
Homework 2: Solutions

1.4.8 The probability that Gn,p = Kn is pN → 0 and so its diameter will be at
least two w.h.p. On the other hand, let Ax,y be the event that there does
not exist z 6= x, y such that {x, z}, {y, z} ∈ E(Gn,p). Then,

P(∃x, y : Ax,y) ≤ n2(1− p)n−2 ≤ n2e−(n−2)p → 0.

2.4.2 Using the first moment method, we see that
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Let uk be the summand in (1). Then we have

uk ≤

{
(nep)ke−knp/2 k ≤ n/2.

(nep)ke−k2p/3 k > n/2.

So,

P(∃unicyclic component) ≤
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(eωe−ω/2)k +
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(eωe−ω/12)k

= o(1) + o(1).

2.4.5 Let X denote the number of pairs (e,H) where H is a unicyclic graph
with n vertices [n] and n edges and e is an edge of C(H), where C(H) is
the unique cycle of H. Then

• X = nn−2(N −n+ 1) where N =
(
n
2

)
, counting (e, e+T ) where T is

a spanning tree.

• X =
∑n

k=1 kCk where Ck is the number of unicyclic H whose cycle
has k edges.

So,
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C(n, n)
= E(|C(H)|).
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