Homework 2: Solutions

1.4.8 The probability that $G_{n, p}=K_{n}$ is $p^{N} \rightarrow 0$ and so its diameter will be at least two w.h.p. On the other hand, let $\mathcal{A}_{x, y}$ be the event that there does not exist $z \neq x, y$ such that $\{x, z\},\{y, z\} \in E\left(G_{n, p}\right)$. Then,

$$
\mathbf{P}\left(\exists x, y: \mathcal{A}_{x, y}\right) \leq n^{2}(1-p)^{n-2} \leq n^{2} e^{-(n-2) p} \rightarrow 0
$$

2.4.2 Using the first moment method, we see that

$$
\begin{align*}
\mathbf{P}(\exists \text { unicyclic component }) & \leq \sum_{k=3}^{n}\binom{n}{k} C(k, k) p^{k}(1-p)^{k(n-k)+\binom{k}{2}-k} \\
& \leq \sum_{k=3}^{n} \frac{n^{k}}{k!} k^{k-2}\binom{k}{2} p^{k} \exp \left\{-p\left(k(n-k)+\binom{k}{2}-k\right)\right\} \\
& \leq \sum_{k=3}^{n}(n e p)^{k} \exp \left\{-p\left(k(n-k)+\binom{k}{2}-k\right)\right\} \tag{1}
\end{align*}
$$

Let u_{k} be the summand in (1). Then we have

$$
u_{k} \leq \begin{cases}(n e p)^{k} e^{-k n p / 2} & k \leq n / 2 \\ (n e p)^{k} e^{-k^{2} p / 3} & k>n / 2\end{cases}
$$

So,

$$
\begin{aligned}
\mathbf{P}(\exists \text { unicyclic component }) & \leq \sum_{k=3}^{n / 2}\left(e \omega e^{-\omega / 2}\right)^{k}+\sum_{k=n / 2}^{n}\left(e \omega e^{-\omega / 12}\right)^{k} \\
& =o(1)+o(1)
\end{aligned}
$$

2.4.5 Let X denote the number of pairs (e, H) where H is a unicyclic graph with n vertices $[n]$ and n edges and e is an edge of $C(H)$, where $C(H)$ is the unique cycle of H. Then

- $X=n^{n-2}(N-n+1)$ where $N=\binom{n}{2}$, counting $(e, e+T)$ where T is a spanning tree.
- $X=\sum_{k=1}^{n} k C_{k}$ where C_{k} is the number of unicyclic H whose cycle has k edges.

So,

$$
\frac{n^{n-2}(N-n+1)}{C(n, n)}=\frac{\sum_{k=1}^{n} k C_{k}}{C(n, n)}=\mathbf{E}(|C(H)|)
$$

