Homework 6

6.7.4 Consider the random bipartite graph G with bi-partition A, B where $|A|=|B|=n$. Each vertex $a \in A$ independently chooses $\lceil 2 \log n\rceil$ random neighbors in B. Show that w.h.p. G contains a perfect matching.
Solution: Arguing as for Theorem 6.1 of the book, with $\ell=\lceil 2 \log n\rceil$,

$$
\begin{align*}
& \mathbf{P}(\exists S \subseteq A, T \subseteq B, N(S) \subseteq T,|T|=|S|-1) \\
& \leq \sum_{k=\ell+1}^{n}\binom{n}{k}\binom{n}{k-1}\left(\frac{\binom{k-1}{\ell}}{\binom{n}{\ell}}\right)^{k} \tag{1}\\
& \leq \sum_{k=\ell+1}^{n}\binom{n}{k}\binom{n}{k-1}\left(\frac{k-1}{n}\right)^{k \ell} \\
& \leq \sum_{k=\ell+1}^{n}\left(\frac{n^{2} e^{2} k^{\ell}}{k^{2} n^{\ell}}\right)^{k} \\
& =\sum_{k=\ell+1}^{n}\left(\left(\frac{k}{n}\right)^{(\ell-2)} e^{2}\right)^{k} .
\end{align*}
$$

Putting $u_{k}=\left(\left(\frac{k}{n}\right)^{(\ell-2)} e^{2}\right)^{k}$ we see that if $k \leq n_{0}=n-\frac{3 n}{\ell}$ then $u_{k} \leq$ $e^{-3+o(1)}$ and so

$$
\sum_{k=\ell+1}^{n_{0}} u_{k} \leq \sum_{k=\ell+1}^{n_{0}} e^{-k+o(k)}=o(1)
$$

For $n>n_{0}$ we write $k=n-m$ and replace the RHS of (2) by

$$
\begin{aligned}
& \quad \sum_{m=0}^{n-n_{0}}\binom{n}{m}\binom{n}{m+1}\left(\frac{\binom{n-m-1}{\ell}}{\binom{n}{\ell}}\right)^{n-m} \\
& \quad \leq n\left(1-\frac{1}{n}\right)^{\ell n}+n \sum_{m=1}^{n-n_{0}}\left(\frac{n e}{m}\right)^{2 m}\left(1-\frac{m+1}{n}\right)^{(n-m) \ell} \\
& \quad \leq o(1)+n \sum_{m=1}^{n-n_{0}}\left(\frac{n^{2} e^{2}}{m^{2}} e^{-(m+1) \ell(1-m / n)}\right)^{m} \\
& \quad \leq o(1)+n \sum_{m=1}^{n-n_{0}}\left(\frac{n^{2} e^{2}}{m^{2}} \cdot n^{-4+o(1)}\right)^{m} \\
& =o(1) .
\end{aligned}
$$

7.6.1 Let $p=d / n$ where d is a positive constant. Let S be the set of vertices of degree at least $\frac{2 \log n}{3 \log \log n}$. Show that S is an independent set w.h.p.

Solution: Let X denote the nuber of edges v, w with both endpoints having large degree and let $L=\frac{2 \log n}{3 \log \log n}$. Then,

$$
\begin{align*}
\mathbf{E}(X) & \leq n^{2} p\left(\sum_{k=L-1}^{n-2}\binom{n-2}{k} p^{k}\right)^{2} \tag{2}\\
& \leq 2 n d\left(\frac{n e p}{L-1}\right)^{2(L-1)} \tag{3}\\
& =2 n d \times n^{-4 / 3+o(1)} \tag{4}\\
& =o(1)
\end{align*}
$$

We get (3) from (2) as follows: let u_{k} be the summand in (2). Then $u_{k+1} / u_{k} \leq n p / k=o(1)$.
We get (4) because

$$
\log \left(\frac{n e p}{L-1}\right)^{2(L-1)} \approx \frac{4 \log n}{3 \log \log n} \times \log \log n
$$

7.6.9 Suppose that H is obtained from $G_{n, 1 / 2}$ by planting a clique C of size $m=n^{1 / 2} \log n$ inside it. Describe a polynomial time algorithm that w.h.p. finds C. (Think that an adversary adds the clique without telling you where it is).
(How does adding the clique change the degree sequence?)
Solution: Theorem 3.5 implies that the minimum and maximum degrees $\delta\left(G_{n, 1 / 2}\right), \Delta\left(G_{n, 1 / 2}\right)$ satisfy the following w.h.p.:

$$
\Delta-\delta \leq O\left(n^{1 / 2} \log ^{1 / 2} n\right)
$$

It follows that the vertices of the planted clique will w.h.p. be the m vertices of largest degree.

