Homework 3: Solutions

2.4.7 Let $L_{ \pm}=\left(1 \pm \epsilon_{n}\right) \frac{\log n}{c-\log c}$ and let X_{-}denote the number of components that are paths of length L_{-}and let X_{+}denote the number of components that are paths of length at least L_{+}.
Now we know that w.h.p. there are no path components of length more than $A \log n$ for some constant $A>0$. This is because (a) there are no components of size greater than $A \log n$ and (b) the giant component has too many edges to be a path. Thus,

$$
\begin{aligned}
\mathbf{P}\left(X_{+}>0\right) & \leq o(1)+\sum_{k=L_{+}+1}^{A \log n}\binom{n}{k} k!\left(\frac{c}{n}\right)^{k-1}\left(1-\frac{c}{n}\right)^{k(n-k)} \\
& \leq o(1)+\frac{(1+o(1)) n}{c} \sum_{k=L_{+}+1}^{A \log n}\left(c e^{-c}\right)^{k} \\
& \leq o(1)+\frac{2 A n \log n}{c} \cdot\left(c e^{-c}\right)^{L_{+}} \\
& \leq o(1)+\frac{2 A n \log n}{c} \cdot \frac{\left(c e^{-c}\right)^{\epsilon_{n} L_{+}}}{n} \\
& =o(1)
\end{aligned}
$$

Now, with $X=X_{-}$and $L=L_{-}$,

$$
\begin{aligned}
\mathbf{E}(X) & =\binom{n}{L+1}(L+1)!\left(\frac{c}{n}\right)^{L}\left(1-\frac{c}{n}\right)^{L(n-L)-\binom{L+1}{2}+L} \\
& \geq(1-o(1)) n\left(c e^{-c}\right)^{L} \\
& =(1-o(1))\left(c e^{-c}\right)^{-\epsilon_{n} L} \\
& \rightarrow \infty
\end{aligned}
$$

Furthermore, if $P_{1}, P_{2}, \ldots, P_{M}$ is an enumeration of the paths of length L in K_{n} and X_{i} is thge indicator for P_{i} being a path component then

$$
\begin{aligned}
\mathbf{E}\left(X^{2}\right) & =\mathbf{E}(X)+\sum_{i \neq j} \mathbf{P}\left(X_{i}=X_{j}=1\right) \\
& \leq \mathbf{E}(X)+\mathbf{E}(X)^{2}
\end{aligned}
$$

This is because if $i \neq j$ then

$$
\mathbf{P}\left(X_{i}=X_{j}=1\right)= \begin{cases}\mathbf{P}\left(X_{i}=1\right) \mathbf{P}\left(X_{j}=1\right) & P_{i} \cap P_{j}=\emptyset \\ 0 & P_{i} \cap P_{j} \neq \emptyset\end{cases}
$$

Thus

$$
\mathbf{P} X>0 \geq \frac{\mathbf{E}(X)^{2}}{\mathbf{E}\left(X^{2}\right)} \geq \frac{1}{\frac{1}{\mathbf{E}(X)}+1} \rightarrow 1
$$

2.4.14 The expected number of sets of size at most s that contain at least $k s / 2$ edges is at most

$$
\left.\begin{array}{rl}
\sum_{t=2 k+1}^{s}\binom{n}{t}\binom{t}{2} \\
k t / 2
\end{array}\right) p^{k t / 2} \leq \sum_{t=2 k+1}^{s}\left(\frac{n e}{t}\right)^{t}\left(\frac{t^{2} e}{k t}\right)^{k t / 2} p^{k t / 2} .
$$

if say, $s \leq s_{0}=\theta n$ where $\theta=\frac{1}{2}\left(e^{1+2 / k} c / k\right)^{-k /(k-2)} n$.
This means that w.h.p. every set of size at most s_{0} contains a vertex with fewer than than k neighbors in the set. Thus w.h.p. either the k-core is empty or it has size greater than s_{0}.
2.4.19 Suppose first that $c<1$. Let X_{k} denote the number of tree components of size k and let X denote the number of edges on non-tree components. Thwn

$$
\begin{aligned}
\mathbf{E}\left|E_{n, p}\right|=\binom{n}{2} & \frac{c}{n}=\sum_{k=1}^{n}(k-1) \mathbf{E} X_{k}+\mathbf{E} X \\
& =\sum_{k=1}^{n} \mathbf{E} k X_{k}+\mathbf{E} X-\sum_{k=1}^{n} \mathbf{E} X_{k}=n+o(n)-\sum_{k=1}^{n} \mathbf{E} X_{k} .
\end{aligned}
$$

Thus, from calculations in the chapter,

$$
\frac{c n}{2}=n+o(n)-\frac{n}{c} \sum_{k=1}^{n} \frac{k^{k-2}}{k!}\left(c e^{-c}\right)^{k}
$$

Dividing through by n and letting $n \rightarrow \infty$ gives the answer for $c<1$.
For $c>1$ we have

$$
\frac{1}{c} \sum_{k=1}^{n} \frac{k^{k-2}}{k!}\left(c e^{-c}\right)^{k}=\frac{1}{c} \sum_{k=1}^{n} \frac{k^{k-2}}{k!}\left(x e^{-x}\right)^{k}=\frac{1}{c}\left(x-\frac{x^{2}}{2}\right) .
$$

