Homework 6

6.7.4 Consider the random bipartite graph G with bi-partition A, B where
|A| = |B| = n. Each vertex a € A independently chooses [2logn] random
neighbors in B. Show that w.h.p. G contains a perfect matching.

Solution: Arguing as for Theorem 6.1 of the book, with ¢ = [2logn],
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7.6.1 Let p = d/n where d is a positive constant. Let S be the set of vertices

of degree at least 3fog)ign. Show that S is an independent set w.h.p.




Solution: Let X denote the nuber of edges v, w with both endpoints
having large degree and let L = -21%6"_  Then,
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We get (3) from (2) as follows: let ug be the summand in (2). Then
Ugt1/ur < np/k = o(1).
We get (4) because
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x loglog n.

7.6.9 Suppose that H is obtained from G, 1/, by planting a clique C' of size
m = n'/?logn inside it. Describe a polynomial time algorithm that w.h.p.
finds C. (Think that an adversary adds the clique without telling you
where it is).

(How does adding the clique change the degree sequence?)

Solution: Theorem 3.5 implies that the minimum and maximum degrees
0(Gny2), A(Gy,1/2) satisfy the following w.h.p.:

A-§< O(nl/2 logl/2 n).

It follows that the vertices of the planted clique will w.h.p. be the m
vertices of largest degree.



