Ξ1∪· · ·∪Ξ7 = S3

1 ∪· · ·∪S3
7 each of size bx/4c, discarding the x−4 bx/rc

remaining elements of B̄
4: Likewise, equipartition C̄ into Ξ2 ∪ · · · ∪ Ξ8 = S3

2 ∪ · · · ∪ S3
8

5: Remembering that each application of Triples makes X smaller for the next one, let

(P ?, P,X) = ((S2
1)∗, S2

1 , X) := Triples(X,S3
1 , S

3
2) = Triples(X,Ξ1,Ξ2)

(Q?, Q,X) = ((S2
2)∗, S2

2 , X) := Triples(X,S3
3 , S

3
4) = Triples(X,Ξ3,Ξ4)

(R?, R,X) = ((S2
3)∗, S2

3 , X) := Triples(X,S3
5 , S

3
6) = Triples(X,Ξ5,Ξ6)

(S?, S,X) = ((S2
4)∗, S2

4 , X) := Triples(X,S3
7 , S

3
8) = Triples(X,Ξ7,Ξ8)

(J?, J,X) = ((S1
1)∗, S1

1 , X) := Triples(X,S2
1 , S

2
2) = Triples(X,P,Q)

(K?,K,X) = ((S1
2)∗, S1

2 , X) := Triples(X,S2
3 , S

2
4) = Triples(X,R, S)

6: Return all sets S`m and (S?)`m defined above

Given a partial assignment T with i− 1 < n elements, augmenting T to include 1-index i as in
(7) and Figure 1 is easy as if we can find an element (i, j, k) ∈ G with j ∈ J , k ∈ K. For, if this is
so, by construction of J? there is a unique element (j, p, q) ∈ J? with p ∈ P and q ∈ Q. Then, by
construction of P ? there is a unique element (p, ξ1, ξ2) ∈ P ? with ξ1 ∈ Ξ1 and ξ2 ∈ Ξ2. Likewise,
q leads uniquely to ξ3, ξ4, and k leads uniquely to r, s and these to ξ5, . . . , ξ8. This collection,
corresponding to the triples added in (7), immediately determines those subtracted: −(j, j, j),
−(k, k, k), etc., and thus the full augmentation. This procedure for producing an augmentation
is spelled out as MakeTree (i, j, k), Algorithm 4. Identifying ξ1, . . . , ξ8 with s1

1, . . . , s
1
8, this is

written in a way that can be quoted for the general case.

Algorithm 4 MakeTree (i, j, k): produce an augmentation AugOut

1: Input: a collection of sets as in Figure 2 as output by Algorithm 3 (MakeTree), and a triple
(i, j, k) with i ∈ Ā, j = s1

1 ∈ S1
1 = J , k = s1

2 ∈ S1
2 = K.

2: Let AugOut := +(i, s1
1, s

1
2)

3: for ` = 1 to 2 do
4: for m = 1 to 2` do
5: (Note that s`m ∈ S`m is already defined)
6: Let (s`m, s

`+1
2m−1, s

`+1
2m ) be the unique triple in (S?)`m with 1-coordinate s`m (thus defining the

values for Line 5 when ` is incremented in Line 3)
7: Let AugOut := AugOut,−(s`m, s

`
m, s

`
m),+(s`m, s

`+1
2m−1, s

`+1
2m ), i.e., add these two triples to

the output, one negated, one positive
8: Return AugOut

Property 5. In any augmentation constructed by MakeTree, the first indices of all positive
triples are distinct, as are all the second indices, and all the third indices.
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Proof. All first indices in the whole collection of sets S`m (and therefore within one augmentation)
are distinct because they are drawn from a set X (X = A initially), and each first index produced
is immediately removed from X.

Any second index v comes from a triple in some set (S?)`m ⊂ X×S
`+1
2m−1×S

`+1
2m , so that v ∈ S`+1

2m−1.

We treat this with two cases. If ` < d, then v ∈ S`+1
2m−1 is a first index in (S?)`+1

2m−1. Such values
are all distinct from one another by distinctness of first indices. If on the other hand ` = d, the
previous case does not apply (there are no sets S? at depth d+ 1), but v ∈ Sd+1

2m−1 = Ξ2m−1 and
thus belongs to one of the parts of the equipartition of B̄. Since in an augmentation each triple
is drawn from a different set Ξ, and the sets come from different parts of the equipartition of B̄,
all these values are distinct from one another. Finally, no two values from different cases can be
equal: those in the first case belong to A and those in the second case belong to B̄, and these sets
are disjoint since A = B by our notational assumption that the partial assignment T consists of
triples of the form (i, i, i). Third indices are treated by the same argument as second indices.

We can then augment the assignment via (7) the output of MakeTree. We now give a formal
proof that MakeTree allows a feasible augmentation. Again, we write this in a way that can be
quoted for the general case.

Property 6. The output of MakeTree defines a valid assignment augmentation.

Proof. Working backwards through the elements of AugOut we show inductively that each makes
a valid change. (MakeTree works top-down; this proof works bottom-up.) Consider adding a
bottom-most triple +(sdm, s

d+1
2m−1, s

d+1
2m ). Its second and third coordinates can be added, as they

belong to the sets Sd+1
2m−1 and Sd+1

2m which contain only unassigned indices, and (over all bottom-
most triples) there are no collisions amongst these by Property 5. The first coordinate would clash
with the existing assignment element, but this is removed by the AugOut element −(sdm, s

d
m, s

d
m),

also freeing up sdm as a 2- and 3-index. So, adding the level ` = d elements, pairing the positives
and negatives (so the assignment size does not change), ensures that all their first coordinates at
level ` = d are available as 2- and 3-indices at level ` − 1. We refer to this as property Q at level
` = d.

We now show that property Q at level `+ 1 implies property Q at level `. Consider a level-`
element +(s`m, s

`+1
2m−1, s

`+1
2m ). Referring to MakeTree’s Line 6, this element’s 2-index s`+1

2m−1 (in
iteration `) is another element’s 1-index (in iteration `+ 1), and thus, by Property Q at level `+ 1,
is available for assignment. This 2-index does not conflict with any other, by Property 5. The
same holds for the 3-indices. The 1-index s`m would conflict with an existing assignment element,
but this is taken care of by −(s`m, s

`
m, s

`
m). That also frees up s`m as an available 2- and 3-index,

completing property Q at level `.
When ` = 1, (i, s1

1, s
1
2) can be added: the 2- and 3-indices are available by Property Q, while

1-index i is available (indeed the whole point of the procedure is to assign it).

However, to make more than one such augmentation using the same data structure (the same
output of SetConstruct) we must ensure, for example, that no two augmentations use the
same value ξ1. To this end, if a first augmentation uses “leaf” indices ξ1, . . . , ξ8, we regard the
values ξ1, . . . , ξ8 as “poisoned”; they in turn poison all ancestors depending on them, including
this augmentation’s values j, . . . , s, but also other values. Contrapositively, any “healthy” (non-
poisoned) elements j′ ∈ J and k′ ∈ K’ depend only on healthy elements ξ.

To be precise, a poisoned ξ1 in turn poisons any ancestor p′ ∈ P for which there exists a triple
(p′, ξ1, ξ

′
2) ∈ P ?. Likewise the poisoned ξ2 poisons any ancestor p′ ∈ P for which there exists a

triple (p′, ξ′1, ξ2) ∈ P ?. Note that the poisoned P values include the original p but may include
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more values. (Each p is associated with a unique ξ1 and ξ2, but the opposite is by no means
true.) We continue upward. Any poisoned p ∈ P poisons any j′ ∈ J for which there exists a
triple (j′, p, q′) ∈ J?, and poisoned q values poison additional elements of J . The poisoned J values
certainly include j. Likewise, the poisoned values ξ5, . . . , ξ8 poison subsets of R and S, which in
turn poison some of K.

In general, quite simply, any poisoned element poisons all its ancestors, where ancestry is the
transitive closure of the parent relation in which, for any (u, v, w) ∈ (S?)`m, u is a parent of v and
w. (Again, Property 4 means that u has only these children, but v and w will typically each have
additional parents.) The step-by-step poisoning description given in the previous paragraph will
be useful for probabilistic analysis, and is shown as Algorithm 5 in a form usable for BDAPTA(d)
generally.

Algorithm 5 PoisonPropagate: poison all ancestors of elements used in an augmentation

1: Input: the output of SetConstruct with some elements poisoned, and an augmentation.
2: Poison the augmentation’s leaf values s3

1, . . . , s
3
8

3: for ` = 2 to 1 do
4: for m = 1 to 2` do
5: for each (u, v, w) ∈ (S?)`m do
6: if v ∈ S`+1

2m−1 or w ∈ S`+1
2m is poisoned then

7: Poison u ∈ S`m

With this, we can present the complete Main Phase algorithm.

Algorithm 6 MainPhase: augment GreedyPhase assignment to one of cardinality n− (2d− 1)

1: for rounds t = 1, . . . , τ do
2: (Recall that the partial assignment has cardinality n− xt)
3: Permute the cost matrix so that the partial assignment is

Tt = {(1, 1, 1), . . . , (n− xt, n− xt, n− xt)}
4: Let A = B = C = [n− xt] be the sets of assigned 1-, 2-, and 3-coordinates
5: Call SetConstruct (A,B,C) and consider all elements in all its sets to be healthy
6: (We will now assign the first dαxte unassigned 1-indices i, in turn)
7: for i = n− xt + 1, . . . , n− xt+1 do
8: Let J ′ and K ′ denote the healthy subsets of J and K
9: if I ′ := Gt ∩ ({i} × J ′ ×K ′) = ∅ then Fail

10: Let (i, j, k) be the lexicographically first element of I ′

11: Call MakeTree (i, j, k) to produce an augmentation Φ
12: Augment the assignment with Φ
13: Call PoisonPropagate (Φ)

Claim 10 will show that failures within MainPhase are highly unlikely. First we show that if
it succeeds, it returns a valid partial assignment.

Property 7. Each augmentation in MainPhase Line 12 is valid.

Proof. For the first augmentation in a round, this has already been justified by Property 6. To
justify a later augmentation, we will show that none of its indices has appeared, in the same
coordinate, in any previous augmentation within the round. Consider first a value u that appears
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in a positive triple in an augmentation Φ and a previous augmentation Φ′. Bear in mind that the
sets S`m (` = 1, . . . , d+ 1), the output of SetConstruct, are fixed for the round.

Consider first u drawn from S`m for augmentation Φ, with ` ≤ d. By an argument like that used
in the proof of Property 5, within Φ′, u must have been drawn from the same set S`m: these sets
are disjoint from one another, and disjoint from each set Sd+1

m . But this is a contradiction, since
use of Φ′ would have poisoned u ∈ S`m, and Φ uses only healthy elements.

Next consider u drawn from Sd+1
2m−1 for Φ, making u a 2-index in Φ. Again, by disjointness of the

various sets, as a 2-index in Φ′, u can only have been drawn from the same set Sd+1
2m−1. (The only

other place u can appear is in a set Sd+1
2m′ , but that would make it a 3-index.) This is a contradiction,

since use of Φ′ would have poisoned u ∈ Sd+1
m , and Φ uses only healthy elements.

The same argument goes for u drawn from Sd+1
2m for Φ.

Finally, consider the 1-index i itself whose assignment is the purpose of the augmentation Φ.
It cannot appear as a 1-index in any earlier or later augmentation Φ′: it does not have the same
unique “root” role for any other augmentation Φ′, it cannot have been picked from any set S`m with
` ≤ d since these are subsets of A while i /∈ A, and if picked from any set Sd+1

m it is a 2- or 3-index
not a 1-index.

We now consider a conflict involving a negative triple (u, u, u) in Φ, implying that u appears
as a 1-coordinate (and not i) in a positive triple in Φ. Such a conflict with another augmentation
Φ′ cannot involve a negative triple (since then u would appear also as a 1-coordinate in Φ′, which
we have already excluded), so in Φ′, u must appear in a positive triple. It cannot appear as a
1-index (already excluded). The the only 2- and 3-indices in Φ′ that are not also 1-indices are those
drawn from sets Sd+1

m , implying u ∈ B̄ = C̄ and thus u /∈ A, contradicting the appearance of u as
a 1-index in Φ.

This concludes a proof of correctness of MainPhase. It remains to show that the various
failure conditions are unlikely, notably that the sets J and K, initially and when restricted to their
healthy elements later, are sufficiently large that failure in MainPhase Line 9 is unlikely. To that
end we first estimate the sizes of all the sets at the beginning of a round and then analyze their
losses due to poisoning.

We start by showing that the following “nominal sizes” are good estimates of the sizes of the
sets S at corresponding depths:

σ3 = bx/4c = Θ(x)

σ2 = ρn′(σ3)2 = Θ(ρnx2) = Θ(n1/7x6/7 log n), and

σ1 = ρn′(σ2)2 = Θ(n3/7x4/7 log2 n).

 (9)

Let

δ = n−1/100. (10)

We know that the sets S3
1 , . . . , S

3
8 have size precisely σ3, and we will show that q.s.2 the sets

S2
1 , . . . , S

2
4 all have cardinality (1 ± δ)σ2, and S1

1 and S1
2 have cardinality (1 ± δ)2σ1, where the

notation A = (1± δ)rB is shorthand for (1− δ)rB ≤ A ≤ (1 + δ)rB. This is part of the following
more detailed claim, for which we need one definition.

Definition 8. For sets X,S′, S′′, and (S?, S,X) = Triples(X,S′, S′′), let S?(·, s′, ·) ⊆ S? be those
elements generated by s′ ∈ S′ (that is, having s′ as their second coordinate). Symmetrically, let
S?(·, ·, s′′) ⊆ S? be those elements generated by s′′ ∈ S′′.

2A sequence of events En, n ≥ 0 is said to occur quite surely (q.s.) if Pr(En) = 1 − O(n−C) for every positive
constant C.
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Claim 9. For each depth ` ∈ {1, . . . , d+ 1} and each m ∈
{

1, . . . , 2l
}

:

1. The nominal sizes in (9) satisfy σ1 > σ2 > σ3 = Θ(x).

2. With δ as in (10), q.s.,
∣∣S`m∣∣ = (1± δ)2d+1−`−1σ`.

3. For every pair of sets S′ = S`2m−1, S′′ = S`2m (e.g., P,Q), with S? = (S?)`−1
m (e.g., J?),

q.s. every s′ ∈ S′ gives |S?(·, s′, ·)| = (1± δ)ρn′ |S′′| and symmetrically every s′′ ∈ S′′ gives
|S?(·, ·, s′′)| = (1± δ)ρn′ |S′|.

Proof. The first assertion is immediate from n� x and thus ρn′x� 1.3 We prove the rest of the
claim by induction on `, starting with ` = 3 and working backwards to ` = 1. For ` = 3, the second
statement is immediate.

For any `, the first two statements imply the third. To see this, Property 4 implies that given
S′′, distributionally, ∣∣S?(·, s′, ·)∣∣ =

∑
S′′

Bin(n′, ρ) = Bin(
∣∣S′′∣∣n′, ρ). (11)

To this we apply the Chernoff inequality

Pr(|Bin(n, p)− np| ≥ δnp) ≤ 2e−δ
2np/3 for 0 ≤ δ ≤ 1 (12)

(an easy consequence of Alon and Spencer [AS99, Theorem A.1.15]), substituting |S′′|n′ for n, ρ
for p, and δ for δ. Recalling from (6) that ρ = n−6/7x−8/7 log n, and from Triples (Algorithm 2)
that n′ = n− 2n19/20, the expectation of the binomial in (11) is∣∣S′′∣∣n′ρ = Ω(σ`nρ) = Ω(xnρ) = Ω(n1/7x−1/7 log n) = Ω(n1/49 log n).

From this and (10) it follows that δ2 |S′′|n′ρ = ω(log n), and thus the exponent in the Chernoff
inequality (12) is of order −ω(log n). This assures that for a given s′, q.s.,∣∣S?(·, s′, ·)∣∣ = (1± δ)

∣∣S′′∣∣ ρn′. (13)

Likewise, for a given s′′, |S?(·, ·, s′)| = (1 ± δ) |S′| ρn′. By definition of q.s. (failure probability
smaller than any polynomial), the union bound shows that q.s. (13) holds for every s′, yielding the
third part of the claim.

Finally, truth of the second and third parts of the claim for ` implies that of the second part
for `− 1. From (13) it follows that∣∣∣S`−1

m

∣∣∣ = |S?| =
∑
s′∈S′

∣∣S?(·, s′, ·)∣∣
= (1± δ)ρn′

∣∣S′∣∣ ∣∣S′′∣∣ (14)

= (1± δ)ρn′
∣∣∣S`2m−1

∣∣∣ ∣∣∣S`2m∣∣∣
= (1± δ)ρn′((1± ρ)2d−`−1σ`)

2 by the inductive hypothesis

= (1± δ)2d−(`−1)−1σ`−1.

3The notation f(n)� g(n) is equivalent to f(n) = ω(g(n)), i.e., f(n)/g(n)→∞.
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Claim 10. There is q.s. no failure in MainPhase (Algorithm 6 Line 9).

Proof. Consider how the sizes of the sets S`m are affected by poisoning during a round. Claim 9
part (3) shows that each element s′ ∈ S′ has almost exactly equal representation in the parent set
S?. Specifically (see also (13) and (14)), q.s., every ratio |S?(·, s′, ·)| / |S?| satisfies

|S?(·, s′, ·)|
|S?|

=
(1± δ) |S′′| ρn′

(1± δ)ρn′ |S′| |S′′|
=

(1± δ)2

|S′|
.

Thus each poisoned s′ ∈ S′ poisons |S?(·, s′, ·)| = (1± δ)2|S?|/ |S′| triples associated with the parent
S?. If λ |S′| elements are poisoned (a λ fraction of S′), they poison ≤ λ(1 + δ)2 |S?| elements of
S? (a λ fraction of S?, up to the small error factor); the inequality allows for possible repeated
poisonings of the same elements.

After λσ3 iterations within a round, a λ fraction of S3
1 = Ξ1 is poisoned. It therefore poisons a

≤ λ(1 + δ)2 fraction of S2
1 . These poisoned elements in turn poison a ≤ λ(1 + δ)4 fraction of S1

1 .
The same holds for S3

3 , S
3
5 , S

3
7 , so, summing, we see that a ≤ 4λ(1 + δ)4 fraction of S1

1 is poisoned.
Similarly, a ≤ 4λ(1 + δ)4 fraction of S1

2 is poisoned.
As long as these fractions are both at most 1/2, at least half the elements of J are healthy,

likewise for K. In this case the number of good triples (i, j, k), with i given by the round and
iteration, and j ∈ J and k ∈ K both healthy, dominates Bin(1

4σ
2
1, ρ), whose expectation is

1

4
σ2

1 ρ = Θ
(

(n3/7x4/7 log2 n)2 (n−6/7x−8/7 log n)
)

= Θ(log5 n).

Thus q.s. there is some good triple (i, j, k).
The poisoned fractions of J and K, each ≤ 4λ(1 + δ)4, are ≤ 1/2 if λ ≤ (1 − δ)4/8. Earlier

we parametrized the total number of iterations as αx, so λσ3 ≤ αx, for λ ≤ αx/σ3 < 8α (the
equipartitioning gives σ3 > x/8). Taking α = (1/64)(1 − δ)4, we see that the round can q.s.
continue even in the iteration after αx. We thus perform dαxe iterations within the round, all
succeeding q.s.

Claim 11. There is q.s. no failure in Triples (Algorithm 2), in Lines 2 or 9.

Proof. Recall that Triples is called by SetConstruct (Algorithm 3), in turn called by Main-
Phase Line 5. From Claim 9 and (9), the total size of all sets S1

1 , . . . , S
3
8 is dominated by the sizes

of J = S1
1 and K = S1

2 , and q.s. is O(σ1) = O(n3/7x4/7 log2 n). Recalling that x = xt ≤ x1 = n6/7,
this is O(n46/49).

Within SetConstruct, at the start of round t we have |X| = |A| = n − xt; this is smallest
for round 1, where |A| = n− x1 ≥ n− n6/7. X is depleted precisely of the elements that Triples
adds to the sets S`m, so by the paragraph above, even at the end of SetConstruct, q.s. |X| ≥
n − n6/7 − O(n46/49) > n − n19/20. Thus Line 2 of Triples q.s. never fails. Also, Line 9 fails iff
the size of U reaches n19/20, but again U is one of the sets S`m, and the first paragraph shows that
its size is q.s. smaller than this.

A union bound ensures that q.s. there is no failure within the polynomial-time execution of
MainPhase.

4.3 Final Phase

We now have to add only 3 indices to I. At this point, when the number of unused indices is∣∣B̄∣∣ =
∣∣C̄∣∣ = x < 4, the previous approach does not work: to begin with, there are not even enough
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unused indices to define nonempty sets Ξ1, . . . ,Ξ8. In the extreme case x = 1, only n is available to
fill the roles of ξ1, . . . , ξ7 and ξ2, . . . , ξ8, but (within each of the two groups) we relied on all these
values being distinct to obtain a valid assignment (see Figure 1). We now show how to modify our
approach in order to deal with this problem.

Because there are only O(1) indices to add, we can now afford to have a round consist of the
addition of a single triple. It is easy to check that Wτ = O(n−6/7 log n), so for the remaining rounds
t (namely t = τ + 1, τ + 2, and τ + 3), in lieu of (6) we may as well let

ρt = ρ = n−6/7 log n, (15)

defining wt and Wt as in (6). Then, if successful, the cost of this phase is O(Wτ + wτ ) =
O(n−6/7 log n).

As usual, by permuting the cost matrix we can assume that T = {(i, i, i) : i ∈ A}, so A = B = C.
For notational convenience we further assume that A = [n−1]. We can do so because, when adding
one more element to T , we can confine ourselves (in the algorithm and the analysis) to using indices
at most |A|+ 1; when x = 3, for example, this is like “pretending” that n is n− 2 and x is 1.

Consider the following relabeling of Figure 1. This indicates our strategy for completing the
assignment. It is easy to check that if n, j, . . . , s are distinct then this is a valid augmentation, so
the task is to find such an augmentation of low cost.

+(n, j, k)

−(j, j, j) −(k, k, k)

+(j, p, q) +(k, r, s)

−(p, p, p) −(q, q, q) −(r, r, r) −(s, s, s)

+(p, n, p) +(q, q, j) +(r, k, r) +(s, s, n)

Figure 3:

It will be convenient for this and the corresponding general case to equipartition [n − 1] into
sets N`,m of size n0 = n/(2d+1 − 2) for 1 ≤ ` ≤ d and 1 ≤ m ≤ 2` (6 sets in this d = 2 case).
Drawing our indices (in this case j, . . . , s) from corresponding sets ensures distinctness. Here all
sizes are large and we will ignore integrality.
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Algorithm 7 FinalPhase: augment the assignment by one

1: Let P = {p ∈ N2,1 : (p, n, p) ∈ Gt}
2: for j ∈ N1,1 do
3: Let Q(j) = {q ∈ N2,2 : (q, q, j) ∈ Gt}
4: Let J = {j ∈ N1,1 : (∃p ∈ P, q ∈ Q(j)) with (j, p, q) ∈ Gt}

5: Let S = {s ∈ N2,4 : (s, s, n) ∈ Gt}
6: for k ∈ N1,2 do
7: Let R(k) = {r ∈ N2,3 : (r, k, r) ∈ Gt}
8: Let K = {k ∈ N1,2 : (∃r ∈ R(k), s ∈ S) with (k, r, s) ∈ Gt}

9: if Gt ∩ ({n} × J ×K)) = ∅ then Fail
10: Let (n, j, k) be an element in this set. Let p, q be values satisfying Line 4 for j, and let r, s be

values satisfying Line 8 for k.
11: Augment the assignment (as in Figure 3), adding +(n, j, k), +(j, p, q), +(k, r, s), +(p, n, p),

+(q, q, j), +(r, k, r), +(s, s, n) and removing −(j, j, j), . . . , −(s, s, s).

Claim 12. There is q.s. no failure in FinalPhase (Algorithm 7) in Line 9.

Proof. Observe first that |P | is distributed as Bin(n0, ρ). This has expectation Ω(n1/7 log n) and so
the Chernoff bounds imply that q.s. |P | = (1± δ)n0ρ, with δ as in (10). Given P and j ∈ N1,1, the
size of Q(j) is distributed as Bin(n0, ρ) and so q.s. |Q(j)| = (1± δ)n0ρ. The trials for choosing a
Q(j) are independent of those for choosing P as they use distinct first indices (drawn respectively
from N2,2 and N2,1). The trials for the various Q(j) are all independent as they use distinct last
indices. Condition on the sets P and Q(j) for j ∈ N1,1 and that they are as large as q.s. claimed.

The trials to determine if j ∈ N1,1 belongs to J are the only trials to look at matrix elements
with first index j, so they are independent of the trials for P , for every Q(j), and for every other
j′. Fix j ∈ N1,1 and let αj be the (conditional) probability that j ∈ J . Then

αj = 1− (1− ρ)|P | |Q(j)| ≥ 2

3
|P | |Q(j)|ρ ≥ 1

2
n2

0ρ
3.

Because the trials for each j ∈ N1,1 are independent, |J | dominates Bin(n0, n
2
0ρ

3/2) and q.s. this is
at least n3

0ρ
3/3. Conditioning on all the foregoing, the same analysis shows that q.s. |K| ≥ n3

0ρ
3/3.

Given this, and recalling ρ from (15), the probability that no (n, j, k) is good is at most

(1− ρ)n
6
0ρ

6/9 ≤ exp(−ρn6
0ρ

6/9) = exp(−Θ(n6ρ7)) = exp(−Θ(log7 n)).

This completes the analysis of BDAPTA when there are two levels, BDAPTA(2).

5 3-Dimensional Axial assignment general algorithm, BDAPTA(d)

We follow the same three-phase strategy as for BDAPTA(2) but with depth d a positive integer
satisfying

2 ≤ d ≤ ε log2 log n where 0 < ε < 1/2. (16)

For the Greedy and Main Phases the ideas are the same as before; only the calculations are more
difficult. For the Final Phase, new ideas are needed to generalize the construction illustrated in
Figure 3.

17



5.1 Greedy Phase

This is much as before. Proceed as in Section 4.1 but take

η = ηd =
1

2d+1 − 1
, n1 = n− n1−η, w0 = n−2(1−η) log n.

Lemma 1 continues to hold.

5.2 Main Phase: parameters and cost bound

In parallel with Section 4.2, let

α = 1
102−2d, β = 1− α,

x1 =
⌊
n1−η⌋ , xt = bβxt−1c for t ≥ 2,

ρt = x−1−η
t nη−1 log n, for t ≥ 1,

τ = argmaxt

{
xt ≥ 2d

}
, wt = − log(1− ρt), Wt = w0 + w1 + · · ·+ wt.


(17)

Note that

xt ≤ βt−1x1, τ ≤ log1/β(x1/2
d) = O(log2 n), and wt = (1 + o(1))ρt.

As before let Tt be the partial matching (set of triples) at the start of round t of the Main
Phase, let At = proj1(Tt) be the set of 1-indices assigned and Āt those not assigned, similarly for B
and C, and again for notational convenience assume that Tt = (1, 1, 1), . . . , (n− xt, n− xt, n− xt).
Round t consists of dαxte iterations, each increasing the cardinality of the partial assignment by 1,
so that the round reduces the number of unassigned elements from xt to bβxtc = xt+1. As before,
the small size of α means that the last several rounds each each run for a single iteration and thus
the last phase will have xτ = 2d exactly. In analogy with (7), each augmentation will add 2d+1 − 1
triples each of cost at most Wt, and remove 2d+1 − 2 triples.

Altogether the Main Phase increases the partial assignment’s cost by at most

(2d+1 − 1)
τ∑
t=1

(xt − xt+1)Wt ≤ 2d

(
x1w0 +

τ∑
t=1

xtwt

)

= O(2d)

(
nη−1 log n+ nη−1 log n

τ∑
t=1

x−ηt

)
.

= O(24dnη−1 log n).

The last line above follows in precise analogy to (8), using

τ∑
t=1

(xt)
−η ≤

τ−1∑
t=0

(βtx1)−η ≤ ((1/β)τ )/x1)η

1− βη
≤ (2−d)η

1− βη
≤ O(23d), (18)

whose last inequality comes from d η = Θ(1) and βη = (1− α)η = 1− Ω(αη) = 1− Ω(2−3d).
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5.3 Main Phase: algorithms and properties

The algorithm follows lines that we hope are clear from the d = 2 case, with only small generaliza-
tions needed.

Property 3 holds just as before.

Algorithm 2, Triples, constructing a set U of triples from two child sets V,W of triples and a
set X of available 1-indices, is as before with the sole exception that we replace n19/20 with n1−η/10

Property 4 holds for the same reason as before.

Algorithm 3, SetConstruct, is a trivial extension of its d = 2 special case. It is given as
Algorithm 3 below, and constructs the obvious generalization of Figure 2.

Algorithm 8 SetConstruct: for Main Phase round t, construct all sets S`m
1: Input: sets A, B, and C of assigned 1-, 2-, and 3-indices.
2: Let X = A and x = n− |X|.
3: “Equipartition” B̄ into Sd+1

1 ∪Sd+1
3 ∪· · ·∪Sd+1

2d+1−1
each of size

⌊
x/2d

⌋
, discarding the x−2d

⌊
x/2d

⌋
remaining elements of B̄

4: Likewise, equipartition C̄ into Sd+1
2 ∪ Sd+1

4 ∪ · · · ∪ Sd+1
2d+1

5: for ` = d, . . . , 1 do
6: for m = 1, . . . , 2` do
7: Let ((S?)`m, S

`
m, X) = Triples(X,S`+1

2m−1, S
`+1
2m )

8: Return all sets S`m and (S?)`m defined above

Algorithm 4, MakeTree, is as shown earlier except that ` ranges from 1 to d, and of course the
names J and K are to be disregarded.

We will use an augmentation output by MakeTree just as before, adding all positive triples to
the assignment and removing all negative triples from it. Instead of adding 7 triples and removing
6, as in (7) for the d = 2 special case, we now add 2d+1 − 1 triples and subtract 2d+1 − 2.

Properties 5 and 6 hold for the same reasons as before.

Algorithm 5, PoisonPropagate, again has no changes except that in Line 2 the poisoned leaves
are sd+1

1 , . . . , sd+1
2d+1 , and that Line 3 iterates through ` = d to 1.

Algorithm 6, MainPhase is unchanged but for interpreting J as S1
1 and K as S1

2 , and likewise
their starred variants.

Property 7 holds for the same reason as before.
This establishes that MainPhase is correct, and we need only show that q.s. it does not fail. To

this end we will prove generalizations of Claims 9, 10, and 11, starting with Claim 9’s determination
of the sizes of the sets S`m.

Letting n′ = n− 2n1−η/10, in analogy with (9) we define nominal sizes of level-` sets by σd+1 =⌊
x/2d

⌋
and, for d ≥ ` ≥ 1,

σ` = ρn′σ2
`+1, (19)

a recurrence leading easily to

σ` = (ρn′)2d+1−`−1(σd+1)2d+1−`
=

1

ρn′
(ρn′σd+1)2d+1−`

. (20)
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As in the depth-2 case, we will show that the sizes of each set S`m is approximated by the

nominal size σ` up to a factor (1± δ)2d+1−`
, with

δ = n−η
2/3. (21)

We note that these bounds are good, by assertion 0 of the following claim.

Claim 13. For each depth ` ∈ {1, . . . , d+ 1} and each m ∈
{

1, . . . , 2l
}

:

0. For δ as defined in (21), (1± δ)2d = 1 + o(1).

1. The nominal sizes in (20) satisfy σ1 � · · · � σd+1 = Θ(x/2d).

2. Q.s.,
∣∣S`m∣∣ = (1± δ)2d+1−`−1σ`.

3. For every pair of sets S′ = S`2m−1, S′′ = S`2m, with S? = (S?)`−1
m , q.s. every s′ ∈ S′

gives |S?(·, s′, ·)| = (1± δ)ρn′ |S′′| and symmetrically every s′′ ∈ S′′ gives |S?(·, ·, s′′)| =
(1± δ)ρn′ |S′|.

Proof. The proof mirrors that of Claim 9 but with more computation. We start with some obser-
vations we will use repeatedly. By definition,

η = Θ(2−d) = Ω(log−e n).

Then

nη
2

= exp(log nΩ(log−2ε n)) = exp(Ω(log1−2ε n)). (22)

(This is the reason we require ε < 1/2.)
We first prove part 0 (which was not worth stating for the d = 2 case). First,

(1 + δ)2d+1 ≤ exp(δ2d+1) = exp(n−η
2/3Θ(1/η)).

By (22), the argument of the exponential satisfies

n−η
2/3Θ(1/η) = exp(Ω(log1−2ε n))O(logε n) = o(1), (23)

where the last step uses ε < 1/2 and follows from the general observation that the exponential of a
logarithm to any positive power dominates any polylogarithmic quantity. (Taking logarithms, log
to any positive power dominates log log.) Thus,

(1 + δ)2d+1
= exp(o(1)) = 1 + o(1),

establishing assertion 0.
The first assertion’s last equality follows from x ≥ 2d (so that

⌊
x/2d

⌋
is not 0). Proving the

rest of the first assertion inductively on ` = d, . . . , 1, suppose that σ`+1 ≥ σd+1; the base case ` = d
is trivial. Then, recalling that x ≤ n1−η, we see that

ρn′σ`+1 ≥ ρn′σd+1 = Ω(ρnx 2−d) = Ω((n/x)η log n log−ε n) = Ω(nη
2

log1/2 n)

= exp(Ω(log1−2ε n)) log1/2 n = ω(1), (24)
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where the last line makes use of (22) and the previous observation on domination. From (24) and
(19), ρn′σ`+1

2 = (ρn′σ`+1)σ`+1 � σ`+1, establishing the first assertion.
We prove the rest of the claim by induction on `, starting with ` = d+ 1 and working backwards

to ` = 1. We equate S′ = S`2m−1, S′′ = S`2m, and S? = (S?)`−1
m . For ` = d+ 1, the second statement

is immediate. For any ` > 1, the first two statements imply the third (which is empty when ` = 1).
To see this, Property 4 implies that given S′′, distributionally,∣∣S?(·, s′, ·)∣∣ =

∑
S′′

Bin(n′, ρ) = Bin(
∣∣S′′∣∣n′, ρ). (25)

We wish to apply the Chernoff bound to this. From assertion 0 and the inductive hypothesis,
|S′′| = (1 + o(1))σ`+1 = Ωσd+1, and thus the Chernoff bound is exponentially small in

δ2
∣∣S′′∣∣n′ρ ≥ (n−η

2/3)2(1 + o(1))Θ(2−dx)n(x−1−ηnη−1)

= (n−2η2/3)Θ(η)(n/x)η which, reasoning as in (24), is

= Ω(n+η2/3η) = exp(1
2Ω(log1−2ε n)) Ω(log−ε n) = ω(log n).

Thus the Chernoff bound is smaller than any polynomial, so the binomial’s value is q.s. almost
exactly equal to its expectation. Thus, q.s. for all s′ ∈ S′, |S?(·, s′, ·)| = (1± δ) |S′′|n′ρ, with the
symmetric statement holding for all s′′ ∈ S′′. This gives the claim’s third assertion for `.

Then, simply by summing over all s′ ∈ S′, |S?| = (1± δ) |S′| |S′′|n′ρ. By the inductive hypoth-
esis,

|S?| = (1± δ)
[
(1± δ)2(d+1)−(`)−1σ`

]2
n′ρ = (1± δ)2d+1−(`−1)−1σ`−1.

This establishes the claim’s second assertion for `− 1, concluding the induction and the proof.

The next claim parallels Claim 10 and is proved by identical reasoning.

Claim 14. There is q.s. no failure in MainPhase.

Proof. Claim 13’s first assertion establishes the sizes of the sets S1
1 and S1

2 , and we now consider
the sizes of their healthy subsets. After λσd+1 iterations within a round, by definition a λ fraction
of Sd+1

1 is poisoned. Reasoning as in the proof of Claim 10, Claim 13’s second assertion says that
each element in the child set is responsible for an equal number of elements of the parent, to within
a factor (1± δ)2, and thus the poisoned λ fraction of Sd+1

1 poisons a fraction (1± δ)2λ of Sd1 . This

in turn poisons a fraction (1± δ)4λ of Sd−1
1 and so on, finally poisoning a fraction (1± δ)2d of S1

1 .
Each leaf set Sd+1

m poisons this same fraction of S1
1 , so altogether, the fraction of S1

1 poisoned is at
most 2d(1 + δ)2dλ. (Half the leaves lead to S1

1 ; the other half act on S1
2 .)

We wish to ensure that at most half of S1
1 is poisoned. This will be so if 2d(1 + δ)2dλ ≤ 1/2.

Claim 13’s assertion 0 tells us that (1 + δ)2d = 1 + o(1), so it suffices to ensure that λ ≤ 1
3 2−d.

The round runs for dαxe iterations and we are not interested in the state after the last iteration, so
λσd+1 ≤ bαxc ≤ αx. Thus it suffices to take αx/σd+1 ≤ 1

3 2−d, or equivalently α ≤ (σd+1/x) 1
3 2−d.

The right-hand side of this inequality is equal to (
⌊
x/2d

⌋
/x) 1

3 2−d ≥ (1
22−d) (1

3 2−d) = 1
6 2−2d, so it

suffices to ensure that α ≤ 1
62−2d; this is done by its definition in (17).

From Claim 13’s assertion 2 and then assertion 0,
∣∣S1

1

∣∣ , ∣∣S1
2

∣∣ = (1± δ)2d+1

σ1 = (1 + o(1))σ1, so
the product of the sizes of their healthy subsets is ≥ 1

5σ1
2, and

∣∣Gt ∩ {i} × S1
1 × S1

2

∣∣ % Bin(σ1
2/5, ρ),

where the symbol % denotes stochastic domination. By Chernoff, this is q.s. nonzero if the expected
value, ρσ1

2/5, is ω(log n), as we now verify.
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First, recalling that 2d = Θ(1/η), we note that

(n′/n)2d = (1− n−η/10)Θ(1/η) = 1−Θ(n−η/10 · 1/η)) = 1− o(1),

where the last step uses

n−η/10 · 1/η = exp(− log1−ε n)O(logε n) = o(1),

as comes from reasoning like that for (22) and (23). By (20) and using σd+1 >
1
2x/2

d, the expec-
tation ρσ1

2/5 is at least one fifth of

ρ
1

(ρn′)2
(ρn′σd+1)2d+1 ≥ 1

n2ρ

( ρnx
2d+1

)2d+1

=
(x
n

)1+η 1

log n

((n
x

)η log n

2d+1

)2d+1

=
1

log n

(
log n

2d+1

)2d+1

(using (2d+1)η = 1 + η)

≥ 1

log n

(
log n

logε n

)2d+1

≥ (log n)2d−1.

That is, the expectation is of order ω(log n) for any d > 1 (quick inspection shows it is also so for
d = 1), whereupon the Chernoff bound shows that q.s. every set Gt ∩ {i} × S1

1 × S1
2 is nonempty,

and there is no failure in MainPhase.

The next claim parallels Claim 11 and is proved by identical reasoning.

Claim 15. There is q.s. no failure in Triples (Algorithm 2), in Lines 2 or 9.

Proof. By analogy with the proof of the d = 2 special case, it suffices to show that the sum of the
sizes of all sets S`m produced by SetConstruct (calling Triples) is o(n1−η/10), so by Claim 13
it suffices to show that the sum of all the nominal sizes is this small. From Claim 13’s assertion 1,
each set’s nominal size dominates the sum of the sizes of its two children, so the sum of all the
sets’ nominal sizes is less than twice σ1. We now verify that this is � n1−η/10. We use that
2d − 1 < 2d − 1/2 = 1/(2η). First,

σ1 =
1

ρn′
(ρn′σd+1)2d ≤ 1

ρn′
(ρnx)2d = x(ρn′x)2d−1 = x((n/x)η log n)1/(2η) = (nx)1/2(log n)1/(2η).

This is increasing with x, and x ≤ x1 = n1−η, so

σ1 ≤ n1−η/2(log n)1/(2η) = exp((1− η/2) log n+ 1/(2η) log log n).

Recalling that η = Ω(log−ε n), the term (η/2) log n is Ω(log1−ε n) while the final term isO(logε n log log n),
so we conclude that

σ1 ≤ exp((1− η/3) log n) = n1−η/3 = o(n1−η/10). (26)
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5.4 Final Phase

We execute the Main Phase so long as the number of unassigned elements is at least 2d. In the
Final Phase, then, we must add 2d − 1 triples, and as in Section 4.3, we will proceed in rounds,
each round adding just one triple. In a round, there are x < 2d unassigned elements. We assume
that the assigned first indices are A = [n − x], and that the partial assignment consists of the set
of triples T = {(i, i, i) : i ∈ A}. We simplify the notation of Section 5.2 and let

ρ = nη−1 log n, w = − log(1− ρ) = ρ(1 + o(1)), (27)

with η = 1/(2d+1 − 1) as in Sections 5.1 and 5.2.
Because each round adds just one triple, if successful, the cost of this phase is

O(2d(Wτ + 2dw)) = O(22dnη−1 log n).

To see this, the 22dw on the left clearly matches the bound. Recalling Wτ = w0 +
∑τ

t=1wt, the first

term’s contribution 2dw0 = 2dn2(η−1) log n is negligible. Then,
∑τ

t=1wt = nη−1 log n
∑τ

t=1 x
−1−η
t

is summed as in (18) to give nη−1 log n (2−d)1+η

1−β1+η . Still as in (18), (2−d)1+η = Θ(2−d) while β1+η =

1 − Ω(α(1 + η)) = 1 − Ω(α). So this term, with its 2d prefactor, contributes 2dnη−1 log n O(2−d)
Ω(2−2d)

,

again matching the bound.
A certain function φ will play a key role in defining a general set of augmenting triples, analogous

to the d = 2 case illustrated in Figure 3. The function φ may be thought of as taking as input a
binary string (interpretable as a binary number), along with its length, and dropping the final all-0
or all-1 block (of maximum length). That is, we define

φ(`, b1 . . . b`) = (i, b1 . . . bi) where bi 6= bi+1 but bi+1 = · · · = b`.

If b1 = · · · = b` then φ(`, b1 . . . b`) = (0, $) where $ denotes the empty string.
Consider a complete binary tree T on levels 0, . . . , d, with nodes (`,m) for ` = 0, . . . , d and

m = 0, . . . , 2` − 1, where the children of (`,m) are (`+ 1, 2m) and (`+ 1, 2m + 1).4 Make the
natural correspondence between a number and its binary representation, with the empty string $
having value 0. Then φ establishes a map from the nodes at any level of T (notably the leaves) to
nodes at a higher level,

φ(`,m) = (i,m′),

where we interpret m as its `-bit binary representation b1 . . . b`, and m′ is the number with i-bit
binary representation b1 . . . bi. For a given level `, this map from level-` nodes to shallower nodes is
injective except for the two nodes (`, 0) and (`, 2` − 1) mapping to the root. This follows because,
except at the root, φ is invertible, with φ−1(i, b1 . . . bi)) = (`, (b1 . . . bi(1− bi) . . . (1− bi)), where the
final binary number has ` bits.

The mapping φ will be used to define a generic set of triples that can be used to augment an
assignment, as illustrated in Figure 4 for d = 3. It is analogous to the triples illustrated in Figure 3
for d = 2, with the indices 1, . . . , 15 here playing a role similar to that of the variables n, j, k, . . . , s
there. Each node u = (`,m) of T is given a triple

(iu, ju, ku).

4We take the range of m to be 0, . . . , 2` − 1 (“index origin” 0 rather than 1) because this is notationally better
given our use of the binary representation of m.
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The first index iu is given by

iu ≡ i`,m := 2` +m, and for the root, i(0,$) = 1. (28)

(Any unique labeling will do, though we will capitalize on the parities of the leaves.) For a non-leaf
u with left child v and right child w we complete the triple as (iu, iv, iw). A leaf u = (d,m) with m
even is given triple (iu, iφ(u), iu), and one with m odd is given triple (iu, iu, iφ(u)). (The role of φ is
critical, as we will explain shortly.)

1 2 3

2 4 5

4 8 9

8 1 8 9 9 4

5 10 11

10 5 10 11 11 2

3 6 7

6 12 13

12 3 12 13 13 6

7 14 15

14 7 14 15 15 1

Figure 4: For d = 3, construction, based on φ, of a generic tree of triples (i, j, k) to augment the
assignment.

The figure shows in bold font linkages between various leaves and internal nodes via φ. The first
and last leaves, with m = 0 and m = 7, have binary representations 000 and 111, both mapping
to the root, and thus their triples both include the root’s value iu = 1. The third leaf maps to
the second level-2 node, since φ(3, 010) = (2, 01), so its triple (10, 5, 10) includes that node’s value
iu = 5. Likewise, the fifth leaf maps to the second level-1 node since φ(3, 100) = (1, 1), so its triple
(12, 3, 12) includes that node’s value iu = 3.

As in the d = 2 special case of the Final Phase (Section 4.3), to avoid dependencies we equipar-
tition the assigned first indices [n− x] into sets N`,m of size

n0 =
n− x

2d+1 − 2
, (29)

for 1 ≤ ` ≤ d and 0 ≤ m ≤ 2` − 1 (both x and 2d+1 are of order o(n), so we can and shall ignore
integrality), and we define a singleton set N0,0 = {n}: we will, without loss of generality, discuss
the addition of first index n to the assignment in this round.

We instantiate the generic tree of triples via a mapping

π :
{

1, . . . , 2d+1 − 1
}
→ {1, . . . , n} with π(i`,m) ∈ N`,m. (30)

The function π plays the same role as the assignment of values to the variables n, j, k, . . . , s of
Figure 3, just in a more general notation. For example where before we assigned a value to s1

1 = j,
now we choose a value π(i1,0) = π(2); another important example is that our choice of N0,0 implies
that π(i0,0) = π(1) = n. To augment the assignment, for every triple (i, j, k) in the tree we
add (π(i), π(j), π(k)) to the assignment, and, for every i in 2, 3, . . . , 2d+1 − 1, we delete the old
assignment triple (π(i), π(i), π(i)). We will seek a mapping π such that the added triples are all of
low cost. We denote the augmentation corresponding to π by Aπ.

Claim 16. The augmentation Aπ described above yields a proper assignment.
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Proof. Let us ignore π for the moment, imagining it to be the identity. We first show that each of
the values r = 1, . . . , 2d − 1 occurs exactly three times in the triples, once each as a first, second,
and third element.

First consider r = 1. This value appears as the first index iu = 1 of the root triple, the second
index in the triple at leaf (d, 0), and the third index in the triple at leaf (d, 2d − 1).

Next consider 2` ≤ r < 2`+1 with 1 ≤ ` < d. Writing r = 2` + m, r occurs as the first index
iu of a node u = (`,m) which is neither the root nor a leaf. (For example, r = 3 in node (1, 1) in
Figure 4.) If m is even, then u is the left child of its parent v = (` − 1,m/2) and so r appears as
the second index jv of the triple at v. Let w = (d,m′) be the unique leaf for which φ(w) = u. The
definition of φ implies that m′ is odd, and thus r = iu = iφ(w) appears as the third index kw of the
triple at w. The case m odd is handled similarly.

Finally, consider 2d ≤ r < 2d+1. Write r = 2d+m. Assume first that m is even. Then r appears
as the first and third indices of the triple at (d,m) and the second index of its parent (d− 1,m/2).
(For example, r = 10 in the leaf (3, 2) and its parent in Figure 4.) If m is odd then r appears as the
first and second indices of the triple at (d,m) and the third index of its parent (d− 1, (m− 1)/2).

By counting, these three occurrences of each value r account for all elements of all triples, so
none occurs anywhere other than in the positions described.

Now consider the instantiated triples, of the form (π(iu), π(ju), π(ku)). By definition (30), π
is injective, so each value π(r) occurs exactly once in each coordinate, including π(1) = n. Also
by (30), for each r = 2, . . . , 2d+1 − 1, (π(r), π(r), π(r)) was previously in the assignment, but
(π(1), π(1), π(1)) = (n, n, n) was not. Thus, after the augmentation Aπ adds the first set of triples
and deletes the second, the assignment is augmented by (n, n, n).

Recalling that π(1) = n, our aim now is to find a set of values π(2), . . . , π(2d+1 − 1) respecting
(30) and making all the added triples cheap. For the subtree Tu rooted at u, let π′ be a π-like map
but on a domain restricted to indices occurring in triples outside the subtree Tu. (Critically, some
of these indices may also occur in Tu.) We say that an extension to Tu (possibly a completion to
all of T ) π of π′ is good if, for every v ∈ Tu, (π(iv), π(jv), π(kv)) ∈ G. (The definition does not
consider the cost of triples outside Tu, something determined entirely by π′, though of course we
will seek to ensure that they too are of low cost.)

Claim 17. For any non-root vertex u, the only indices occurring both in triples in Tu and outside
it are iu (occurring twice inside Tu and once outside) and iφ(u) (occurring once inside and twice
outside). Given the cost matrix, whether π′ has a good extension to Tu depends solely on the values
of π′(iu) and π′(iφ(u)).

Proof. We prove the claim by induction on the depth of u, from the leaves to the root. We first
establish the base cases. If u is a leaf, iu occurs twice in u’s triple (thus once outside it), and iφ(u)

occurs once in u’s triple (thus twice outside it), and of course there are no other indices in Tu. Since
no index occurs exclusively in Tu, π = π′. For even u, π is good on Tu iff (π′(iu), π′(iφ(u)), π

′(iu)) ∈
G, a function of π′(iu) and π′(iφ(u)) alone; for odd u a similar argument applies.

Now consider u with left child v and right child w, starting with the case that u is even
(u = (`,m) with m even). The triple at u is (iu, ju, ku) = (iu, iv, iw). By definition of φ, φ(v) = φ(u),
φ(w) = u. Also, the four nodes φ(v) = φ(u), φ(w) = u, v, and w are all distinct (using that u is
not the root) as are their corresponding indices i. What indices can occur both within and outside
Tu? The only candidates are the new index iu and, inductively from the two subtrees, iv, iφ(v),
iw, and iφ(w). Inductively, iv makes only one appearance outside Tv, and that is accounted for by
its appearance as the second element of the triple at u. The same goes for iw, appearing as the
third element of the triple at u. Two appearances of iφ(v) lie outside Tv, and since φ(v) = φ(u)
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is an ancestor of u (again using that u is not the root), lying outside Tu, there are (as desired)
two appearances of iφ(u) outside Tu. Finally, two appearances of iφ(w) lie outside Tw, and since
φ(w) = u, one of these appearances is the first element iu of the triple at u, leaving (as desired)
one appearance of iu outside Tu. A similar argument applies to u odd, with the roles of v and w
swapped.

Since iu and iφ(u) are the only indices appearing both outside Tu (thus in the domain of π′)
and inside it, and since for any other index in Tu we are free to choose the value of π as we like
(subject only to the prescription in (30) that π(u) ∈ Nu) it is immediate that whether π′ has a
good extension π depends only on the evaluation of π′ at these two points.

Taking advantage of Claim 17, we define a pair (a, b) to be good for Tu if, with π′(iφ(u)) = a
and π′(iu) = b, π′ has a good extension π to Tu.

Remark 18. We can recursively, bottom-up, construct all good pairs for every non-root node of
T . For a leaf u, (a, b) is good iff (b, a, b) ∈ G (for even u) or (b, b, a) ∈ G (for odd u). For a
non-root, non-leaf even u with left child v and right child w, let π′(iφ(u)) = π′(iφ(v)) = a ∈ Nφ(u)

and π′(iu) = π′(iφ(w)) = b ∈ Nu. Then (a, b) is good for Tu, i.e., π′ has a good extension π to Tu,
iff there exist values π(iv) = c ∈ Nv and π(iw) = d ∈ Nw such that the triple at u is good, i.e.,
(b, c, d) ∈ G, and the subtrees at v and w have good extensions, which by the inductive hypothesis
is to say that (a, c) is good for Tv, and (b, d) is good for Tw. A similar calculation works for u odd.

For a node u = (`,m), with a ∈ Nφ(u), it proves convenient to define

S`m(a) = {b ∈ Nu : (a, b) is good for Tu}

Algorithm 9 simply implements the leaf-up iterative application of the goodness test described in
Remark 18.5 It generalizes Algorithm 7 (FinalPhase for d = 2); it may also be seen as playing a
role analogous to Algorithm 8 though it is entirely different in its details.

5This iterative construction can be viewed as a dynamic program. Specifically, it is a dynamic program on a
tree decomposition of a hypergraph, of a sort described by Scott and Sorkin [SS09, Theorem 6 and its proof]. We
cannot exploit [SS09] because we need more details to do our probabilistic counting, but we will state the connection.
Consider a hypergraph whose vertices are the indices of T and whose hyperedges are its triples. The critical aspect
of the connection (and of our function φ) is that T gives a bounded-treewidth tree decomposition of the hypergraph:
the “bag” at a node u consists of the three indices i, j, k in its triple and (for internal nodes) the (unique) index φ(i)
that occurs both below and above u.

Let f(π) be a function on labelings which is obtained as the product over edges e of functions fe of the labeling
of edge e. [SS09] shows how to efficiently solve the problem of finding a labeling maximizing f , and indeed related
counting problems, in the general setting of graphs of small treewidth; an extension to hypergraphs is merely nota-
tional. In this case we take the function for each hyperedge to have value 1 if the labeled triple is good (low cost), 0
otherwise, so that the product function f of the whole labeling is 1 iff the labeling makes all triples good, and the
Scott-Sorkin algorithm will find a good labeling if one exists.
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Algorithm 9 Final Phase SetConstruct: construct sets used to augment the assignment by one

1: for m = 1, . . . , 2d − 1 do
2: for a ∈ Nφ(d,m) do
3: Let

Sdm(a) =

{
{b ∈ Nd,m : (b, a, b) ∈ G} for m even,

{b ∈ Nd,m : (b, b, a) ∈ G} for m odd.

4: for ` = d− 1, . . . , 1 do
5: for m = 0, . . . , 2` − 1 do
6: for a ∈ Nφ(`,m) do
7: Let

S`m(a) =


{
b ∈ N`,m : ∃c ∈ S`+1

2m (a), d ∈ S`+1
2m+1(b), s.t.(b, c, d) ∈ G

}
for m even,{

b ∈ N`,m : ∃c ∈ S`+1
2m (b), d ∈ S`+1

2m+1(a), s.t.(b, c, d) ∈ G
}

for m odd.

8: Let S0
0 =

(
{n} × S1

0(n)× S1
1(n)

)
∩G.

After Algorithm 9 completes, the round of Final Phase completes as follows. If S0
0 = ∅, Fail.

Otherwise, choose any triple (n, a, b) ∈ S0
0 and define a partial mapping by π′(0, 0) = n (as always),

π′(1, 0) = a, and π′(1, 1) = b. By construction, (n, a, b) ∈ G is good, a ∈ S1
0(n) means that (n, a) is

good for T1,0 so π′ has a good extension π′′ to this subtree, and b ∈ S1
1(n) means that (n, b) is good

for T1,1 and thus π′′ has a completion π which is good for this subtree and thus for all of T . That
is, if S0

0 is nonempty, a good set of labels for all nodes can be found by “unwinding” Algorithm 9
back down to the leaves. We will not bother to give the procedure explicitly. This gives a valid
augmentation, as guaranteed by Claim 17.

5.5 Probability of success

It remains now to show that Algorithm 9 succeeds w.h.p., producing a nonempty set S0
0 . Let us

first point out that N0,0, the odd set with cardinality 1 rather than n0 (defined in (29)), only ever
occurs in Algorithm 9’s Lines 2 and 6, affecting the number of choices for a and thus the number
of sets Su(a) defined, but never in Lines 3 and 7 determining the sizes of these sets.

Let

σ` = (ρn0)2d−`+1−1 for 0 ≤ ` ≤ d, (31)

Note that

σ` = ρn0σ
2
`+1, ρn0 ≥ nη, and so σ1 � σ2 � · · · � σd. (32)

Claim 19. Quite surely, for all ` ∈ {1, . . . , d}, m ∈
{

0, . . . , 2d − 1
}

, and a ∈ S`m,∣∣∣S`m(a)
∣∣∣ ≥ (1− δ)2d−`+1−1σ` (33)

where σ` is as in (31) and δ = 1/ log2 n.
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Proof. The proof is by induction, proceeding through ` = d, . . . , 1 and m = 0, . . . , 2`−1 in the same
sequence as Algorithm 9. At each step in the analysis we will condition upon a successful history,
with no failures (i.e., (33) holds); the final success probability is the product of the conditional
probabilities, which is at least 1 minus the sum of the conditional failure probabilities. Conditioning
will assure us that the previous set sizes are as desired, but, as we will see, all the triples considered
are disjoint and thus the conditioning has no other effect. For ` = d, from Algorithm 9 Line 3, for
any m and any a ∈ N`,m, ∣∣∣Sdm(a)

∣∣∣ ∼ Bin(n0, ρ).

The sizes of the various sets are independent because the trials for one value of u are distinct
from those for any other, as the first elements of their triples come from distinct sets N`,m in the
partition. Since

∣∣Sdm(a)
∣∣ ∼ Bin(n0, ρ), we have E(

∣∣Sdm∣∣) = σd, and the Chernoff bounds imply

Pr
( ∣∣∣Sdm(a)

∣∣∣ < (1− δ)σd
)
≤ exp

{
−δ2σd/3

}
. (34)

The analysis of the size of a set S`m(a) in Algorithm 9 Line 7 for an internal node, with ` < d, is

slightly more complicated. For m even, a given b belongs to S`m(a) if any of the
∣∣∣S`+1

2m (a)
∣∣∣ ∣∣∣S`+1

2m+1(b)
∣∣∣

candidates for c and d leads to a triple (b, c, d) ∈ G. Conditioning upon success up to this point,
S`+1

2m (a) and S`+1
2m+1(b) each have cardinality satisfying (33), so the number of trials for b is at least

N =
(

(1− δ)2d−`−1σ`+1

)2
. (35)

The same value N results for m odd, so the two cases now continue as one. These trials for
(b, c, d) ∈ G are independent of all those in the history: the first index b rotates through distinct
choices within node `,m, and b ∈ N`,m assures that first index b was not explored for any previous
node. By the independence, each trial succeeds with probability ρ. Thus, for a given b, at least
one trial is successful with probability at least

1− (1− ρ)N ≥ 1− exp(−ρN) ≥ ρN(1− ρN),

where the second inequality relies on ρN ≤ 1 (in fact ρN = o(1), see (39)).
Considering the n0 candidates for b yields that∣∣∣S`m(a)

∣∣∣ % Bin(n0, ρN(1− ρN)). (36)

We will shortly need the results of some calculations. Recall from the hypothesis of Theorem 2
that d ≤ ε log2 log n, with ε < 1/2 so that

2d ≤ logε n = o(log n).

Since ` is playing the role of inductive index here, we use λ for a generic equivalent in this paragraph.
In general,

σλ = (ρn0)2d−λ+1−1 =

(
(nη−1log n)

n(1− x/n)

2d+1 − 2

)2d−λ+1−1

≤ (log n nη)2d−λ+1−1 , (37)

and in particular, using η(2d − 1) = (2d − 1)/(2d+1 − 1) ≤ 1/2,

σ1 ≤ (log n)2d−1nη(2d−1) ≤ (log n)logε nn1/2 = n1/2+o(1). (38)
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From (35), N ≤ σ2
`+1 and, using (32) and (38),

ρN ≤ ρσ2
`+1 =

1

n0

(
n0ρσ

2
`+1

)
≤ 1

n0
σ` ≤

1

n0
σ1 ≤ n−1/2+o(1). (39)

Returning now to (36) and the first part of (32), the expectation of the binomial in the RHS is

n0ρN(1− ρN) = (1− ρN)(1− δ)2d−`+1−2σ`,

and (33) holds if the binomial’s value is at least (1 − δ)2d−`+1−1σ`, i.e., if it is at least 1 − ζ :=
(1− δ)/(1− ρN) times its expectation.

Now (39) gives ρN = n−1/2+o(1) � 1/ log2 n = δ and implies that ζ = δ − o(δ), implying
ζ2/3 > δ2/4. Then the Chernoff bound gives us

Pr
( ∣∣∣S`m(a)

∣∣∣ < (1− δ)2d−`+1−1σ`

)
≤ exp

{
−ζ2(1− δ)2d−`+1−2σ`/3

}
≤ exp

{
−δ2(1− δ)2d−`+1−2σ`/4

}
≤ exp

{
−δ2(1− δ)2dσ`/4

}
. (40)

The failure probabilities in (34) and (40) are both ≤ exp
{
−δ2(1− δ)2dσd/4

}
. Recall that

2d = o(log n), so

σd = ρn0 � nη ≥ n1/ log1/2 n ≥ (log n)K

for any fixed K. Using this and (1− δ)2d ≥ 1− δ2d = 1− o(1), the failure probability is at most

exp

{
− δ2σd

4 + o(1)

}
≤ exp

{
−Ω(δ2σd)

}
≤ exp

{
−Ω((log n)K−4)

}
≤ exp

{
− log2 n

}
.

The sum of all failure probabilities is thus ≤ 2d+1 exp(− log2 n), and q.s. there is no failure.

Claim 19 establishes that, q.s.,
∣∣S1

1(n)
∣∣ , ∣∣S1

2(n)
∣∣ ≥ (1 − o(1))σ1. Since S0

0 simply consists of
triples (n, a, b) ∈ G with a ∈ S1

0(n) and b ∈ S1
1(n), and no triple with first index n has previously

been considered, conditioned on successful progress of the algorithm to this point, S0
0 is empty with

probability at most (1− ρ)σ
2
1/2 ≤ exp

(
−ρσ2

1/2
)
. But

ρσ2
1 =

1

n0
σ0 ≥

2d+1 − 2

n(1− x/n)

(
(nη−1log n)

n(1− x/n)

2d+1 − 2

)2d+1−1

≥ n−1+η(2d+1−1)(2d+1 − 2)

(
log n

2d+1 − 1

)2d+1−1

= (2d+1 − 2)

(
log n

2d+1 − 1

)2d+1−1

≥ 6(log n/7)7 � log n.

The penultimate inequality comes from noting that the function (x − 1)(a/x)x is log-concave for
x > 0 and so, over an interval, is minimized at one of the endpoints. Taking a = log n, putting
d = 2 gives x = 7 for a value of 6(log n/7)7, while putting d = 1

2 log2 log n (the right endpoint of a
larger interval than is allowed) gives a larger value.

This shows that the final phase succeeds q.s.
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5.6 Execution time

It is fairly clear that the algorithm runs in polynomial time, but we will show that it runs in linear
time (remembering that the input is of size n3). Specifically we will show that GreedyPhase takes

time Θ(n3), while the other two phases take slightly less: MainPhase runs in time O(n3− 5
4
η), and

FinalPhase in time only O(n
5
2

+o(1)).
The aspects of each round of MainPhase that are potentially time-critical are SetConstruct,

and, for each iteration: finding a healthy element, MakeTree, and PoisonPropagate. The
last two cannot dominate. MakeTree merely repeatedly finds, for a (non-poisoned) triple, the
(unique) two elements that generated it in SetConstruct; thus if we create pointers during Set-
Construct, this takes time linear in the size of the output. Since in all iterations of MakeTree
all the output elements are distinct, the total time is bounded by the size of SetConstruct’s
output and thus by its running time. Similarly, in PoisonPropagate, the elements poisoned
by a given element are a direct function of the output of SetConstruct and can be driven by
pointers, so each poisoning takes unit time. We contrived to poison at most half the output of
SetConstruct, so again the time is bounded by SetConstruct’s time. (Some elements may
be poisoned repeatedly, but in our bound on the sizes of the poisoned sets we made the pessimistic
assumption that all poisonings were distinct, so the bound still applies.)

In each round, the time to find a valid element, in Algorithm 6 (MainPhase) Line 10, is
O(σ2

1) = O(n2). We will shortly see that this is dominated by the time for SetConstruct. The

running time for one round of SetConstruct is of order
∑d

`=1

∑2`

m=1 nσ
2
`+1 = O(nσ2

2), since
σ` � σ`+1 (see Claim 13) means that the time for each node (`,m) dominates the sum of the
times for its two children, so the ` = 1 terms dominate the sum. By (19), nσ2

2 = (1 + o(1))1
ρσ1,

and by (26), σ1 ≤ n1−η/3. Using x ≤ n1−η we have 1/ρ = x1+ηn1−η/ log n ≤ n2−η−η2 , and thus

1
ρσ1 ≤ n3−4

3ηn. In all there are O(log2 n) rounds, so by familiar calculations the total time for all

calls to SetConstruct is O(n3−5
4η).

We reason similarly for FinalPhase. The time per round to find a valid element (Algorithm
7 Line 10) is O(σ2

1) = O(n2), which we shall shortly see is dominated by the time per round for set

construction. The set construction time (Algorithm 9) is of order
∑d

`=1

∑2`−1
m=0 n

2
0σ

2
`+1 = O(n2

0σ
2
2) =

O(n0
ρ σ1). By (27) and (38), this is O

(
n

nη−1n
1/2+o(1)

)
. There are 2d−1 ≤ logε n rounds, so the total

time is n
5
2−η+o(1).

This completes the proof of Theorem 2.

6 Difficulties with Axial assignment in dimensions D > 3

Neither MainPhase nor FinalPhase successfully carries over to D > 3. Consider MainPhase
with depth d = 2. Our algorithm was complicated in order to cope with conditioning, but ultimately
an augmentation, for D = 3, relied on choosing 2 + 4 = 6 indices j, . . . , s from A and 8 indices
ξ1, . . . , ξ8 from Ā to make 1 + 2 + 4 = 7 triples cheap. If “cheap” means ≤ ρ, by the first-moment
method this can succeed with high probability only if n6x8ρ7 = Ω(1), forcing ρ = Ω(n−6/7x−8/7).
When the number of unassigned elements x is Θ(1), this means that a single augmentation costs
Ω(n−6/7): more than the O(n2−D log n) bound on the total assignment cost from Theorem 1, but
not vastly more. The equivalent for D = 4, with a ternary tree, is to choose 3 + 9 = 12 indices
from A and 27 from Ā to make 1+3+9 = 13 triples cheap, requiring ρ = Ω(n−12/13x−27/13). Here,
x = Θ(1) gives p = Ω(n−12/13), which — still stuck above n−1 — is now vastly worse than the
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O(n2−D log n) upper bound.
FinalPhase, in its last round, performs a replacement of some k = 2d−2 assignment D-tuples

— which, up to symmetries, we take to be {(i, i, . . . , i), 1 ≤ i ≤ k} — with k + 1 D-tuples from
([k] ∪ {n})D. When k is a constant, the probability that there is any new such assignment of cost
≤ ρ is at most

(
n
k

)
(k!)D−1ρk = O((nρ)k), so for the algorithm to have any hope of succeeding

requires ρ = Ω(n−1). Again this is satisfactory for D = 3, but for D > 3 it is vastly worse than the
O(n2−D log n) upper bound.

7 Multi-dimensional Planar assignment

7.1 Main theorem

Here we give our main theorem for Planar assignment.

Theorem 3. The optimal solution value ZPD,n satisfies the following:

(a) ZPD,n = Ω(nD−2) w.h.p. for D ≥ 3.

(b) When D = 3 there is a polynomial-time algorithm that finds a solution with cost Z where
Z = O(n log n) w.h.p.

The theorem is proved in the next two sections.

7.2 Lower bound

From the defining equation (2) for Planar assignment, just attending to constraints of the first
type, for each choice i1, . . . , iD−1 of the first D − 1 coordinates, the cheapest element in the line
(ranging over the last coordinate) has distribution Exp(n), with expectation 1/n. Summing over
all nD−1 such lines, the total expected cost is ≥ nD−2. Each line, independently, has cost ≥ 1/n
with probability 1/e, so there are Bin(nD−1, 1/e) lines for which this is so, by a Chernoff bound
q.s. at least nD−1/(2e) lines have this property, and thus q.s. the total cost is nD−2/(2e).

7.3 Upper bound for D = 3

For the upper bound we need a result of Dyer, Frieze and McDiarmid [DFM86]. We will not state
it in full generality, instead tailoring its statement to precisely what is needed here. Suppose that
we have a linear program

LP: Minimize cTx subject to Ax = b, x ≥ 0.

Here A is an m×n matrix and the cost vector c = (c1, . . . , cn) is a sequence of independent copies of
Exp(1). Let ZLP denote the minimum of this linear program. Note that ZLP is a random variable.
Next let y be any feasible solution to LP.

Theorem 4 ([DFM86]).

E(ZLP) ≤ m max
j=1,...,n

yj . (41)

Furthermore, ZLP is at most 1 + o(1) times the RHS of (41), w.h.p.
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Our algorithm is based on a characterization of a 3-dimensional Planar assignment as a collection
of 2-dimensional Planar assignments. (We think of these as (D−1)-dimensional Planar assignments,
but in 2 dimensions Planar and Axial assignment are the same.) for For generalization to dimensions
D > 3 we think of these for purposes o Fix a 1-coordinate i. Then for every 2-coordinate j, by
the first constraint type of (2), the line (i, j, ∗) must contain exactly one assignment element, and
by the third constraint type, the same is true for every 3-coordinate k and line (i, ∗, k). Thus, the
assignment elements in plane (i, ∗, ∗) define a 2-dimensional assignment.

Of course there are constraints among these 2-dimensional assignments. By the second con-
straint type, for i 6= i′, the elements (i, j, k) and (i′, j, k) cannot both be selected; that is,

(∀j, k)
∑
i

Xi,j,k ≤ 1. (42)

This condition is sufficient as well as necessary: any collection of 2-dimensional assignments sat-
isfying it is a 3-dimensional assignment. This is clear because the collection of 2-dimensional
assignments has n2 elements, thus

∑
j,k

∑
iXi,j,k = n2, thus if (42) is always satisfied, it must in

every case be satisfied with equality. In that case the selection satisfies the second constraint type
of (2) as well as the first and third, and is a 3-dimensional assignment.

Now consider the following greedy-type algorithm. First, find a minimum 2-dimensional as-
signment for 1-plane i = 1. For each element (j, k) selected, remove (j, k) from consideration for
2-dimensional assignments for all 1-planes i′ with i′ > i. Find a minimum assignment for 1-plane
i = 2 with this restriction, remove these elements from consideration, and so on.

Algorithm 10 GreedyPlanar3D: construct a 3-dimensional Planar assignment

1: for i = 1, . . . , n do
2: Let Hi = Kn,n \ (Ξ1 ∪ · · · ∪ Ξi−1)
3: Give each edge (j, k) ∈ E(Hi) cost Mi,j,k

4: Let Ξi be a minimum cost matching of Hi

5: Return Ξ1, . . . ,Ξn

The output Ξ1, . . . ,Ξn defines a set of triples T = {(i, j, k) : (j, k) ∈ Ξi} that by the previous
discussion is a 3-dimensional Planar assignment. Writing Zi for the cost of matching Ξi, we claim
that

E(Zi) ≤
2n

n− i+ 1
. (43)

For this we apply Theorem 4 to the following linear program, which we note always has an integer
optimum solution:

Minimize
∑

(j,k)∈E(Hi)

Mi,j,k xj,k subject to

∑
k : (j,k)∈E(Hi)

xj,k = 1, j = 1, . . . , n

∑
j : (j,k)∈E(Hi)

xj,k = 1, k = 1, . . . , n

xj,k ≥ 0, j, k = 1, . . . , n.

We note that there are 2n constraints and that xj,k = 1/(n − i + 1) is a feasible solution. By
Theorem 4, this implies (43) and the upper bound in Theorem 3 for the case D = 3.
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8 Difficulties with Planar assignment in dimensions D > 3

The previous section’s characterization of a 3-dimensional assignment as a collection of n 2-
dimensional assignments extends: aD-dimensional assignment is a collection of n (D−1)-dimensional
assignments, one for each 1-index i1, satisfying the property that if (i2, . . . , in) belongs to assign-
ment i1 then it belongs to no other assignment i′1, i.e., (∀i2, . . . , in)

∑
i1
Xi1,...,in ≤ 1. As before, this

constraint is necessary (by the defining constraint on lines for coordinate 1) and also sufficient: by
the same counting argument as before, if the constraint is always satisfied then it is always satis-
fied with equality, which thus implies the assignment-defining constraint for lines along coordinate
1. The constraints for lines along other coordinates are satisfied since each is included in some
(D − 1)-dimensional assignment.

The corresponding algorithm we have in mind is a generalization of Algorithm 10: repeatedly
solve (D − 1)-dimensional instances and remove their elements from future consideration. Each
lower-dimensional instance is solved by a recursive call to the same algorithm, until dimension 2 is
reached and the instance is solved as an LP. Note that all but the first of the (D − 1)-dimensional
instances has only a subset of the elements available for assignment: it is a matching problem
on a (D − 1)-partite hypergraph, but not the complete (D − 1)-partite hypergraph. That is, the
generalized algorithm should solve “matching” problems, not just “assignment” problems.

The difficulty is that such problems do not always admit a solution, and even when we start
with the complete hypergraph — an assignment problem, which does always have a solution — we
may generate subinstances that do not.

A small example is shown below, with D = 4 and n = 4. Suppose that in the first 3-dimensional
sub-array considered (shown as four 2-dimensional arrays), the elements selected are those indicated
by 1s in the table below; this will happen, for example, if the corresponding cost elements are small
and the others are large.

0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0

0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1

1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0

0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0

Then, in the second 3-dimensional sub-array, perhaps the following selection gives the cheapest
assignments for the first three 2-dimensional instances solved.

0 0 1 0 0 1 0 0 0 0 0 1

0 1 0 0 0 0 1 0 1 0 0 0

0 0 0 1 1 0 0 0 0 1 0 0

1 0 0 0 0 0 0 1 0 0 1 0

There is no way to complete this 3-dimensional array: the last 2-dimensional instance has no
solution. We check that it is impossible to select any element in its first row. The first row’s first
element is blocked by the 2-dimensional array above it (the 4th 2-dimensional matching comprising
the first 3-dimensional matching) and the row’s remaining elements are blocked by the 2-dimensional
arrays to the left of it (respectively, by the 2nd, 1st, and 3rd 2-dimensional matchings for the second
3-dimensional matching problem).

This example shows that in dimensions D > 3, the obvious generalization of our 3-dimensional
Planar assignment algorithm may fail to return any solution, regardless of cost.
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9 Conclusions

For the 2-dimensional random assignment problem, we know the limiting expected cost, and a
given instance can be solved in polynomial time. As noted in the introduction, much less is known
about multi-dimensional assignment problems, and as far as we are aware, very little was known
about polynomial-time algorithms solving these problems well on average, especially for random
costs with a density f(x) that is close to a constant for x close to zero.

For the 3-dimensional Axial assignment problem, we give an upper bound within no(1) of the
obvious Ω(1/n) lower bound, as a trivial application of an extension of a result of Johansson, Kahn
and Vu [JKV08]. Our main result is an algorithm that constructs w.h.p. constructs a solution of
cost no(1), although the cost bound here is not as small as that coming from [JKV08].

For the 3-dimensional Planar assignment problem, we prove an upper bound within a logarith-
mic factor of the obvious Ω(n) lower bound (likely the true answer), by analyzing a simple and fast
greedy algorithm.

Neither result extends to D > 3. We are left with open questions including these:

P1 What are the growth rates of E[ZAD,n] and E[ZPD,n] for D ≥ 3?

P2 Are there asymptotically optimal, polynomial-time algorithms for solving these problems when
D ≥ 3?

P3 For D > 3, are there polynomial-time algorithms yielding solutions within logarithmic or no(1)

factors for Planar and Axial assignment problems (as we have given for D = 3)?
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