Homework 8: Solutions

12.3.10 Suppose that $r \geq(1+\epsilon) r_{0}$, as in Theorem 11.8. Show that if $1 \leq k=$ $O(1)$ then $G_{\mathcal{X}, r}$ is k-connected w.h.p.
Solution: Let T be a spanning tree of Γ as promised by Lemma 11.11 and let T^{*} denote the vertices of \mathcal{X} in the cells of T. If we remove $O(1)$ vertices from G then what remains of T^{*} will be connected. This is because each vertex of T corresponds to a clique of $\operatorname{size} \Omega(\log n)$. Removing vertices from bad cells cannot disconnect the graph, as (11.16) tells us that we connect the vertices of bad cells, directly to T^{*}.
12.3.11 Show that if $2 \leq k=O(1)$ and $r \gg n^{-\frac{k}{2(k-1)}}$ then w.h.p. $G_{\mathcal{X}, r}$ contains a k-clique. On the other hand, show that if $r=o\left(n^{\left.-\frac{k}{2(k-1)}\right)}\right.$ then $G_{\mathcal{X}, r}$ contains no k-clique.
Solution: Let Z denote the number of k-cliques. Suppose first that $r=\frac{1}{\omega n^{\frac{k}{2(k-1)}}}$ where $\omega \rightarrow \infty$. Then

$$
\mathbf{E}(Z) \leq n\binom{n}{k-1}\left(\pi r^{2}\right)^{k-1} \leq n^{k}\left(\frac{\pi}{\omega^{2} n^{k /(k-1)}}\right)^{k-1}=\frac{\pi^{k-1}}{\omega^{2(k-1)}}=o(1)
$$

Suppose now that $r=\frac{\omega}{n^{2(k-1)}}$ where $\omega \rightarrow \infty, w=o(\log n)$. We there are exactly $k-1$ points within distance $r / 2$ of x and the remaining $n-k-o(n)$ points are at distance $2 r$ or more from x. Let $Z=\mid\left\{x: \mathcal{E}_{x}\right.$ occurs $\} \mid$.

$$
\begin{aligned}
\mathbf{E}(Z) \geq n\binom{n-o(n)}{k-1} & \left(\frac{\pi r^{2}}{4}\right)^{k-1}\left(1-4 \pi r^{2}\right)^{n-k-o(n)} \\
& \geq \frac{n^{k}}{2 k!}\left(\frac{\pi \omega^{2}}{4 n^{k /(k-1)}}\right)^{k-1}=\frac{\pi^{k-1} \omega^{2(k-1)}}{2 k!4^{k-1}} \rightarrow \infty
\end{aligned}
$$

We use the Chebyshev inequality. We have $\mathbf{E}\left(Z^{2}\right) \leq \mathbf{E}(Z)^{2}$. This is because if $\mathcal{E}_{x}, \mathcal{E}_{y}$ both occur then $|x-y| \geq 2 r$ and the expectation of Z^{2} simplifies.
12.3.12 Suppose that $r \gg \sqrt{\frac{\log n}{n}}=o(1)$. Show that w.h.p. the diameter of $G_{\mathcal{X}, r}=\Theta\left(\frac{1}{r}\right)$.
Solution: We partition $D=[0,1]^{2}$ into m^{2} cells of size $1 / m \times 1 / m$ where $m=\lceil 10 / r\rceil$. Because $r \gg \sqrt{\frac{\log n}{n}}$ we know that w.h.p. each cell is non-empty. Furthermore, if $X, Y \in \mathcal{X}$ lie in adjacent cells then they are connected by an edge in $G=G_{\mathcal{X}, r}$. It follows that we can connect pairs of vertices in G by a path of length at most $2 m$. We simply follow a sequence of adjacent cells. Thus the diameter of G is $O(1 / r)$. The diameter is clearly $\Omega(1 / r)$ because any path from a vertex in the top leftmost cell to a vertex in the top right-most cell must use at least $\frac{1-2 / m}{r}$ edges.

