
HW9: outline solutions

1. A tournament T is an orientation of the complete graph Kn. In a random tournament, edge {u, v} is
oriented from u to v with probability 1/2 and from v to u with probability 1/2. Show that w.h.p. a
random tournament is strongly connected.

Solution: If T is not strongly connected then there exists a set S of size at most n/2 such that all
edges in S : S̄ are oriented the same way i.e all are S to S̄ or vice-versa. The probability of this is at
most
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2. Let T be a random tournament. Show that w.h.p. the size of the largest acyclic sub-tournament is
asymptotic to 2 log2 n. (A tournament is acyclic if it contains no directed cycles).

Solution: Let Xk denote the number of sets of size k that induce an acyclic tournament. If S is acyclic
then S can be ordered x1, x2, . . . , xk so that if i < j then the edge is oriented from xi to xj. Thus,
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So, E(Xk) → 0 if k ≥ (2 + ε) log2 n. If k ≤ (2− ε) log2 n then the second moment method suffices.

3. Suppose that the edges of Gn,p where 0 < p ≤ 1 is a constant, are given exponentially distributed
weights with rate 1. Show that if Xij is the shortest distance from i to j then
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Solution: one argues that the number of edges between any set S of size k and its complement S̄ is
(1 + o(1))k(n − k)p. This follows from the Chernoff bounds. It follows that the expression for E(Yn) in
Chapter 19.2 of the book becomes E(Yn) ≈
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. The rest of the proof of this section is only changed

by the factor 1/p.
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