Homework 5: Solutions

6.7.9 Following the hint we partition [n] into 3 sets A, B, C of size n/3. The
bipiartite graph H induced by A, B is distributed as G, /3 ,,/3,, and since
5p > log % this graph has a perfect matching w.h.p. Fix a perfect match-
ing M of H and define another random bipartite graph K with vertices
M,C and an edge (e, x) for each e = {u,v} € M,z € C such that the
edges {z,u},{x,v} both exist. The random graph K is distributed as
Grn/3,n/3,p> and since %pQ > log g this graph has a perfect matching
w.h.p. This perfect matching corresponds to n/3 vertex disjoint triangles.

6.7.10 Arguing as in the proof of Theorem 6.1 we see that
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The only change here is that we can only guarantee that S has at least
k(n/2 4+ e — k) neighbors not in 7. Continuing,
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if K>2/e.

6.7.17 Running DFS on the graph G g induced by the red edges, we see that if
there is no red path of length n/1000 then we find sets D, U, A with |D| =
|U| > 5232 such that there is no red edge between D and U. Similarly, [n]
can be partitioned into D, U’, A’ such that [D'| = |U’| > 523 and there
is no blue edge between D’ and U’.
Let X =UNU,Y =UND,X'"=DnNnU,Y =DND" and let z =
X,y =1|Y],2’ =|X'|,y =|Y’|. Then
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It follows that either (i) =,y > P50 or (i) /,y > 530, (Failure of (i)
and (ii) implies that (1) or (2) fail.) Suppose then that 2’,y > 327 Now
X' € D and Y C U and so there are no X’ : Y red edges. Furthermore,




X' CU and Y C D' and so there are no X’ : Y blue edges either. In
other words X’ : Y = (. But,
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