Homework 5: Solutions

6.7.9 Following the hint we partition $[n]$ into 3 sets A, B, C of size $n / 3$. The bipiartite graph H induced by A, B is distributed as $G_{n / 3, n / 3, p}$ and since $\frac{n}{3} p \gg \log \frac{n}{3}$ this graph has a perfect matching w.h.p. Fix a perfect matching M of H and define another random bipartite graph K with vertices M, C and an edge (e, x) for each $e=\{u, v\} \in M, x \in C$ such that the edges $\{x, u\},\{x, v\}$ both exist. The random graph K is distributed as $G_{n / 3, n / 3, p^{2}}$ and since $\frac{n}{3} p^{2} \gg \log \frac{n}{3}$ this graph has a perfect matching w.h.p. This perfect matching corresponds to $n / 3$ vertex disjoint triangles.
6.7.10 Arguing as in the proof of Theorem 6.1 we see that

$$
\mathbf{E} Y \leq 2 \sum_{k=2}^{n / 2}\binom{n}{k}\binom{n}{k-1}\binom{k(k-1)}{2 k-2} p^{2 k-2}(1-p)^{k(n / 2+\epsilon-k)}
$$

The only change here is that we can only guarantee that S has at least $k(n / 2+e-k)$ neighbors not in T. Continuing,

$$
\begin{aligned}
\mathbf{E} Y & \leq 2 \sum_{k=2}^{n / 2}\left(\frac{n e}{k}\right)^{k}\left(\frac{n e}{k-1}\right)^{k-1}\left(\frac{K k e \log n}{2 n}\right)^{2 k-2} n^{-K k(1 / 2+\epsilon-k / n)} \\
& \leq \frac{n^{2}}{\log ^{2} n} \sum_{k=2}^{n / 2}\left(\frac{n e}{k} \cdot \frac{n e}{k-1} \cdot\left(\frac{K k e \log n}{2 n}\right)^{2} \cdot n^{-K \epsilon}\right)^{k} \\
& =o(1)
\end{aligned}
$$

if $K \geq 2 / \epsilon$.
6.7.17 Running DFS on the graph G_{R} induced by the red edges, we see that if there is no red path of length $n / 1000$ then we find sets D, U, A with $|D|=$ $|U| \geq \frac{999 n}{2000}$ such that there is no red edge between D and U. Similarly, $[n]$ can be partitioned into $D^{\prime}, U^{\prime}, A^{\prime}$ such that $\left|D^{\prime}\right|=\left|U^{\prime}\right| \geq \frac{999 n}{2000}$ and there is no blue edge between D^{\prime} and U^{\prime}.
Let $X=U \cap U^{\prime}, Y=U \cap D^{\prime}, X^{\prime}=D \cap U^{\prime}, Y^{\prime}=D \cap D^{\prime}$ and let $x=$ $|X|, y=|Y|, x^{\prime}=\left|X^{\prime}\right|, y^{\prime}=\left|Y^{\prime}\right|$. Then

$$
\begin{equation*}
x+y=\left|U \cap\left(U^{\prime} \cup D^{\prime}\right)\right|=\left|U \backslash A^{\prime}\right| \geq \frac{999 n}{2000}-\frac{n}{1000}=\frac{997 n}{2000} \tag{1}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
x^{\prime}+y^{\prime}, x+x^{\prime}, y+y^{\prime} \geq \frac{997 n}{2000} \tag{2}
\end{equation*}
$$

It follows that either (i) $x, y^{\prime} \geq \frac{997 n}{4000}$ or (ii) $x^{\prime}, y \geq \frac{997 n}{4000}$. (Failure of (i) and (ii) implies that (1) or (2) fail.) Suppose then that $x^{\prime}, y \geq \frac{997 n}{2000}$. Now $X^{\prime} \subseteq D$ and $Y \subseteq U$ and so there are no $X^{\prime}: Y$ red edges. Furthermore,
$X^{\prime} \subseteq U^{\prime}$ and $Y \subseteq D^{\prime}$ and so there are no $X^{\prime}: Y$ blue edges either. In other words $X^{\prime}: Y=\emptyset$. But,

$$
\begin{aligned}
\mathbf{P}(\exists \operatorname{disjoint} S, T:|S|,|T| \geq & \left.\frac{997 n}{4000} \text { and } S: T=\emptyset\right) \\
& \leq 2^{2 n}\left(1-\frac{1000}{n}\right)^{(997 n / 4000)^{2}}=o(1)
\end{aligned}
$$

