HW9: outline solutions

1. A tournament T is an orientation of the complete graph K_{n}. In a random tournament, edge $\{u, v\}$ is oriented from u to v with probability $1 / 2$ and from v to u with probability $1 / 2$. Show that w.h.p. a random tournament is strongly connected.
Solution: If T is not strongly connected then there exists a set S of size at most $n / 2$ such that all edges in $S: \bar{S}$ are oriented the same way i.e all are S to \bar{S} or vice-versa. The probability of this is at most

$$
2 \sum_{k=1}^{n / 2}\binom{n}{k} \frac{1}{2^{k(n-k)}} \leq 2 \sum_{k=1}^{n / 2}\left(\frac{n e}{k 2^{n-k}}\right)^{k}=o(1)
$$

2. Let T be a random tournament. Show that w.h.p. the size of the largest acyclic sub-tournament is asymptotic to $2 \log _{2} n$. (A tournament is acyclic if it contains no directed cycles).
Solution: Let X_{k} denote the number of sets of size k that induce an acyclic tournament. If S is acyclic then S can be ordered $x_{1}, x_{2}, \ldots, x_{k}$ so that if $i<j$ then the edge is oriented from x_{i} to x_{j}. Thus,

$$
\mathbb{E}\left(X_{k}\right) \leq\binom{ n}{k} k!\frac{1}{2^{k(k-1) / 2}} \leq\left(\frac{n e}{2^{(k-1) / 2}}\right)^{k}
$$

So, $\mathbb{E}\left(X_{k}\right) \rightarrow 0$ if $k \geq(2+\varepsilon) \log _{2} n$. If $k \leq(2-\varepsilon) \log _{2} n$ then the second moment method suffices.
3. Suppose that the edges of $G_{n, p}$ where $0<p \leq 1$ is a constant, are given exponentially distributed weights with rate 1 . Show that if $X_{i j}$ is the shortest distance from i to j then
(a) For any fixed i, j,

$$
\mathbb{P}\left(\left|\frac{X_{i j}}{\log n / n}-\frac{1}{p}\right| \geq \epsilon\right) \rightarrow 0
$$

(b)

$$
\mathbb{P}\left(\left|\frac{\max _{j} X_{i j}}{\log n / n}-\frac{2}{p}\right| \geq \epsilon\right) \rightarrow 0
$$

Solution: one argues that the number of edges between any set S of size k and its complement \bar{S} is $(1+o(1)) k(n-k) p$. This follows from the Chernoff bounds. It follows that the expression for $\mathbb{E}\left(Y_{n}\right)$ in Chapter 19.2 of the book becomes $\mathbb{E}\left(Y_{n}\right) \approx \sum_{k=1}^{n-1} \frac{1}{k(n-k) p}$. The rest of the proof of this section is only changed by the factor $1 / p$.

