RANDOM GRAPHS

Basic Models

$$
G_{n, m}=\left([n]_{0} E_{n, m}\right)
$$

Vertex set $[n]=\{12, \cdots, n\}$
Each graph with m edges
has same probability

$$
\frac{1}{\binom{N}{m}}, \quad N=\binom{n}{2}
$$

$$
G_{n, p}=\left([n], E_{n, p}\right)
$$

Vertex set $[n]$

$$
P_{r}\left(G_{n, p}=G\right)=P^{|E(G)|}(1-p)^{N-|E(G)|}
$$

i.e. each edge occurs independently with probability p.

Graph property O.

$$
\begin{aligned}
& p=\frac{m}{N} \\
& \operatorname{Pr}\left(G_{n, p} \in \gamma\right)=\sum_{\mu=0}^{N} \operatorname{Pr}\left(G_{n, p} \in P| | E_{n, p} \mid=\mu\right) x \\
& \operatorname{Pr}\left(\left|E_{n, p}\right|=\mu\right) \\
&=\sum_{\mu=0}^{N} \operatorname{Pr}\left(G_{n, \mu} \in P\right) \operatorname{Pr}\left(\left|E_{n, p}\right|=\mu\right) \\
& \geqslant \operatorname{Pr}\left(G_{n, m} \in P\right) \operatorname{Pr}\left(\left|E_{n, p}\right|=m\right)
\end{aligned}
$$

$$
\begin{aligned}
& P_{p}\left(\left|E_{n, p}\right|=m\right)=\binom{N}{m} p^{m}\left(1-p^{N-m}\right. \\
& =(1+0(1)) \frac{N^{N} \sqrt{2 \pi N} p^{m}(1-p)^{N-m}}{m^{m}(N-m)^{N-m} 2 \pi \sqrt{m(N-m)}} \quad m \rightarrow \infty \\
& =(1+0(1)) \sqrt{\frac{N}{2 \pi m \mid N-m \cdot)}} \\
& \geqslant 10 \sqrt{10 \sqrt{m}}
\end{aligned}
$$

So,

$$
\operatorname{Pr}\left(G_{n, m} \in P\right) \leqslant 10 m^{1 / 2} P_{1}\left(G_{n, p} \in P\right) \text {. }
$$

Monotoro Properties
A property is monotone increasing \nearrow if

$$
G \in P \Rightarrow G+e \in P
$$

e.g. conneotivity

Monotons decreasing \searrow if

$$
G \in P \Rightarrow G-e \in Q
$$

e.g. planarity

Supposo $P_{\text {is }} 7 . \quad p=\frac{m}{N}$

$$
\begin{aligned}
& \operatorname{Pr}\left(G_{n, p} \in P\right)=\sum_{\mu=0}^{N} \operatorname{Pr}\left(G_{n, \mu} \in P\right) \operatorname{Pr}\left(\left|E_{n, p}\right|=\mu\right) \\
& \geqslant \operatorname{Pr}\left(G_{n, m} \in P\right) \sum_{\mu=m}^{N} \operatorname{Pr}\left(\left|E_{n, p}\right|=\mu\right) . \\
& \text { Central Limit Wheorem } \Rightarrow D \geqslant \frac{1}{2}-o(1)
\end{aligned}
$$

$$
\operatorname{Pr}\left(G_{n, m} \in P\right) \leqslant 3 \operatorname{Pr}\left(G_{n, p} \in P\right)
$$

Graph Process:

$$
G_{0}=([n], \phi), G_{1} G_{2}, \ldots, G_{m_{3}} \ldots G_{N}=k_{n}
$$

$G_{m+1}=G_{m}$ plus rand om edge
G_{m} and $G_{n, m}$ have same distirbution.

Markov Inequality
$X \geq 0$ is a rand on var cable with finite mean μ.

$$
P_{1}(X \geqslant \bullet) \leqslant \frac{\mu}{t}
$$

Proof

$$
\begin{aligned}
\text { of } E(X)= & E(X \mid X<t) \\
& \quad \operatorname{Pr}(X<t) \\
& \geqslant E(X \mid X \geqslant E) P_{1}(X \geqslant t) \\
& =t(X) .
\end{aligned}
$$

Chebyshev Inequality
X is a rand om var cable with finite mean μ and variance σ^{2}.

$$
\operatorname{Pr}(|X-\mu| \geqslant v) \leqslant \frac{\sigma^{3}}{t^{2}}
$$

Proof

$$
\begin{aligned}
\frac{\operatorname{roof}}{\operatorname{Pr}(|X-\mu| \geqslant \hbar \sigma)} & \left.=P_{1}(X-\mu)^{2} \geqslant t^{2}\right) \\
& \leqslant \frac{\left.E(\mid X-\mu)^{2}\right)}{t^{2}} \\
& =\frac{\sigma^{2}}{t^{2}} .
\end{aligned}
$$

First Moment Mothod
Let X be a random variable with finite mean baking values in $\{0,1,2, \ldots\}$.

$$
P_{1}(X \neq 0) \leqslant E(X)
$$

Proof

$$
\begin{aligned}
\operatorname{Pr}(x \neq 0) & =\operatorname{Pr}(x \geq 1) \\
& \leqslant \frac{E(x)}{1}
\end{aligned}
$$

Second Moment Method
Let X be a non-negalive random variable with finite mean and variance. Q hen

$$
\operatorname{Pr}(X>0) \geqslant \frac{E(X)^{2}}{E\left(X^{2}\right)}
$$

Proof
Let $Y= \begin{cases}0 & \text { if } \quad X=0 \\ 1 & \text { if } \quad X>0\end{cases}$
So $\quad x y=x$

Cauchy-Sohwartz inequality in inches

$$
\begin{aligned}
& E(X Y)^{2} \leqslant E\left(X^{2}\right) E\left(Y^{2}\right) \\
& E(X)^{2} \leqslant E\left(X^{2}\right) \quad P_{f}(X>0) \text {. } \\
& \mathbb{E}\left((X+t Y)^{2}\right)=\mathbb{E}\left(X^{2}\right)+2 t \mathbb{E}(X Y)+t^{2} \mathbb{E}\left(Y^{2}\right) \\
& =\left(\mathbb{E}\left(X^{2}\right)^{1 / 2}+t \mathbb{E}\left(Y^{2}\right)^{1 / 2}\right)^{2}-2 t\left(\mathbb{E}\left(X^{2}\right)^{1 / 2} \mathbb{E}\left(Y^{2}\right)^{1 / 2}-\mathbb{E}(X Y)\right) \\
& \geq 0 \text { for all } t \text {. }
\end{aligned}
$$

Put $t=-\mathbb{E}\left(X^{2}\right)^{1 / 2} / \mathbb{E}\left(Y^{2}\right)^{1 / 2}$ to obtain $\mathbb{E}\left(X^{2}\right)^{1 / 2} \mathbb{E}\left(Y^{2}\right)^{1 / 2}-\mathbb{E}(X Y) \geq 0$.

* Consider quadralis $E\left((X+b Y)^{2}\right) \geqslant 0$, as a funot ion of t.

Evolution of a random graph.
We look at how $G_{0}, G_{1} \ldots G_{m}, \ldots$ evolves.
$\omega=\omega(n)$ denotes some slowly growing function e.g. $w=\log n$.
(1) $m \leqslant n^{1 / 2} / \omega$
G_{m} is a matoring whp
whp: with high probabiluty i.e. with probability 1-o(1) a.S $n \rightarrow \infty$.

Let $p=\frac{m}{N}$ and lot $X_{2}=$ number of paths of length 2 in $G_{n, p}$.

$$
\begin{aligned}
E_{p}\left(X_{2}\right) & =2\binom{n}{3} p^{2} \\
& \leqslant \frac{n^{3} \times n}{N^{2} \times w^{2}} \\
& \rightarrow 0 .
\end{aligned}
$$

$P_{1}\left(G_{n, p}\right.$ contains path of length 2) $=0(1)$ monotone property
$P_{1}\left(G_{n, m}\right.$ contains a path of length 2$)=O(1)$.
(ii) $m=\omega n^{1 / 2}, \quad m=0(n)$.
G_{m} contains a path of length 2 why
Let $p=\frac{m}{N}$ and $X_{2}=\#$ path length 2 .

$$
\begin{aligned}
E\left(x_{2}\right) & =3\binom{n}{3} p^{2} \\
& \approx 2 w^{2} \\
& \rightarrow \infty
\end{aligned}
$$

Does not implicy $X_{2} \neq 0$ why.

Let P_{2} be the set of all patton of length live in K_{n}.
Let $\hat{X}_{2}=\#$ of isolated paths of length 2

$$
\begin{aligned}
\hat{X}_{2} & =\sum_{p \in \mathcal{P}_{2}} 1_{p \stackrel{i}{s} G_{n, p}} \\
E\left(\hat{X}_{2}\right) & =3\binom{n}{3} p^{2}(1-p)^{3(n-3)} \\
& \geqslant(1-0(1)) \frac{n^{3}}{2} \cdot \frac{4 w^{2} n}{n^{4}} \cdot(1-6 n p)_{\substack{n=0(n) \\
n=0(1)}} \\
& \rightarrow \infty .
\end{aligned}
$$

$$
\begin{aligned}
& \hat{X}_{2}^{2}=\sum_{P \in \nabla_{2}} \sum_{Q \in \mathcal{P}_{2}} 1_{\rho \leq G_{n, p}} 1_{Q \leq G_{n, p}}^{i}
\end{aligned}
$$

$$
\begin{aligned}
& E\left(\hat{X}_{2}^{2}\right)=\sum_{P}\left\{\sum_{Q} P_{1}\left(G_{n, p} \dot{i} Q \mid G_{n, p} \stackrel{i}{\stackrel{i}{x}}\right)\right\}_{x} \\
& P_{1}\left(G_{n, p} \stackrel{i}{\sum} P\right)
\end{aligned}
$$

$$
\begin{aligned}
& =E\left(\hat{X}_{a}\right)\left(1+\sum_{\substack{Q \in\{\{, 23\} \\
=\phi}} p\left(G_{n, p}^{i} Q \mid G_{n, p}^{i} z_{z}^{i} V_{z}^{\beta}\right)\right. \\
& \left.\leqslant E\left(\hat{X}_{2}\right)\left(1+\binom{n}{3} \rho^{2}(1-p)^{3(n-6}\right)^{+1}\right) \\
& \leq E\left(\hat{X}_{2}\right)\left(1+(1-P)^{-3} E\left(\hat{X}_{2}\right)\right)
\end{aligned}
$$

edge $5^{\circ}\left\{\sum^{2}, 3\right\}$

So

$$
\begin{aligned}
\operatorname{Pr}\left(\hat{X}_{2} \neq 0\right) & \geqslant \frac{E\left(\hat{X}_{2}\right)^{2}}{E\left(\hat{X}_{2}\right)\left(1+(1-p)^{-3} E\left(\hat{X}_{2}\right)\right)} \\
& =\frac{1}{(1-p)^{-3}+E\left(\hat{X}_{3}\right)^{-1}} \\
& \rightarrow 1 .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \left.\operatorname{Pr}\left(G_{n, p} \geq \text { isolated } 2-p \text { att }\right) \rightarrow 1\right) \\
& \operatorname{Pr}\left(G_{n, p} \supseteq 2-p a t h\right) \rightarrow 1 \\
& \operatorname{Pr}\left(G_{m} \geq 2 \cdot \text { - path }\right) \rightarrow 1
\end{aligned}
$$

$$
\operatorname{Pr}\left(G_{m} \geqslant 2 \text {-path }\right)= \begin{cases}0110 & m \ll n^{1 / 2} \\ 1-0(1) & m \gg n^{1 / 2}\end{cases}
$$

We say that $n^{\frac{1}{2}}$ is the Erashold
for the exult erne of a 2 -path in $G_{n, m}$

Probability "jumps" from -0 lo -1

Small Trees

$$
F_{\imath x} k \geq 3 .
$$

$m \leqslant \frac{n^{\frac{k-2}{k-1}}}{\omega} \Rightarrow G_{m}$ contains no tree with k vertices.

$$
p=\frac{m}{N} \approx \frac{2}{\omega n^{k /(k-1)}}
$$

Let
$X_{k}=\#$ of trees with k

$$
\begin{aligned}
E\left(X_{k}\right) & =\binom{n}{k} k^{k-2} p^{k-1} \\
& \leqslant\left(\frac{n e}{k}\right)^{k} k^{k-2}\left(\frac{3}{\left.w^{n} n^{k} / k-1\right)}\right)^{k-1} \\
& <\left(\frac{3 e}{w}\right)^{k-1} \\
& \rightarrow 0
\end{aligned}
$$

$$
\operatorname{Pr}\left(G_{n, p} \frac{\text { contains tree with } k \text { vertices }}{\text { monotone }}\right) \rightarrow 0
$$

$$
\operatorname{Pr}\left(G_{m} \text { contains a tree with } k \text { verlicsos }\right) \rightarrow 0 \text {. }
$$

$$
m=w n^{\frac{k-2}{k-1}}, m=o(n)
$$

$\Rightarrow G_{m}$ contains a copy of every tree with k vertices.

$$
p=\frac{m}{W}
$$

Fix some tree T with k vertices.
$X_{T}=$ \# of isolated copies of T in $G_{n, p}$.

$$
\begin{aligned}
E\left(X_{T}\right) & =\binom{n}{k} \frac{k!}{\operatorname{aut}(T)^{*}} p^{k-1}(1-p)^{k(n-k)} \\
& \sim^{* *} \frac{(2 w)^{k-1}}{\operatorname{aut}(T)} \\
& \rightarrow \infty
\end{aligned}
$$

*ant $(H)=$ no. of automorphisms of H ** $=(1+o(1))$ limes

Let T be the sot of copies of T in K_{n}.

$$
\begin{aligned}
& \begin{array}{r}
E\left(X_{T}^{2}\right)=\sum_{T_{1}, T_{2} \in T} P\left(T_{2} \stackrel{i}{\subseteq} G_{p} \mid T_{1} \stackrel{i}{\subseteq} G_{p}\right) \times \\
\operatorname{Pr}\left(T_{1} \stackrel{i}{£} G_{p}\right)
\end{array} \\
& \operatorname{Pr}\left(T_{T} \subseteq G_{p}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant E\left(X_{T}\right)\left(1+(1-p)^{-k} E\left(X_{T}\right)\right) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}\left(X_{T} \neq 0\right) & \geqslant \frac{E\left(X_{T}\right)^{2}}{E\left(X_{T}\right)\left(1+(1-P)^{-k} E\left(X_{T}\right)\right)} \\
& >1 .
\end{aligned}
$$

$\operatorname{Pr}\left(G_{n, p}\right.$ contains is slated copy of $\left.T\right) \rightarrow 1$
\Downarrow
$P_{1}\left(G_{n, p}\right.$ contains copy of $\left.T\right) \longrightarrow 1$
$P_{1}\left(G_{m}\right.$ contains copy of $\left.T\right) \rightarrow 1$.

Cydes
$m=O(n) \Rightarrow G_{m}$ is a forest, whp suppose $m=n / w$

$$
\begin{aligned}
& p=\frac{m}{N} \leqslant \frac{3}{w n} \\
& X=\# \text { of cycles in } G_{n, p} \\
& E(X)=\sum_{k=3}^{n}\binom{n}{k} \frac{(k-1)!}{2} p^{k} \\
& \leqslant \sum_{k=3}^{n} \frac{n^{k}}{2 k} \cdot \frac{3^{k}}{w^{k} n^{k}} \\
&=0\left(w^{-3}\right) \\
& \rightarrow 0
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\operatorname{Pr}\left(G_{r, p} \text { is not a forest }\right) & =0(1) \\
\|
\end{array}\right)=0(1) .
$$

Poisson Convergence.
What happens if

$$
m=c n^{(k-2) /(k-1)}
$$

where $c>0$ is constant?

Inclusion- Exclusion.

Lemme
Suppose $A_{1}, A_{2}, \cdots, A_{r}$ are events in some probability spare. Ω.
Suppose that $f_{1}, f_{2}, \ldots, f_{s}$ are boolean functions of $A_{1}, A_{2}, \cdots, A_{s}$
Suppose $\alpha_{1}, \alpha_{2}, \ldots \alpha_{s}$ are reals. α hen if

$$
\begin{equation*}
\sum_{i=1}^{s} \alpha_{i} \operatorname{Pr}\left(f_{i}\left(A_{1}, A_{2}, \cdots, A_{r}\right)\right) \geqslant 0 \tag{1}
\end{equation*}
$$

whenever $P_{r}\left(A_{i}\right)=0$ or 1 then $(*)$
holds in general.

Write

$$
\begin{aligned}
& f_{i}=\bigcup_{S \in T_{i}}\left(\left(\bigcap_{i \in S} A_{i}\right) \cap\left(\left(\bigcap_{i \& S} \bar{A}_{v}\right)\right)\right. \\
& \text { so that } \\
& \operatorname{Pr}\left(f_{i}\right)=\sum_{S \in T_{i}} \operatorname{Pr}\left(\left(\bigcap_{i \in S} A_{i}\right) \cap\left(\bigcap_{i \& s} \bar{A}_{i}\right)\right)
\end{aligned}
$$

and then LHS (1) becomes

$$
\sum_{S \subseteq[r]} \beta_{S} P_{1}\left(\left(\bigcap_{i \in S} A_{i}\right) \cap\left(\bigcap_{i ф S} \bar{A}_{i}\right)\right)
$$

for some real β_{S}.
If (i) holds then $\beta_{S} \geqslant 0, \forall S$ sunco we can choose $A_{i}=\Omega, i \in S, A_{i}=\varnothing \quad i \& S$.

For $X \subseteq[r]$ Let $A_{X}=\bigcap_{l \in X} A_{i}$

$$
S_{t}=\sum_{|x|=t} P_{r}\left(A_{x}\right)
$$

$\varepsilon=\left\{\right.$ none of $A_{1}, A_{2}, \ldots, A_{r}$ occur $\}$
Lemma

$$
\operatorname{Pr}(\varepsilon)-\sum_{t=0}^{r}(-1)^{t} S_{t} \leqslant 0 \begin{gathered}
0^{r} \text { even } \\
\text { add }
\end{gathered}
$$

We only need to check when

$$
\begin{gathered}
\operatorname{Pr}\left(A_{i}\right)=1 \quad 1 \leqslant i \leqslant l \\
\operatorname{Pr}\left(A_{i}\right)=0 \quad l<i \leqslant r \\
\operatorname{Pr}(\varepsilon)=\begin{array}{ll}
1 & l=0 \\
0 & l \neq 0 \\
S_{t} & =\binom{l}{t} \\
l=0 \quad \text { trivial. }
\end{array} .
\end{gathered}
$$

$$
\begin{aligned}
& \quad l>0 \\
& 0-\sum_{t=0}^{r}(-1)^{t}\binom{l}{t} \\
& =\left\{\begin{array}{cc}
0 & r \geq l \\
(-1)^{r}\binom{l-1}{r} & r<l
\end{array}\right.
\end{aligned}
$$

Back to random graphs
Let $T_{1}, T_{2}, \ldots T_{M}$ be the list of copies of some fixed k vertex tree T.

$$
A_{n}=\left\{T_{i} \text { oc curs as a component in } G_{m}\right\}
$$

Suppose $X \subseteq[M]$ with $|X|=t$, t fixed.

$$
\operatorname{Pr}\left(A_{X}\right)=0 \quad \text { if } \exists i, j \in X \text { swot }
$$

that $T_{i} T_{j}$ shave a vertex.

Suppose $T_{i,} i \in X$ are vertex disjoint.

$$
\operatorname{Pr}\left(A_{x}\right)=\frac{\binom{\binom{n-k t}{2}}{m-(k-1) t}}{\binom{N}{m}}
$$

Numerator = \#ways of choosing m edges so that A_{x} occurs

Now

$$
\begin{aligned}
\frac{A^{B}}{B!} \geqslant\binom{ A}{B} & =\frac{A^{B}}{B!}\left(1-\frac{1}{A}\right)\left(1-\frac{3}{A}\right) \cdots\left(1-\frac{B-1}{A}\right) \\
& \geqslant \frac{A^{B}}{B!}\left(1-\frac{B^{3}}{2 A}\right)
\end{aligned}
$$

S_{0} if A, B are fundions of n and

$$
\frac{B^{2}}{A} \rightarrow 0 \text { as } n \rightarrow \infty
$$

then

$$
\binom{A}{B}=(1+o(1)) \frac{A^{B}}{B!}
$$

Consider $\binom{\binom{n-k t}{2}}{m-(k-1) t}$ for $t \leq \log n$ say.

$$
\begin{aligned}
\binom{n-k t}{2} & =N\left(1-\frac{k t}{n}\right)\left(1-\frac{k t}{n-1}\right) \\
& =N(1-0(k t / n))
\end{aligned}
$$

So $\frac{m^{2}}{\binom{n-k t}{2}} \rightarrow 0$ and

$$
\begin{aligned}
\binom{\binom{n-k t}{2}}{m-(k-1) t} & =(1+o(1)) \frac{(N(1-0(k t) n)))^{m-(k-1) t}}{(m-(k-1) t)!} \\
& =\frac{(1+o(1)) N^{m-(k-1) t}(1-0(m k t / n))}{(m-(k-1) t)!} \\
& =(1+o(1)) \frac{N^{m-(k-1) t}}{(m-(k-1) t)!}
\end{aligned}
$$

Sumilarly

$$
\binom{N}{m}=(1+0[1]) \frac{N^{m}}{m!}
$$

and so

$$
\begin{aligned}
& \operatorname{Pr}\left(A_{x}\right)=\frac{\binom{\binom{n-k t}{2}}{m-(k-1) t}}{\binom{N}{m}} \\
& =(1+0(1)) \frac{m!}{(m-(k-1) t)!} N^{-(k-1) t}=(1+0(1))\left(\frac{m}{N}\right)^{(k-1) t} .
\end{aligned}
$$

So

$$
\begin{aligned}
S_{t} & \approx \frac{1}{t!}\binom{n}{k_{0} k_{0} k_{\ldots} \cdots, k}\left(\frac{k!}{\operatorname{art}(\tau)}\right)^{t}\left(\frac{m}{N}\right)^{(k-1) t} \\
& \approx \frac{n^{k t}}{t!(k!)^{t}} \cdot\left(\frac{k!}{\operatorname{aut} t(\tau)}\right)^{t} \cdot\left(\frac{c n^{(k-2)(k-1)}}{N}\right)^{(k-1) t} \\
& \approx \frac{\lambda^{t}}{t!}
\end{aligned}
$$

where $\quad \lambda=\frac{(2 c)^{k-1}}{\operatorname{auk}(T)}$

Fix r large
$\operatorname{Pr}(\nexists$ component copy of $T)=$

$$
\begin{aligned}
& \sum_{t=0}^{r}(-1)^{t} S_{t}+\theta_{r} \quad \begin{array}{l}
\text { thetar is non-positive if } r \\
\text { is oven } \\
\text { and nonnegative it is } \\
\text { odd }
\end{array} \\
= & \sum_{t=0}^{r}(-1)^{t}(1+0(1)) \frac{\lambda^{t}}{t!}+\theta_{r} \\
= & (1+0(1)) \sum_{t=0}^{r}(-1)^{t} \frac{\lambda^{t}}{t!}+\theta_{r}
\end{aligned}
$$

(Here r canoe thought of as a large constant whits $n \rightarrow \infty$.

$$
(1+0(1)) \sum_{t=0}^{2 r-1}(-1)^{t} \frac{\lambda^{t}}{t!} \leqslant
$$

$\operatorname{Pr}(\nexists$ component copy of $T)$

$$
\leqslant \quad(1+0(1)) \sum_{t=0}^{2 r}(-1)^{t} \frac{\lambda^{t}}{t!}
$$

Letting $r \rightarrow \infty$
$\operatorname{Pr}(\nexists$ component copy of $T) \Rightarrow e^{-\lambda}$

If there is a copy of T which is not a component then either
(1) \exists cycle $-\operatorname{Pr}(1))=0(1)$
(ii) T is part of $-P_{1}($ (il) $)=0(1)$.
a tire e of size

$$
>k
$$

So

$$
\operatorname{Pr}(\exists \text { copy of } T) \Rightarrow 1-e^{-\lambda}
$$

Structure of graph when $m=\frac{1}{2} c n, 0<c<1$ constant.

We will work in $G_{n, p}$

$$
p=\frac{c}{n} \approx \frac{m}{n}
$$

Cyoles
Whp the are slogn edges on cyoles.
Let $X_{k}=$ \# cyclar of length k.

$$
\begin{aligned}
E\left(X_{k}\right) & =\binom{n}{k} \frac{(k-1)!}{2}: p^{k} \\
& <\frac{n^{k}}{k!} \frac{(k-1)!}{2}!\left(\frac{c}{n}\right)^{k} \\
& =\frac{c^{k}}{2 k}
\end{aligned}
$$

So if $X=3 X_{3}+4 X_{4}+\cdots+n X_{n}$
\geqslant edges on cycles
then

$$
E(X) \leqslant \sum_{k=3}^{n} k \cdot \frac{c^{k}}{2 k} \leqslant \frac{1}{1-c} \cdot
$$

Applying the Marker inequality gives

$$
\operatorname{Pr}(X>\log n) \leqslant\left(\frac{1}{(\log n)(1-c)}=o(1)\right.
$$

Claim: why 7 a paris of cycles that are in the same component

Proof
If a pair exists then there is a munumab pair $C_{1} C_{2}$

$$
\begin{aligned}
E\left(\# C_{3} C_{2}\right) & \leqslant \sum_{k \geqslant 3}\binom{n}{k} \cdot \frac{k!}{2} k^{2} p^{k+1} \\
& \leqslant \frac{1}{n} \sum_{k \geqslant 3} c^{k+1} k^{2} \\
& \rightarrow 0 .
\end{aligned}
$$

So whip every component contains at most one cycle.

We now show that why size of largest component is $O(\log n)$.

Let X_{k} be the number of components f size k that are unicyolic

$$
\begin{aligned}
& E\left(X_{k}\right) \\
& \leqslant\binom{ n}{k} k^{k-2}\binom{k}{2} p^{k}(1-p)^{k(n-k)+\binom{k}{a}-k} \\
& \leqslant \frac{n^{k}}{k!} e^{-\frac{k(k-1)}{2 n}} k^{k} \frac{c^{k}}{n^{k}} e^{-c k+c k(k-1) / 2 n+c k / 2 n} \\
& \uparrow \\
&\binom{n}{k}= \frac{n^{k}}{k!} \prod_{i=0}^{k-1}\left(1-\frac{i}{n}\right) \quad \& \quad 1-x \leqslant e^{-x}
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \frac{n^{k}}{k!} e^{-\frac{k(k-1)}{2 n}} k^{k} \frac{c^{k}}{n^{k}} e^{-c k+\frac{c k(k-1)}{2 n}+c / 2} \\
& \leqslant\left(c e^{1-c}\right)^{k} e^{c / 2}
\end{aligned}
$$

So if $\omega \rightarrow \infty$,
$\operatorname{Pr}(\exists$ wryly chic component of size $\geqslant \omega)$

$$
\begin{aligned}
& \leqslant \sum_{k=w}^{n} e^{c / 2}\left(c e^{1-c}\right)^{k} \\
& \rightarrow 0 \\
& \text { since } c e^{1-c}<1 \text { for } c \neq 1
\end{aligned}
$$

Now let X_{k} be the number of is olated trees.

Let

$$
\alpha=c-1-\log c
$$

Theorem
Suppose $\omega \rightarrow \infty$
(i) Whap \exists ansolated line of size

$$
\frac{1}{\infty}\left(\log n-\frac{5}{2} \log \log n\right)-\omega \approx k
$$

(ii) Whap $太$ an isolated lines gas ie

$$
\begin{aligned}
& \text { Whap } \neq \frac{1}{\alpha}\left(\log n-\frac{5}{2} \log \log n\right)+w \leftarrow k_{+}
\end{aligned}
$$

Now let $X_{k}=$ number $f f$ is collated bries of size k.

$$
E\left(X_{k}\right)=\binom{n}{k} k^{k-2} p^{k-1}(1-p)^{k(n-k)+(k)-k+1}
$$

(i) Suppose $k=O(\operatorname{logn})$. Then

$$
\begin{aligned}
E\left(X_{k}\right) & =\frac{(1+0(1))}{\sqrt{2 \pi k}}\left(\frac{n e}{k}\right)^{k} k^{k-2}\left(\frac{c}{n}\right)^{k-1} e^{-c k} \\
& =\frac{(1+0(1))}{\sqrt{2 \pi}} \frac{n}{k^{5 / 2}}\left(c e^{1-c}\right)^{k}
\end{aligned}
$$

Putting $k=k$.
we see that

$$
\begin{aligned}
E\left(X_{k}\right) & =\frac{(1+o(1))}{\sqrt{2 \pi}} \frac{n}{k^{5 / 2}}\left(c e^{1-c}\right)^{k} \\
& =\frac{(1+o(1))}{\sqrt{2 \pi}} \cdot \frac{n}{k^{5 / 2}} \cdot \frac{(\log n)^{5 / 2} e^{\alpha \omega}}{n} \\
& \geqslant A e^{\alpha w} \cdot
\end{aligned}
$$

We continue via second moment meblool.

$$
E\left(X_{k}^{2}\right) \leqslant E\left(X_{k}\right)\left(1+(1-p)^{-k} E\left(X_{k}\right)\right)
$$

[Same argument as for fused thee T of size $k]$

Thus

$$
\frac{E\left(X_{k}\right)^{2}}{E\left(x_{h}^{2}\right)} \geqslant 1-\frac{1}{2 A e^{\alpha \omega}} \rightarrow 1 .
$$

and we have (i).

For (ii) we go back to

$$
\begin{aligned}
& E\left(X_{k}\right)=\binom{n}{k} k^{k-2} p^{k-1}(1-p)^{k(n-k)+\left(\frac{k}{2}\right)-k+1} \\
& \leqslant \frac{A}{\sqrt{k}}\left(\frac{n e}{k}\right)^{k} e^{-k^{2} / 2 n} k^{k-2}\left(\frac{c}{n}\right)^{k-1} e^{-c k+c k^{2} / 2 n} \\
& \leqslant \frac{A n}{k^{5 / 2}}\left(c e^{1-c}\right)^{k}
\end{aligned}
$$

and then

$$
\sum_{k=k_{+}}^{\substack{\text { and then }}} E\left(X_{k}\right) \leqslant A_{n} \sum_{k=k_{+}}^{n} \frac{\left(c e^{1-c}\right)^{k}}{k^{s / 2}}=o(1) \text {. }
$$

Useful Identity
$0 \leqslant c \leqslant 1$ unphis $\frac{1}{c} \sum_{k=1}^{\infty} \frac{k^{k-1}}{k!}\left(c e^{-c}\right)^{k}=1$.
Proof
Assume first $c<1$.
Let $\sigma=$ number of verlvies $g G_{n, p}$ that his on unicyclio components.

$$
n=\sum_{k=1}^{n} k X_{k}+\sigma
$$

\#月 linear f sss k.
so

$$
n=\sum_{k=1}^{n} k\left[\left(X_{k}\right)+E(\sigma)\right.
$$

(i) $E(\sigma) \leqslant \log n$
(ii) $\sum_{k \geqslant k_{+}} k E\left(X_{k}\right) \leqslant \frac{1}{c} \sum_{k=k_{+}}^{n} \frac{\left(c e^{1-c}\right)^{k}}{k^{3 / 2}}=0$ (1).
(iii) If $k<k_{+}$then

$$
\begin{aligned}
E\left(X_{k}\right) & =\binom{n}{k} k^{k-2} p^{k-1}(1-p)^{k(n-k)+(k)-k+1} \\
& =(1+0(1)) \frac{n}{c} \frac{k^{k-1}}{k!}\left(c e^{-c}\right)^{k}
\end{aligned}
$$

So

$$
\begin{aligned}
n & =\sum_{k=1}^{n} k E\left(X_{k}\right)+E(\sigma) \\
& =O(n)+\frac{n}{c} \sum_{k=1}^{k^{+}} \frac{k^{k-1}}{k!}\left(\varepsilon e^{-c}\right)^{k} \\
& =O(n)+\frac{n}{c} \sum_{k=1}^{\infty} \frac{k^{k-1}}{k!}\left(c e^{-c}\right)^{k}
\end{aligned}
$$

Now chide through by n.

Structure of graph when
$m=\frac{1}{2} c n, c>1$ constant.
We will work in $G_{n, p}$

$$
p=\frac{c}{n} \approx \frac{m}{n}
$$

Suppose now that X_{k} is the number of components of scrip k. Then

$$
\begin{aligned}
& E\left(X_{k}\right) \leqslant\binom{ n}{k} k^{k-2} p^{k-1}(1-p)^{k(n-k)} \\
& \leqslant \frac{A}{\sqrt{k}}\left(\frac{n e}{k}\right)^{k} e^{-k^{2} / 2 n} k^{k-2}\left(\frac{c}{n}\right)^{k-1} e^{-c k+c k^{2} / n} \\
& \leqslant \frac{A n}{k^{5 / 2}}\left(c e^{1-c+c k / n}\right)^{k}
\end{aligned}
$$

Now let $B_{1}=B_{1}(c)$ be small enough so that $c e^{1-C+B_{1}}<1$. and let $B_{0}=B_{0}(c)$ be large enough so that

$$
\left(c e^{1-c+o(1)}\right)^{\beta_{0} \log n}<\frac{1}{n^{2}}
$$

It foll ow that why a component of size $k \in\left[B_{0} \log n, B_{1} n\right]$

Our calculations for $c<1$ can be repeated to show that if

$$
\alpha=c-1-\log c
$$

Theorem
Suppose $w \rightarrow \infty$
(1) Whap \exists ansolated lies of sirs

$$
\frac{1}{\alpha}\left(\log n-\frac{5}{2} \log \log n\right)-\omega \leftarrow k
$$

(ii) Whap \mathcal{H} an isolated lines of aries

$$
\begin{aligned}
& \geqslant \frac{1}{2}\left(\log n-\frac{5}{2} \log \log n\right)+w \leftarrow k_{+} \\
& \text {provided } \quad \omega=O(\log n) \text { ? }
\end{aligned}
$$

We car say a little more about components g size $k, k=O(\log n)$.
If we repeat the calculations for $0<1$ then we finds that if Y_{k} is the number of is olated lines of size

$$
k=\frac{1}{\alpha}\left(\log n-\frac{5}{2} \log \log n\right)-\omega
$$

then

$$
E\left(y_{k}\right) \geqslant A e^{\alpha \omega}
$$

for some $A=A(c)>0$.

$$
E\left(Y_{k}^{2}\right) \leqslant E\left(Y_{k}\right)+E\left(Y_{k}\right)^{2}(1-p)^{-k^{2}}
$$

So

$$
\begin{aligned}
0 & \operatorname{Var}\left(Y_{k}\right)
\end{aligned} \leqslant E\left(y_{k 0}\right)+E\left(y_{k}\right)^{2}\left((1-p)^{-k^{2}}-1\right) .
$$

So

$$
\begin{aligned}
& \operatorname{Pr}\left(\left|Y_{k}-E\left(Y_{k}\right)\right| \geqslant \epsilon E\left(Y_{k}\right)\right) \\
& \leqslant \frac{1}{\epsilon^{2} E\left(Y_{k}\right)}+\frac{2 c k^{2}}{\epsilon^{2} n} .
\end{aligned}
$$

We now estimate the total number of vertices on small tree components i.e. size $\leqslant B_{0} \log n$.

$$
\text { (i) } \begin{aligned}
1 \leqslant k \leqslant k_{0} & =\frac{1}{2 \alpha} \log n \\
E\left(\sum_{k=1}^{k_{0}} k Y_{k}\right) & \approx \frac{n}{c} \sum_{k=1}^{k_{0}} \frac{k^{k-1}}{k!}\left(c e^{-c}\right)^{k} \\
& \approx \frac{n}{c} \sum_{k=1}^{\infty} \frac{k^{k-1}}{k!}\left(c e^{-c}\right)^{k}
\end{aligned}
$$

Since $\frac{k^{k-1}}{k!}<e^{k}$ and $c e^{1-c}<1$.

Putting $\epsilon=\frac{1}{\log n}$ we see that the probability that any V_{k} deviates fromits mean by more than 1士G is ot most (see ($*$ on $p 6$)

$$
\sum_{k=1}^{k_{0}}\left[\frac{(\log n)^{2}}{n^{1 / 3}}+O\left(\frac{(\log n)^{4}}{n}\right)\right]=0(1)
$$

Thus whip

$$
\begin{aligned}
\sum_{k=1}^{k_{0}} k Y_{k} & \approx \frac{n}{c} \sum_{k=1}^{k_{0}} \frac{k^{k-1}}{k!}\left(c e^{-c}\right)^{k} \\
& \approx \frac{n}{c} \sum_{k=1}^{\infty} \frac{k^{k-1}}{k!}\left(c e^{-c}\right)^{k} \\
& =\frac{n}{c} \sum_{k=1}^{\infty} \frac{k^{k-1}}{k!}\left(x e^{-x}\right)^{k}
\end{aligned}
$$

where $0<x<1$ and $x e^{-x}=c e^{-c}$

$$
=\frac{n x}{c} .
$$

Now consider $k_{0}<k \leqslant B_{0} \log n$.

$$
\begin{aligned}
& E\left(\sum_{k=k_{0}^{+1}}^{\beta_{0} \log n} k Y_{k}\right) \leqslant \\
& \frac{n}{C} \sum_{k=k_{0}+1}^{B_{0} \log n} \frac{A_{n}}{k^{3 / 2}}\left(c e^{1-c+c k / n}\right)^{k} \\
& =O\left(n /(\log n)^{3 / 2}\right)
\end{aligned}
$$

So, boy the Marker inequality, why,

$$
\sum_{k=k_{0+1}}^{\beta_{0} \log n} k Y_{k}=o(n)
$$

Now consider the number 9 vertices Z_{k} on non-tree components with k verlices, $1 \leqslant k \leqslant P_{0} \operatorname{logn}$.

$$
\begin{aligned}
E\left(\sum_{k=1}^{B_{0} \log n} Z_{k}\right) & \leqslant \sum_{k=1}^{B_{0} \log n}\binom{n}{k} k^{k-2}\binom{k}{2}\left(\frac{c}{n}\right)^{k}\left(1-\frac{c}{n}\right)^{k(n-k)} \\
& \leqslant \sum_{k=1}^{B_{0} \log _{g} n}\left(c e^{1-c+k / n}\right)^{k} \\
& =O(1) .
\end{aligned}
$$

So, by the Markov inequality, why

$$
\sum_{k=1}^{B_{0} \log n} Z_{k}=o(n)
$$

So for: why
there are $\approx \frac{n x}{c}$

$$
x e^{-x}=c e^{-c}
$$

vertices on components of size k, $1 \leqslant k \leqslant B_{0} \log n$.

The grant component.
Let $C_{1}=c-\frac{\log n}{n^{2}}$ and $p_{1}=\frac{c_{1}}{n}$ and define P_{2} by

$$
1-p=\left(1-p_{1}\right)\left(1-p_{2}\right)
$$

Then

$$
G_{n, p}=\underbrace{}_{n_{0} p_{1}} \vee G_{n_{2} p_{2}}
$$

sunnis probability e is not included in is $\left(1-p_{1}\right)\left(1-P_{2}\right)$.
Note that

$$
P_{2} \geqslant \frac{\log n}{n^{2}}
$$

If $x_{1} e^{-x_{1}}=c_{1} e^{-c_{1}}$ then $x_{1} \approx x$ and so by our prenoio analysis, why, $G_{n, p_{1}}$ has no components of size in the range $\left[B_{0} \log n, R_{1} n\right]$.
Suppose there are components $C_{1}, C_{2}, \ldots, C_{l}$ with $\left|C_{i}\right|>B_{0} n$. Thus $l \leqslant \frac{1}{B_{0}}$.
Now we add in the edges of $G_{n_{2} p_{2}}$.

$$
\begin{aligned}
& \operatorname{Pr}\left(\exists i, j: n_{0} G_{n, p_{2}} \text { edge joins } C_{i,}, C_{0}\right) \\
\leqslant & \binom{l}{2}\left(1-p_{2}\right)
\end{aligned}{\left(B_{0} n\right)^{2}}^{\leqslant} l^{2} e^{-B_{0}^{2}(\log n)^{2}} .
$$

So why $G_{n, p}$ has a unique component of size greater than $B_{0} \log n$, and it is of size $\left(1-\frac{x}{c}\right) n$.

Duality
Let $N=\frac{n x}{c} \approx$ \# vertices outs ide giant who.
Let $q=\frac{x}{N}(=p)$.
Note that $x<1$ and $\# \theta$ isolated trees S-orice k is whop

$$
\begin{aligned}
& \approx \frac{n}{c} \cdot \frac{k^{k-2}}{k!}\left(c e^{-c}\right)^{k} \\
& =\frac{N}{x} \cdot \frac{k^{k-2}}{k!}\left(x e^{-x}\right)^{k} .
\end{aligned}
$$

Thus graph cuts ode of grant component is asymptotically equal is $G_{N} \frac{n}{N}$ in distribution.

Branching Processes
If $p=c / n$ and $d(v)$ is the degree of vertex v then

$$
\begin{aligned}
\operatorname{Pr}(d(v)=k) & =\binom{n-1}{k} p^{k}(1-p)^{n-1-k} \\
& =(1+0(1)) \frac{c^{k} e^{-c}}{k!}
\end{aligned}
$$

i.e. the degree distribution is asymptotically Poisson with mean C.

Since there are few "small" by oles, locally, $G_{n, p}$ should look like

and this has led to a comparison with Branching Proceses.
It is not really so useful a method for here, but it can be tho right approach for other modols of a random graph.

In a simple branching process there is an initial individual who "gives birth" to X_{1} child rem and then dies. Each of the X_{1} individuals give birth and die and $s \rightarrow$ on.

The number of children X produced by an individual is a random variable independent of the number produced by any other.

Let

$$
P_{k}=P_{1}(X=k), \quad k=0,1,2, \ldots
$$

and

$$
G(z)=\sum_{k=0}^{\infty} p_{k} z^{k}
$$

is the probability generating function (p.g.f.) of X.

Let

$$
\begin{aligned}
\mu & =E(X) \\
& =G^{\prime}(1)
\end{aligned}
$$

Lot X_{E} be the number of individuals in generation b. hus

$$
\begin{aligned}
X_{0} & =1 \\
E\left(X_{t+1}\right) & =\sum_{k=0}^{\infty} E\left(X_{t+1} \mid X_{k} k\right) \operatorname{P}\left(X_{t}=k\right) \\
& =\sum_{k=0}^{\infty} k \mu \operatorname{Pr}\left(X_{t}=k\right) \\
& =\mu E\left(X_{t}\right)
\end{aligned}
$$

and so

$$
E\left(X_{v}\right)=\mu^{t}
$$

Let T denote the total size of the set of individuc produced. $T=\infty$ is all owed and $\operatorname{Pr}(T=\infty)$ is one of the important par a meters of the process.

Theorem
$\operatorname{Pr}(T<\infty)=y$ where y is the smallest non-negative root of

$$
y=G(y)
$$

Inparticutars, $y=1$ if $\mu \leqslant 1$.

Before proving this, let us consider the case where X has Poisson distribution with mean C.

$$
\begin{aligned}
G(z) & =\sum_{k=0}^{\infty} \frac{c^{k} e^{-c}}{k!} z^{k} \\
& =e^{c(z-1)}
\end{aligned}
$$

From the Cheovern, the "extinction probability" y satisfies

$$
y=e^{c(y-1)}
$$

But then

$$
c y e^{-c y}=c e^{-c}
$$

Assure $c>1$ and then $x=c y<1$. If we choose a vertex v and look at the BFS tree grown from v then (as we wall check) this looks lite our branching process.
If $T=\infty$ cares ponds to bung in the giant and v is chosen randomly, then

$$
\operatorname{Pr}(v \in G \operatorname{lant}) \approx 1-y=1-\frac{x}{c} .
$$

Proof of Theorenin
Let G_{t} be the p.g.f. for X_{t}. Thus

$$
\begin{aligned}
& G_{V+1}^{(z)}=\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \operatorname{Pr}\left(X_{t+1}=k \mid X_{t}=l\right) P_{r}\left(X_{t} l\right) z^{k} \\
&=\sum_{l=0}^{\infty} G_{F}(z)^{l} P_{l}\left(X_{t}=l\right)^{* *} \\
&=G\left(G_{r}(z)\right) \\
& \text { H* }
\end{aligned}
$$

has p.g.f. $f \times g$.

Let $y_{t}=\operatorname{Pr}\left(X_{t}=0\right)$ so that

$$
\left.y_{F}=G_{t}(0)=G\left(G_{t-1}(0)\right)=G\left(y_{t-1}\right)\right)
$$

Now y_{t} is monotone increasing to $\operatorname{Pr}(T<\infty)$ and so the continuity of G implies

$$
y=G(y)
$$

If ξ is any non-negative root $\theta(z=G / 2]$
then $\quad y_{1}=G(0) \leqslant G(\xi)=\xi$
and $\quad y_{\tau} \leqslant \xi \Rightarrow y_{\tau+1}=G\left(y_{E}\right) \leqslant G(\xi)=\xi$.
G is striotly convexan $[0,1]-G^{\prime \prime}(2)=\sum_{k=2}^{\infty} k(k-1) \rho_{k} z^{k} \geqslant 0$ for $z \in(0,1]$.

Thus

$$
y=\operatorname{Pr}(T<\infty)=\lim _{t \rightarrow \infty} \operatorname{Pr}(T \leqslant t)
$$

and we can write

$$
\operatorname{Pr}(T \leqslant t)=y-\sigma(t)
$$

where $\sigma(t) \geq 0$ and $\lim _{t \rightarrow \infty} \sigma(t)=0$.

Back to $G_{n, p}, p=c / n \quad c>1$.
Suppose we choose a vertex a and do a BFS from a until either (i) We have explored the component C_{a} contanning a
or
(i) explored $\omega \rightarrow \infty$ vertices.

Let T_{a} be the (partial) BFS tree produced.

We are gong for ease of proof
rather than best Wether guthon best possible

Now fox a tree H witt $\leqslant \omega=n^{\frac{1}{2}}(\log n)^{3}$ vertices and maximum degree $(\log n)^{2}$.

Let $d_{i}=$ degree $f i_{1}$

$$
P_{1}\left(H=T_{a}\right)=\prod_{i=0}^{l}\binom{n_{i}}{d_{i}} p^{d_{i}}(1-p)^{n_{i}-d_{i}-(\xi i)}
$$

where

$$
\begin{aligned}
n_{v}=n & -1-d_{1}-\cdots-d_{v-1} \\
& =\left(\prod_{i=0}^{l} \frac{c^{d_{i}} e^{-c}}{d_{i}!}\right)\left(1+0\left(\frac{w}{n}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\prod_{i=0}^{\ell} \frac{c^{d_{i}} e^{-c}}{d_{i}!}\right)\left(1+0\left(\frac{\omega}{n}\right)\right) \\
& =\operatorname{Pr}\left(H_{i} \text { branching process lies }\right) \times(1+0(1))
\end{aligned}
$$

Thus.

$$
\begin{aligned}
& \text { Thus, } \\
& \operatorname{Pr}\left(\left|C_{a}\right|<\omega\right)=\widehat{\alpha_{n}^{2}} \leqslant \leqslant\binom{ n-1}{L}\left(\frac{c}{n}\right)^{L} \\
& \operatorname{Pr}\left(\left|C_{a}\right|<\omega \wedge \Delta \geqslant\left(\frac{C e}{L}\right)^{L}=o(1)\right. \\
& \operatorname{Pr}\left(\left|C_{a}\right|<\omega \wedge \Delta z(\log n)^{2}\right)+
\end{aligned}
$$

$$
\begin{aligned}
& =o(1)+\sum_{H: 1 H K \omega} \operatorname{Pr}\left(\left(T_{a}=H\right) \wedge\left(\Delta\left(G \backslash C_{a}\right) \leqslant(\log n)^{2}\right)\right) \\
& \left.=0(1)+\sum_{H:|H|<\omega} \operatorname{Pr}\left(T_{a}=H\right) \operatorname{Pr}\left(\Delta(G) C_{a}\right) \leqslant(\log n)^{2}\right) \\
& =0(1)+(1+0(1)) \sum_{H: H<\omega} \operatorname{Pr}\left(T_{a}=H\right) \\
& =0(1) \\
& +(1+0(1)) \sum_{H: 1 H \mid<\omega} \operatorname{Pr}(H i \infty \text { branching protess liee }) \\
& =(1+0(1)) \operatorname{Pr}\left(T_{a}^{<} \omega^{y}\right) \sqrt{\sim} y .
\end{aligned}
$$

Thus if

$$
X_{0}=\# v:\left|C_{a}\right|<w, \quad w \rightarrow \infty
$$

then

$$
E(X)=n y(1-O(\omega / n)-\sigma(\omega))
$$

We nest show, via Chebzchof, that X_{0} is concentrated around its mean.
(C_{v} In constrwoting do not look at
edgos here bie. they are
un conditi oned
We olouim that $f_{r} b \neq a$

$$
\begin{align*}
& \operatorname{Pr}\left(\left|C_{b}\right|<\omega| | C_{a} \mid<\omega\right) \tag{*}\\
& \leqslant \frac{\left|c_{a}\right|}{n}+\left(1+o(1) \operatorname{Pr}\left(\left|C_{b}\right|<\log n\right)\right. \\
& P_{r}^{n}\left(w \in C_{a}\right) \quad \text { fixing } C_{a} \text {, we replace } n \\
& \text { in compn }
\end{align*}
$$ by $n-l \leqslant w)$ in computing $P_{1}\left(\left|C_{a}\right|<\omega\right)$.

It follows from * on previous page that

$$
\begin{aligned}
& E\left(X_{0}^{2}\right) \leqslant \\
& E\left(X_{0}\right)+E\left(X_{0}\right) \times \frac{\omega}{n}+(1+0(1)) E\left(X_{0}\right)^{2} \\
& \text { ie. } \\
& \operatorname{Var}\left(X_{0}\right) \leqslant 2 E\left(X_{0}\right)+\eta E\left(X_{0}\right)^{2}
\end{aligned}
$$

where $\eta \longrightarrow 0$.

Then

$$
\begin{aligned}
& \operatorname{Pr}\left(\left|X_{0}-E\left(X_{0}\right)\right| \geqslant \theta n\right) \\
& \leqslant \frac{2 E\left(X_{0}\right)}{\theta^{2} n^{2}}+\frac{\eta E\left(X_{0}\right)^{2}}{\theta^{2} n^{2}} \\
& \rightarrow 0 \text { if } \theta=\eta^{1 / 3} .
\end{aligned}
$$

Our aim now is to show that REST is connected, with out using previous an alysis.
Suppose $\left|C_{v}\right| \geqslant n^{1 / 2}\left(\left.\log n\right|^{3}\right.$ and we stop out DFS from v when we reach $00^{1 / 2}(\log n)^{3}$.

$$
\text { size }=n^{\frac{1}{2}}(\log n)^{3}
$$

T_{α}

Weargus next that whap

$$
\left|N\left(s_{a}\right)\right| \geqslant n^{1 / 2}(\log n)
$$

In deed

$$
P_{1}\left(\exists S_{v} T: \mid S\right)=\underbrace{n^{1 / 2}(\log n)^{3}}_{k}, \underbrace{|K|=n^{\frac{1}{2}} \log n}_{l,}:
$$

S induces a corrected subgraph and there are no $S:[n] \backslash S \cup T)$

$$
\leqslant\binom{ n}{k}\binom{n}{l} k^{k-2} \rho^{k-1}(1-p)^{k}(n-k-l)
$$

$$
\begin{aligned}
& \leqslant\left(\frac{n e}{k e}\right)^{k} \cdot\left(\frac{n e}{e}\right)^{l} \cdot k^{k-2}\left(\frac{c}{n}\right)^{k-1} e^{-c k(1-0 l l)} \\
& \leqslant n\left(c e^{1-c} \cdot n^{1 /(\log n)^{2}}\right)^{k} \quad l \leqslant \frac{k}{(\log n)^{2}}
\end{aligned}
$$

This shows that rerlices a, $\left|C_{a}\right| \geqslant n^{\frac{1}{2}}(\log n)^{3}$ form a connected component.

Connectivity of random graphs
Let $p=\frac{\log n+c_{n}}{n}$. We prove

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(G_{n, p} \text { ip comectat }\right)= \begin{cases}0 & c_{n} \rightarrow-\infty \\ e^{-e^{-c}} & c_{n} \rightarrow c \\ 1 & c_{n} \rightarrow+\infty\end{cases}
$$

If $P_{1}>P_{2}$ then we can write

$$
G_{n, p_{1}}=G_{n, p_{2}} \vee G_{n_{3} p_{3}}
$$

where $\quad\left(1-p_{1}\right)=\left(1-p_{2}\right)\left(1-p_{3}\right)$
and so
$\operatorname{Pr}\left(G_{n, p,}\right.$ is connected $)$
$\geqslant \operatorname{Pr}\left(G_{n, p_{2}}\right.$ is connected $)$
com replace "is connected" by any morodino o properly.

It suffices t prove that

$$
\operatorname{Pr}\left(G_{n, p} \text { is conneded }\right) \rightarrow e^{-e^{-c}}
$$ when $p=\frac{\log n+c}{n}$.

Now
$\operatorname{Pr}\left(G_{n, p}\right.$ is not connected)

$$
\begin{aligned}
& \operatorname{Pr}\left(G_{n, p}\right. \text { is not connected) } \\
& =\operatorname{Pr}\left(\bigcup_{i=1}^{n / 2} \exists \text { a component of size } i\right)
\end{aligned}
$$

So we have
$\operatorname{Pr}(\exists$ isolated verléx $) \leqslant$ $\operatorname{Pr}\left(G_{n, p}\right.$ is not connected $) \leqslant$

$$
\operatorname{Pr}(\nexists \text { iso lated vertex })+\sum_{k=2}^{n / 2} \operatorname{Pr}\left(\rightrightarrows \text { component of } \begin{array}{c}
\text { size } k
\end{array}\right)
$$

Now
$\sum_{k=2}^{n / 2} \operatorname{pl}(\exists$ component of $8120 k)$
$\leqslant \sum_{k=2}^{n / 2} E$ (\# of components of sics k)

$$
\begin{aligned}
& \leqslant \sum_{k^{=2}}^{n / 2} \frac{\binom{n}{k} k^{k-2} p^{k-1}(1-p)^{k(n-k)}}{u_{k}} \\
& \text { For } 2 \leqslant k \leqslant 10 \\
& u \leqslant e^{k} n^{k} \cdot\left(\frac{\log n+c}{n}\right) \cdot e^{-k-1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { and for } k \geq 10 \\
& u_{k} \leqslant\left(\frac{n e}{k}\right)^{k} k^{k \cdot 2}\left(\frac{\log n+c}{n}\right)^{k-1} e^{-k(\log n+c) / 2} \\
& \leqslant n\left(\frac{e^{1-c / 2+0(1)} \log n}{n^{1 / 2}}\right)^{k}
\end{aligned}
$$

so

$$
\begin{aligned}
& \begin{aligned}
\sum_{k=2}^{\text {so }} u_{k} & \leqslant\left(1+0(1) \frac{e^{-c} \log n}{n}+\sum_{k=10}^{n / 2} R^{1+0(1)-k / 2}\right. \\
& =O\left(n^{o(1)-1}\right)
\end{aligned}
\end{aligned}
$$

It follows that
$\operatorname{Pr}\left(G_{n, p}\right.$ is connected $)=$
$P(\nexists$ an isolated vertex s) $+O(1)$.
So now let
$X_{0}=$ the number of isolated vertices in Gn,p.

Then

$$
\begin{aligned}
E\left(X_{0}\right) & =n(1-p)^{n-1} \\
& =n \exp \{(n-1) \log (1-p)\} \\
& =n \exp \left\{-(n-1) \sum_{b=1}^{\infty} \frac{p^{k}}{k}\right\} \\
& =n \exp \left\{-(\log n+c)+0\left(\frac{(\log n)^{3}}{n}\right)\right\} \\
& =e^{-c} .
\end{aligned}
$$

If we let
A_{i} be the event $\{$ vertex i is is olated $\}$
and ' y

$$
S_{t}=\sum_{\substack{x \leq[n] \\|x|=t}} \operatorname{Pr}\left(A_{x}\right)
$$

then

$$
\begin{aligned}
S_{b} & =\binom{n}{b}(1-p)^{b(n \cdot E)+\binom{b}{2}} \\
& \approx e^{-t c} / E ? \quad \quad \forall=O(1)
\end{aligned}
$$

Thus we deduce, as in our study of vol aced lines, that

$$
\lim _{n \rightarrow \infty} \operatorname{Pl}\left(X_{0}=0\right)=e^{-e^{-c}}
$$

Hitting Tumo Versios in Craph Proess
Let

$$
\begin{aligned}
& m_{1}^{*}=\operatorname{man}\left\{m: \delta\left(G_{m}\right) \geqslant 1\right\} \\
& m_{c}^{*}=\operatorname{man}\left\{m: G_{m} \text { io conneded }\right\}
\end{aligned}
$$

We show

$$
m_{1}^{*}=m_{c}^{*} \quad w h p
$$

Let

$$
m_{ \pm}=\frac{1}{2} n \log n \pm \frac{1}{2} n \log \log n
$$

and

$$
P_{ \pm}=\frac{m}{N} \approx \frac{\log n \pm \log \log n}{n}
$$

We first show that whee
(i) $G_{m_{-}}$consists of a giant connected
component plus a set V_{1} of $\leqslant 2 \log n$ vertices.
(ii) $G_{m_{+}}$is connected.

Assume (i) and (i).
It follows that why

$$
m_{-} \leqslant m_{1}^{*} \leqslant m_{c}^{*} \leqslant m_{+}
$$

$G_{m_{-}}$

To create $G_{m_{+}}$we add $m_{+}-m_{-}$random edges. $m_{1}^{*}=M_{c}^{*}$ if none of these edges is contained $\dot{n} V_{1}$

Thus

$$
\begin{aligned}
\operatorname{Pr}\left(m_{1}^{*}<m_{c}\right) & \leqslant 0(1)+\left(m_{+}-m_{1}\right) \frac{\left.\left.\frac{1}{2} \right\rvert\, V_{1}\right)^{2}}{N-m_{+}} \\
& =0(1)+\frac{n(\log \log n) \times\left(2(\log n)^{2}\right)}{\left.\frac{1}{2} n^{2}-0 \ln \operatorname{lo} n\right)} \\
& =o(1) .
\end{aligned}
$$

(1) Let $P_{-}=\frac{m_{-}}{N} \approx \frac{\log n-\log \log n}{n}$ and let $X_{1}=$ \# isolated vertices in $G_{n_{0} p_{0}}$.
Then

$$
\begin{aligned}
E\left(X_{1}\right) & =n(1-p-)^{n-1} \\
& =n e^{-n p+o\left(n p^{2}\right)} \\
& \approx \log n
\end{aligned}
$$

$$
\begin{aligned}
E\left(X_{1}^{2}\right) & =E\left(X_{1}\right)+n(n-1)(1-p)^{2 n-3} \\
& \leqslant E\left(X_{1}\right)+E\left(X_{1}\right)^{2}(1-p)^{-3}
\end{aligned}
$$

$$
\text { So } \begin{aligned}
\operatorname{Var}\left(X_{1}\right) & \leqslant E\left(X_{1}\right)+4 E(X)^{2} p \\
\operatorname{Pl}\left(X_{1} \geqslant 2 \log n\right) & =\operatorname{Pr}\left(\left|X_{1}-E\left(X_{1}\right)\right| \geqslant(1+0(1)) E\left(X_{1}\right)\right) \\
& \leqslant(1+0(1))\left(\frac{1}{E\left(X_{1}\right)}+4 p\right) \\
& =0(1)
\end{aligned}
$$

Having $\geqslant 21 \mathrm{ogn}$ isolated vertices is a monotone properly and so why G_{m}, has $<2 \operatorname{logn}$ isolated nerlícs.

To show that the rest σ_{m}, is a single component we let $X_{k}, 2 r k \leq \frac{n}{2}$ bo the number ff components witt k vertices in G_{p}.

Repeating the calculation on $P \sigma$

$$
E\left(\sum_{k=2}^{n / 2} X_{k}\right)=O\left(n^{0(n)-1}\right)
$$

Let $\varepsilon=\left\{\right.$ Fompment gosse $\left.2 \leqslant k \leqslant \frac{1}{2} n\right\}$

$$
\begin{aligned}
\operatorname{Pr}\left(G_{m_{-}} \in \varepsilon\right) & \leqslant O(\sqrt{n}) P_{r}\left(G_{n_{0} p_{-}} \in \varepsilon\right) \\
& =O(1)
\end{aligned}
$$

and this completer proof of (i).
(ii) $G_{m_{+}}$is connecléd whp.

This follows from $G_{n, p}$ is connected whp for $n p-\log n \rightarrow \infty$
or by umplication G_{m} is cornected whp if

$$
\begin{aligned}
n \cdot \frac{m}{N} & -\log n \rightarrow \infty \\
\frac{n m_{+}}{N} & =\frac{n\left(\frac{1}{2} n \log n+\frac{1}{2} n \log \log n\right)}{N} \\
& \approx \log n+\log \log n .
\end{aligned}
$$

k - conn activity.
Here we will prove that if $k=O(i)$ and

$$
m=\frac{1}{2} n\left(\log n+(k-1) \log \log n+c_{n}\right)
$$

then

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(G_{n_{0} m} \text { io } k \text {-competed }\right)=\left\{\begin{array}{cl}
0 & c_{n} \rightarrow-\infty \\
e^{-\left(e^{-c}-1\right)!} & c_{n} \rightarrow c \\
1 & c_{n} \rightarrow \infty
\end{array}\right.
$$

Let $p=\frac{\log n+(b-1) \log \log n+c}{n}$
We will prove
(1) $E(\#$ vertices of degree $(k-2)=0(1)$
(i) $\dot{E}(\#$ vertices of degree $k-1) \approx \frac{e^{-c}}{(k-1)}$!

It then a simple matter to verify that

$$
P_{1}\left(\delta\left(G_{n, p}\right) \geq k\right) \approx e^{-\frac{e^{-c}}{(k-1)!}}
$$

$E(\#$ verlizes f degree $t \leqslant k-1)$

$$
\begin{aligned}
& =n\binom{n-1}{b} p^{b}(1-p)^{n-1-z} \\
& \approx n \cdot \frac{n^{t}}{b^{t}!} \cdot \frac{(\log n)^{b}}{n^{t}} \cdot \frac{e^{-c}}{n(\log n)^{k-1}}
\end{aligned}
$$

and (i) and in follow immediately.

We now show that,
$P,\left|\exists S,|S|<k\right.$ and $T_{3} k-|S|+\left|\leqslant|<| \leqslant \frac{1}{2}(n-s)\right.$
T is a component of $\left.G_{n o p} \backslash S\right)=O$ (1).
This umphes that if $S\left(G_{n, p}\right) \geqslant k$ then it is k-connected whop

Furst moment :

$$
E(\# S, T) \leqslant
$$

Case1: $5+2 \leqslant t \leqslant \log n$

$$
\begin{aligned}
& \sum_{s=0}^{k-1} \sum_{t=s+2}^{\log n}\binom{n}{s}\binom{n}{t} t^{t-2} p^{t-1}(1-p)^{t(n-s-t)} \\
\leqslant & \sum_{s=0}^{k-1} \sum_{t=s+2}^{\log n} n^{s} \cdot\left(\frac{n e}{t}\right)^{t} \cdot t^{t-2} \cdot\left(\frac{e^{o(1)} \log n}{n}\right)^{t-1} e^{\left.0\left((\log n)^{2}\right)^{(k-1)} / n\right)} \\
\leqslant & \sum_{s=0}^{k-1} \sum_{t=s+2}^{\log n}\left(e^{1+0(1)} \log n\right)^{t} n^{s-t} \\
= & O(1) .
\end{aligned}
$$

C ase $2: t>\log n$

$$
\begin{aligned}
& \sum_{s=0}^{k-1} \sum_{t=\log n}^{\frac{1}{2}(n-s)}\binom{n}{s}\binom{n}{t} t^{t-2} p^{t-1}(1-p)^{t(n-s-t)} \\
\leqslant & \sum_{s=0}^{k-1} \sum_{t=\log n}^{\left.\frac{1}{2} \ln -s\right)} n^{s}\left(\frac{n e}{t}\right)^{t} t^{t-2}\left(\frac{e^{0(1)} \log n}{n}\right)^{t-1} n^{-t / 2} \\
\leqslant & \sum_{s=0}^{k-1} \sum_{t=\log n}^{\frac{1}{2}(n-s)} \\
n & n^{1+s-\frac{1}{2} t}\left(e^{.1+0(1)} \log n\right]^{t} \\
= & o(1) .
\end{aligned}
$$

Case3: $k-s+1 \leqslant t \leqslant S+1$

$$
\begin{aligned}
& \sum_{s=0}^{k-1} \sum_{t \geqslant 2}^{s+1}\binom{n}{s}\binom{n}{t} t^{t-2}\binom{s t}{s} p^{t-1+s}(1-p)^{t(n-s-t)} \\
& \leqslant \sum_{s=0}^{k-1} \sum_{t} n^{s+t} 2^{s t}\left(\frac{e^{0(1)} \log n}{n}\right)^{t-1+s} \frac{1+0(1)}{n^{t}} \\
& =o(1) .
\end{aligned}
$$

$$
\forall l \operatorname{lgg}_{0} \geqslant E-1+s
$$

Perfect Matchings in Random Graphs Let $K_{n, n, p}$ be the random bipartite graph with vertex bipartition $A=B=[n]$ \dot{m} which each ∇ the n^{2} poos blue edges appears mdependenitly with probability p.
$\frac{\text { Therm }}{\text { Let } p}=\frac{\log n+c_{n}}{n}$.

$$
\begin{aligned}
& \text { Let } p=\frac{\text { vygncn }}{n} . \\
& \lim _{n \rightarrow \infty} \operatorname{Pr}\left(K_{n, n, p} \text { hos a perfect matching }\right)= \begin{cases}0 & c_{n} \rightarrow-\infty \\
e^{-2 e^{-c}} c_{n} \rightarrow c \\
1 & c_{n} \rightarrow \infty\end{cases} \\
& =\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\delta\left(K_{n, n, p}\right) \geq 1\right)_{0} .
\end{aligned}
$$

Let $X_{0}=\#$ is olated vortices.

$$
\begin{aligned}
E\left(X_{0}\right) & =2 n(1-p)^{n} \\
& \approx 2 e^{-c} .
\end{aligned}
$$

By previously used techriques we

$$
\operatorname{Pr}\left(x_{0}=0\right) \approx e^{-2 e^{-c}}
$$

We will now use Hall's condition. $G=K_{n, n, p}$ contains a perfect mulching iff

$$
\begin{equation*}
\forall S \subseteq A, \quad|N(s)| \geqslant \mid S 1 \tag{*}
\end{equation*}
$$

ti is convernent to replace (*) by

$$
\begin{align*}
& \forall S \subseteq A,|S| \leqslant \frac{1}{2} n,|N(S)| \geqslant|S| \tag{**}\\
& \forall T \subseteq B,|T| \leqslant \frac{1}{2} n,|N(T)| \geqslant|T| .
\end{align*}
$$

$\operatorname{Pr}(\exists v: v$ is olated)
$\leqslant \operatorname{Pr}(母$ a perfect mat chung $) \leqslant$

$$
\begin{gathered}
\operatorname{Pr}(\exists v: v \text { is olated })+ \\
\operatorname{Pr}(\exists k, S \leq A, T \leq B,|S|=k \geq 2,|T|=k-1 \\
N(S) \subseteq T \text { and } e(S: T) \geqslant 2 k-2\} \\
\# S: \text { Tedges }
\end{gathered}
$$

? Why $e(S: T) \geqslant 2 k-2$?
Take a pair S, T with $|S|+|T|$ as small as possible.
(i) if $|S|>|T|+1$, remove $|S|-|T|-1$ vertices from S
(ii) Suppose $\exists \omega \in T$ such that ω has <2 nbs in S. Remove ω and its (unique) nor in S.
Repeat until (i) eli) do not hold. |S|will stay at least $2 \cdot f \delta \geqslant 1$.

$$
\begin{aligned}
& E(\# \text { sets } S, T) \leq \\
& 2 \sum_{k=2}^{n / 2}\binom{n}{k}\binom{n}{k-1}\binom{k(k-1)}{2 k-2} p^{k}(1-p)^{k \ln -k)} \\
& \leqslant 2 \sum_{k=2}^{n / 2}\left(\frac{n e}{k}\right)^{k}\left(\frac{n e}{k-1}\right)^{k-1}\left(\frac{k e(\log n+c)}{2 n}\right)^{2 k-2} e^{-n p k\left(1-\frac{k}{n}\right)} \\
& \leqslant 8 \sum_{k=2}^{n / 2} \Omega\left(\frac{e^{0(1)}(\log n)^{2} n^{k / n}}{n}\right)^{k} \\
& u_{k}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cose1: } 2 \leqslant k \leqslant n^{3 / 4} \\
& \begin{aligned}
& u_{k}=n\left(\frac{e^{O(1)}(\log n)^{2} n^{k / n}}{n}\right)^{k} \\
&= e^{O(k)} n^{1+0(1)-k} \cdot \\
& \text { So } 2 \sum_{k=a}^{n^{3 / 4}} u_{k}=O(1 / n) .
\end{aligned}
\end{aligned}
$$

Case 2: $n^{3 / 4}<k \leq n / 2$.

$$
\begin{aligned}
u_{k} & =n\left(\frac{e^{O(1)}(\log n)^{2} n^{k / n}}{n}\right) \\
& \leqslant n^{1-k / 3}
\end{aligned}
$$

So

$$
\sum_{k=n^{3 / 4}}^{n / 2} u_{k}=O\left(n^{-n^{3 / 4} / 4}\right)
$$

So,

$$
\begin{aligned}
& \operatorname{Pr}(\text { a perfect matching })= \\
& \operatorname{Pr}(\text { تisolated vertexa })+\text { o(1). }
\end{aligned}
$$

We now consider $G_{n, p}$.
We could fry to replace Hell's Theorem by Tutti's theorem, but it is simpler to use Hall's theorem.

Theorem $\frac{\log n+c_{n}}{n}$.

$$
\begin{aligned}
& \text { Let } p=\frac{\operatorname{logntc} n}{n} . \\
& \lim _{\substack{n \rightarrow \infty \\
\text { neven }}} \operatorname{pr}\left(G_{n, p} \text { hos a perfect matching }\right)= \begin{cases}0 & c_{n} \rightarrow \infty \\
e^{-e^{-c}} & c_{n} \rightarrow c \\
1 & c_{n} \rightarrow \infty\end{cases}
\end{aligned}
$$

$$
=\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\delta\left(G_{n, p}\right) \geqslant 1\right)
$$

First of all if
$X_{0}=\#$ of is olated vertices.

$$
\begin{aligned}
E\left(X_{0}\right) & =n(1-p)^{n-1} \\
& \approx e^{-c}
\end{aligned}
$$

By previously used techniques we

$$
\operatorname{Pr}\left(x_{0}=0\right) \approx e^{-e^{-c}}
$$

Suppose $n=2 m$ and

$$
\begin{aligned}
& A=\{1,2, \ldots, m\} \\
& B=\{m+1, \ldots n\}
\end{aligned}
$$

We will choose $A^{*} \leq A, B \leq B \quad\left|A^{*} l=\left|B^{*}\right|=s\right.$ where s is small, such that whip $G_{n, p}$ contains a perfect malching between

$$
\hat{A}=\left(A \backslash A^{*}\right) \cup B^{*}
$$

and

$$
\hat{B}=\left(B \backslash B^{*} \mid \cup A^{*}\right.
$$

Let

$$
\begin{aligned}
& V_{0}=\left\{v:|N(v)| \leqslant \frac{\log n}{100}\right\} \\
& A_{0}=\left\{v \in A \cap V_{0}:|N(v) \cap A|>|N(v) \cap B|\right\} \\
& B_{0}=\left\{w \in B \cap V_{0}:|N(w) \cap B|>|N(w) \cap A|\right\} \\
& A_{1}=\left\{v \in A \backslash A_{0}:|N(v) \cap B|<\frac{\log }{2 v 0}\right\} \\
& B_{1}=\left\{w \in B \backslash B_{0}:|N(w) \cap A|<\frac{\log n}{200}\right\}
\end{aligned}
$$

Suppose

$$
\left|A_{0} \cup A_{1}\right|=\left|B_{0} \cup B_{1}\right|+r
$$

where $r \geqslant 0$.
Choose $R \subseteq B \backslash\left(B_{0} \cup \beta_{1}\right)$ with $(\mathbb{R})=r$.

$$
\begin{aligned}
& A^{*}=A_{0} \cup A_{1} \\
& B^{*}=B_{0} \cup B_{1} \cup R
\end{aligned}
$$

We show that, conditional on $\delta \geq 1$, there so whip a perfect matching between \hat{A} and \hat{B}.

Lemma
Whp $\left|V_{0}\right| \leqslant n^{1 / 10}$.
Proot

$$
\begin{aligned}
& E\left(\left|V_{0}\right|\right) \leqslant n \sum_{k=0}^{\frac{1}{6} \log }\binom{n-1}{k} p^{k}(1-p)^{n-1-k} \\
& \leqslant 2 n\left(\begin{array}{c}
n-1 \\
\binom{m}{\cos }
\end{array} p^{\frac{1}{\tan } \log r} \frac{e^{-c}}{n}\right. \\
& \leqslant 2\left(100 e^{1+011)}\right)^{\log n} e^{-c} \text {. }
\end{aligned}
$$

Now use Martoor inequality.
Similaurly, Whp

$$
\left|A_{1}\right|,|B,| \leqslant n^{2 / 3}
$$

Lemma
Whap $\left|A_{1} \cup B_{1}\right| \leqslant \cap^{6 / 10}$.

$$
\begin{aligned}
& \frac{\text { Proof }}{E\left(\left|V_{0}\right|\right)} \leqslant n \sum_{k=0}^{\frac{1}{200} \log n}\binom{\frac{2}{2} n-1}{k} p^{k}(1-p)^{\frac{1}{2} n-1-k} \\
& \leqslant 2 n\binom{\frac{1}{2} n-1}{\frac{2}{200} \log } p^{\frac{1}{200} \log n} \frac{e^{-c}}{n^{1 / 2}} \\
& \leqslant 2 n^{1 / 2\left(200 e^{1+0(1)}\right) \frac{\log n}{200}} e^{-c} . \\
& \text { Now use Marbsineavalits. }
\end{aligned}
$$

Now use Marrow inequality.

Lemma

$$
\text { Why vG} V_{0}, w \in A_{1} v B_{1} \Rightarrow N(v) \cap N(w)=\varnothing
$$

Proof

$$
\begin{aligned}
& \operatorname{Pr}\left(\exists v_{0} \omega .: N(v) \cap N(\omega) \neq \varnothing\right) \\
& \leqslant 3\binom{n}{3} \rho^{2}\left(\sum_{k=0}^{\frac{1}{60} \log n}\binom{n-3}{k} p^{k}(1-p)^{n \cdot 3-k}\right)<n^{1 \cdot 1 \cdot \epsilon} \\
& \times\left(\sum_{k=0}^{\frac{1}{2} \sum_{0} 0_{k}}\binom{\frac{1}{2} n-3}{k} p^{k}(1-p)^{\frac{1}{2} n-3-k}\right)<\frac{1}{n^{\frac{1}{2}-k}} \\
& \leqslant 3\binom{n}{3}\left(\frac{\log n+c}{n}\right)^{2} n^{-4 / 3} \\
& =O(1) \text {. }
\end{aligned}
$$

Lemma
Why $\nexists v:\left|N(v) \cap\left(A_{1} \cup \mathcal{B}_{1}, V_{0}\right)\right| \geqslant 3$
Proof

$$
\begin{aligned}
& \quad \operatorname{Pr}(\exists v) \leqslant n\binom{n}{3} p^{3} \\
& \left.n\binom{n}{3} p^{3}\left(\sum_{k=0}^{\operatorname{ton} \log n} \begin{array}{c}
\frac{1}{2 n-5} \\
k
\end{array}\right) p^{k}(1-p)^{k n-5-k}\right)^{3} \\
& \leqslant n(\log n)^{3} \cdot n^{-6 / 5} \\
& =O(1) .
\end{aligned}
$$

Lemma
Whp $S \subseteq A \backslash\left(A_{0} \cup A_{1}\right)$ umplio

$$
\left|N_{B}(s)\right| \geqslant \frac{\log _{n}}{5 \sqrt{0}}|s| \text { for }|s| \leqslant\left(\frac{n}{\left.\log _{n}\right)^{3}}\right.
$$

Proof
We fust show that whp

$$
|S| \leqslant \frac{n}{10(\log n)^{2}} \quad \text { upphis } e(S)<2|S|
$$

$\uparrow_{\text {\#edgee moida } S}$

$$
\begin{aligned}
& \operatorname{Pr}(\exists s: e(s) \geqslant 21 \leqslant 1) \leqslant \frac{n}{10(\log n)^{2}} \leqslant n_{0} \\
& \sum_{k=4}\binom{n}{k}\left(\begin{array}{l}
(k) \\
2 \\
k
\end{array}\right) \rho^{2 k} \leqslant \sum_{k=4}^{n_{0}}\left(\frac{n e}{k}\right)^{k}\left(\frac{k e}{2} \frac{\left(U_{0}(n+c)\right.}{n}\right)^{2 k} \\
& =\sum_{k=4}^{n_{0}}\left(\frac{k}{n} \cdot \frac{e^{3}}{4} \cdot(\log n+c)^{2}\right)^{k}
\end{aligned}
$$

Reveline iveture $=O(1)$.

Lemma
Why $\exists v \in A, u_{1} u_{2}, u_{3} \in B$ such that $u_{i} \in N\left(A, v v_{0}\right) \cap N(v)$ for $i=l 2,3$.

$$
\begin{aligned}
\frac{p_{i}}{p_{1}(7)} & \leqslant n\binom{n}{3} p^{3}\left(n p \sum_{k=0}^{1006 / 100}\binom{k_{2}^{n}}{k} p^{k}(1-p)^{n-k}\right)^{3} \\
& \leqslant n(\log n)^{2} n^{-6 / 5} \\
& =0(1) .
\end{aligned}
$$

(11) $\frac{n}{2\left(\log n 3^{3}\right.}<|s| \leqslant n / 4$

Lemma
Whap $S \leq A$, such that $\mathbb{N}_{B}(s)|\leqslant|S|+2 l$
[This completes prose that Hall's condition. holds why.

$$
\begin{aligned}
& \text { old why. } \\
& \left.N_{\hat{B}}(S) \geqslant N_{B}\left(S \backslash\left(A_{0} v A_{1}\right)\right)-l \geqslant|S|-l-l+2 l .\right]
\end{aligned}
$$

Proof
As before we artically consider $S S A$, $|s| \leqslant \frac{n}{4}$ and double our estimate.

Probability s

$$
\begin{aligned}
& \sum_{k=2(\log n)^{3}}^{2 \frac{1}{4} n}\binom{\frac{1}{2} n}{k}\binom{\frac{1}{2} n}{k+2 l}\binom{k(k+2 l)}{2(k+2 l l} p^{2 k+4 l}(1-p)^{k\left(\frac{1}{2} n-k-2 l\right)} \\
& \sqrt{\langle 2} \sum_{k}^{2 \operatorname{logn} n^{3}} \frac{n^{k} e^{k}}{2^{k} k^{k}} \cdot \frac{n^{k+2 l} e^{k+2 l}}{2^{k+2} l}(k+21)^{k+2 l}\left(\frac{k e(10 p n+c}{2 n}\right)^{2 k+4 l} n^{-k / s}
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \sum_{k} \frac{n^{k} e^{k}}{2^{k} k^{k}} \cdot \frac{n^{k+2 l} e^{k+2 l}}{2^{k+l l}(k+2)^{k+2} l}\left(\frac{k e(\log n+c)}{2 n}\right)^{2 k+4^{l}} n^{k / s} \\
& \leqslant \sum_{k}\left(\frac{e^{o(1)}(\log n)^{2}}{n^{1 / 5}}\right)^{k} \\
& =o(1) .
\end{aligned}
$$

Chack: $k^{u}=\left(k^{2 / k}\right)^{k}=\left(e^{011}\right)^{k}$.

Hamilton Cycles in Random Graphs
Theorem
Let $m=\frac{1}{2} n\left(\log n+\log \log n+c_{n}\right)$. Then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(G_{n m} \text { in Hamiltonian }\right) & = \begin{cases}0 & c_{n} \rightarrow-\infty \\
e^{-e^{-c}} & e_{n} \rightarrow c \\
1 & c_{n} \rightarrow \infty\end{cases} \\
& =\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\delta\left(G_{n, m}\right) \geq 2\right) .
\end{aligned}
$$

The proof of this is complicated and so we start by proving a weaker theorem.
Let $p=\frac{25 \log n}{n}$. Then
$G_{n, p}$ is Hamultoneain why.
Write

$$
G_{n, p}=G_{n, p_{1}} \cup G_{n, p_{2}}
$$

where $P_{1}=\frac{2010 \mathrm{gn}}{n}$
and $\quad 1-p=\left(1-p_{1}\right)\left(1-p_{2}\right), p_{2} \approx \frac{5 \log n}{n}$

We first show that why $G_{1}=G_{n, p_{2}}$ has a Hamilton path.
Let $\lambda(G)$ denote the length of a longest path in G.
Let ε_{v} be the event

$$
\lambda\left(G_{1} \backslash v\right)=\lambda\left(G_{1}\right)
$$

Then
G_{1} does not have a Hamilton path

$$
\Rightarrow \exists v: \varepsilon_{v} \text { occurs. }
$$

G, not Hamiltonian

v_{0}
E_{v} occurs.
We show now that

$$
P_{r}\left(\bigcup_{v} \varepsilon_{v}\right) \leqslant n \operatorname{Pr}\left(\varepsilon_{n}\right)=O(\underline{1}) .
$$

Posá Lemma
P is a longest path

No edge from b go out side P.
P^{\prime} is also longest path:

p^{\prime} is obtained by a rotation with a as sexed endpoint.

Now let END denote the set $f v$ such bLat \exists longest path P_{v} from a lo v such that P_{v} is obtained from P by as equence of rotations with a fixed.

Lemma
If $v \in P \backslash E N D$ and v is adjacent to $\omega \in E N D$ then there exist $x \in E M D$ such that the edge $(x, v) \in P$ or $(v, x) \in P$. Corollary

$$
|N(E N D)|<2 \mid E N D]
$$

Proof of Lemma
Suppose that x, y are the neughbauroof v on P and that $v, \propto, y \& \in N D$ and that v is adjacent to $\omega \in \in N D$. Consider P_{ω}

Now $\{\alpha, \beta\}=\{x, y\}$ be cause if a rotation deteled (x, v) say then $o c$ or v becomes an endpoint.
But then $\beta \in E N D$.

Lemma
Whap $S \subseteq[n-1],|S| \leqslant \frac{1}{4} n \Rightarrow$

$$
|N(S)| \geqslant 21 S \mid
$$

$$
\text { in }^{\top} G_{1} \backslash\{n\}
$$

Proof

$$
\begin{aligned}
& \text { P, (es: } \left.|s| \leqslant \frac{1}{4} n \text { and }|N(s)|<2|s|\right) \leqslant \\
& \sum_{k=1}^{\frac{1}{4} n-1}\binom{n-1}{k}\binom{n-1}{2 k} \underbrace{\left(1-p_{1}\right)^{k(n-1-3 k)}} \leqslant \\
& \begin{array}{ll}
\sum_{k=1}^{n=1} & {\left[\frac{n e}{k} \cdot \frac{n^{2} e^{2}}{k^{2}} \cdot n^{-5}\right]^{k}=O\left(n^{-2}\right),} \\
\leqslant e^{-k p_{p} / 4} \\
\leqslant n^{-5 k}
\end{array}
\end{aligned}
$$

II follows that if P is a longest path in $G_{1} \backslash\{n\}$ and END is defined w.r.i. P then

$$
\operatorname{Pr}(|E N D| \leqslant n / 4)=O\left(n^{-2}\right) \text {. }
$$

N ow the edge weedent with, n are uncondilioned by $G_{1} \backslash\{n\}$ and (see P^{3})

S.

$$
\operatorname{Pr}\left(\varepsilon_{n}\right) \leqslant O\left(n^{-2}\right)+\left(1-p_{1}\right)^{n / 4}=O\left(n^{-2}\right)
$$

So $\operatorname{Pr}\left(G_{1}\right.$ does not have a Hamilton path $)=O\left(n^{-1}\right)$.
N ow we the $G_{n, p_{2}}$ edges.
Let P be a Hamilton pat in G_{1} and let END be defined w.r.i. P.
By arguing as for $G_{1} \backslash\{n\}$ we see that $|E N B| \geqslant \frac{n}{4}$ why.
Let a ko the fused endpoint of P.
Then
$G_{n, p}$ not Hamiltonian \Rightarrow a $G_{n, p, p e f f e ~ f r o m ~}$ a 5 END.
Thus

$$
\operatorname{Pr}\left(G_{n, p} \text { io not Hamill }\left(t_{\text {onion }}\right)=O(1)+\left(1-P_{2}\right)^{n / 4}=o(1)\right.
$$

Let us now go $l_{0}^{-} G=G_{n, m}, m=\frac{1}{2} n(\log n+\log \log n+c)$ and $G_{n, p}, p=\frac{m}{N}$.
Let a vertex of G be large if ito degree io at least $\lambda=\frac{\log n}{100}$, and small otherwise.

$$
\frac{\text { Lemma }}{\text { Why } v, w} \in S M A L L \Rightarrow \operatorname{dist}(v, w) \geqslant 5
$$

Proof

$$
\begin{aligned}
& P_{r}(-1) \leqslant\binom{ n}{2}\left(\sum_{l=0}^{3}\binom{n}{1} p^{l+1}\right)\left(\sum_{0} \sum_{k}^{\lambda}\binom{n}{k} p^{k}(1-p)^{n-k}\right)^{2} \\
& \approx \frac{1}{2} n(\log n)^{4}\left(\sum_{k=0}^{\lambda} \frac{(\log n)^{k}}{k!} \cdot \frac{e^{-c}}{n \log n}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \approx \frac{1}{2} n(\log n)^{4}\left(\sum_{k=0}^{\lambda} \frac{(\log n)^{k}}{k!} \cdot \frac{e^{-c}}{n \log n}\right)^{2} \quad \frac{u_{k+1}}{u_{p}}>100 \\
& \leqslant n(\log n)^{4}\left(\frac{(\log n)^{\lambda}}{\lambda!} \frac{e^{-c}}{n \log n}\right)^{2} \quad \lambda!\geqslant\left(\frac{\lambda}{e}\right)^{\lambda} \\
& =O\left(\frac{(\log n)^{3}}{n} \cdot(100 e)^{2 \log (100}\right) \\
& =O\left(n^{-3 / 4}\right)_{0} \\
& \text { So } P_{r m}(\neg)=O\left(m^{\frac{1}{2}} n^{-3 / 4}\right)=O(1)
\end{aligned}
$$

Lemma
Whap $|S M A 2 L| \leqslant n^{1 / 4}$.
Proof

$$
\begin{aligned}
& \operatorname{Prp}_{r_{p}}\left(\operatorname{ISMA2L} 1>n^{1 / 4}\right) \\
\leqslant & n \sum_{k=0}^{\log n / 100} \underbrace{(n-1}_{k} \begin{array}{l}
u_{k} \\
k
\end{array}) p^{k}(1-p)^{n-1-k} \\
\leqslant & =\frac{u_{k+1} / u_{k}}{k+1, k} \cdot p \cdot \frac{1}{1-p} \\
\leqslant & \geqslant 50 . \\
\left.\frac{n e p \log n}{100 n}\right)^{\frac{\log n}{190}} \cdot \frac{1}{n} &
\end{aligned}
$$

$\leqslant n^{1 / 5}$.
Now apply Marker and monotorincty to go to $G_{n_{y} m}$.

Lemma
Whip \nrightarrow a cycle C_{4} containing a small vertus.

$$
\begin{aligned}
\frac{P_{r o o f}}{P_{-1}(1)} & \leqslant \frac{1}{2} n^{4} p^{4} \sum_{k=0}^{\log n / 100}\binom{n}{b} p^{k}(1-p)^{n-1-k} \\
& \leqslant(\log n)^{4} n^{-3 / 4}
\end{aligned}
$$

So

$$
P_{m}(7) \leqslant O\left(m^{1 / 2} n^{-3 / 4}\right)=0117 .
$$

Lemma
Whop, $\forall|s| \leqslant\left(\frac{n}{(\log)^{3}}, \quad e(s) \leqslant 2|s|\right.$
Proof

$$
\begin{aligned}
& \sum_{s=4}^{n c(\log n)^{3}}\binom{n}{s}\binom{\binom{s}{2}}{2 s} p^{2 s} \\
& \leqslant \sum_{s}\left(\frac{n e}{s} \cdot\left(\frac{s e \log n}{2 n}\right)^{2}\right)^{s} \\
& =\sum_{s}\left(\frac{s}{n} \cdot \frac{e^{3}(\log n)^{2}}{2}\right)^{s} \\
& =O\left(n^{-3}\right) \text {. So } P_{m}(n)=O\left(m^{1 / 2} n^{-3}\right)=O(1) \text {. }
\end{aligned}
$$

Lemma

$$
S \subseteq L A R G E, \quad|S| \leqslant \frac{n}{\log n} \Rightarrow|N(S)| \geqslant \frac{\log n}{1000}|S| .
$$

Proof

$$
\begin{aligned}
& \text { (a) } \quad 1 \leqslant|s| \leqslant\left(\frac{n}{(\log n)^{3}} \quad s=|s|\right. \\
& T=N(s) \\
& t=|\tau| \\
& P(7 S) \leqslant
\end{aligned}
$$

$$
\begin{aligned}
& x(1-p)^{s(n-s-z)}
\end{aligned}
$$

$2 a+b \geqslant \frac{\log _{n} n}{100} s$ $a \leqslant 2 S$

$$
\stackrel{\downarrow}{a+b \geqslant} \frac{\log n}{200} s
$$

$$
\begin{aligned}
\leqslant \sum_{s, t}\left(\frac{n e}{s}\right)^{s}\left(\frac{n e}{t}\right)^{t}\left(\frac{(s+t)^{2} e(200)}{2 s \log n} \cdot\right. & \left.\frac{(1+0(n) \log n}{n}\right)^{s \log n / 200} \\
& \times n^{-s\left(1-1 /(\log n)^{2}\right)}
\end{aligned}
$$

The summand uncreases with $t<n$ and so we can put $t=\frac{\log n}{1000} s$ and then very crudely

$$
\begin{aligned}
& \leqslant n \sum_{s \geqslant \sqrt{\lambda}}\left(\frac{n e}{s} \cdot\left(\frac{1000 n e}{s \log n}\right)^{\frac{\log n}{1000}}\left(\frac{e(\log n)^{2} s}{1000 n}\right)^{\log n / 200}\left(\frac{1+011)}{n}\right)\right)^{S} \\
& <n \sum_{s \geqslant \sqrt{\lambda}}\left(\frac{e^{6}(\log n)^{9} s^{4}}{10^{12} n^{4}}\right)^{\frac{\log n}{1000} s} \\
& =O\left(n^{\left.-\Omega(\sqrt{\lambda} \text { bog n }) \text { and so } \operatorname{Pr}_{m} \mid 7\right)=0(1)} .\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } \frac{n}{(\log n)^{3}} \leqslant|s| \leqslant \frac{n}{\log n} \\
& P_{p}(7) \leqslant \sum_{s, t}\binom{n}{s}\binom{n}{t}\binom{s t}{t} p^{t: T \text { edges }}(1-p)^{s(n-s-t)} \\
& T=N(S) \\
& \leqslant \sum_{s, t} \underbrace{\left(\frac{n e}{s}\right)^{s}\left(\frac{n e}{t}\right)^{t}(s e p)^{t} n^{-s\left(1-\frac{s+t}{n}\right)}}_{u_{s, t}} \\
& \frac{u_{s, t+1}}{u_{s, t}}=\frac{n e}{t+1} \cdot\left(\frac{t}{t+1}\right)^{t} \cdot(\text { sep }) \cdot n^{s / n} \\
& \geqslant 10 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { So } \\
& \operatorname{Pr}(\neg) \leqslant 2 \sum_{s}\left(\frac{n e}{s}\right)^{s}\left(10^{3} e^{2+0(1)}\right)^{\frac{s \log n}{1000}} n^{-s\left(1-\frac{s(1+\log (1000)}{n}\right)} \\
& =2 \sum_{s \geqslant \frac{n}{(\log)^{3}}}\left(\frac{e}{s} \cdot\left(10^{3} e^{2+0(1)}\right)^{\frac{\log n}{1000}} \cdot n^{\frac{1}{1000}+0(0}\right)^{s} \\
& =O\left(n^{-} \Omega\left(n^{1 / 2}\right)\right)
\end{aligned}
$$

and s.

$$
P_{r}(7)=0(1) .
$$

Suppose now that $X \subseteq E(G)$ and
(1) $|x|=\log n$
(i) X is a matching
(i.1) X is not uncident with a small vertex.
(iv) X avoids the edges $0 f$ some longest path of G.

We say that X is deletable.
Let $G_{X}=G \backslash X$

Suppose that $\delta(G) \geq 2$ and
(1) $v, w \in S M A 22 \Rightarrow \operatorname{dist}(v, \omega) \geqslant 5$ and $v \notin$ any C_{4}.
(ii) $S S$ LARGE, $\left.\left|S I \leqslant \frac{n}{\log n} \Rightarrow\right| N(S)\left|\geqslant \frac{\log _{1} n}{1000}\right| S \right\rvert\,$.
(III) X is dele table.

Then $\left.s \leq[n],|s| \leqslant 10^{-4} n \Rightarrow\left|N_{x}(s)\right| \geqslant 2 \mid s\right]$
$R_{\text {mors }}$ in Q_{x}.
Proof
Let $S_{1}=S \cap$ SMAL2 and $S_{2}=S \backslash S_{1}$

$$
\begin{aligned}
& |N(S)| \geqslant\left|N\left(S_{1}\right)\right|+\left|N\left(S_{2}\right)-\left|N\left(S_{1}\right) \cap S_{2}\right|-\left|N\left(S_{2}\right) \cap S_{1}\right|\right. \\
& \geqslant\left|N\left(S_{1}\right)+\left|N\left(S_{2}\right)-2\right| N\left(S_{1}\right) \cap S_{2}\right|-\left|S_{2}\right| \\
& \geqslant\left|N\left(S_{1}\right)+\left|N\left(S_{2}\right)\right|-3\right| S_{2} \mid
\end{aligned}
$$

and

$$
\left.\mid N\left(S_{2}\right)\right] \geqslant 9\left|S_{2}\right|
$$

(i) $\left|s_{2}\right| \leqslant \frac{n}{\log n} \Rightarrow\left|N\left(s_{2}\right)\right| \geqslant \frac{\log n}{1000}\left|s_{2}\right|$
(ii)

$$
\begin{aligned}
&\left|S_{2}\right|>\frac{n}{\mid \log n} . \text { Take } S_{2}^{\prime} \subseteq S_{2}\left|S_{2}\right|=\frac{n}{\log n} \\
&\left|N\left(s_{2}\right)\right| \geqslant\left|N\left(s_{2}^{\prime}\right)\right|-\left|S_{2}\right| \\
& \geqslant \frac{n}{1000}-\left|S_{2}\right| \\
& \geqslant 9\left|S_{2}\right| .
\end{aligned}
$$

So $|N(s)| \geqslant 2\left|s_{1}\right|+6\left|s_{2}\right|$
and

$$
\left|N_{x}(s)\right| \geqslant|N(S)|-\left|s_{2}\right|
$$

X is a matching and it avoids SMALL

$$
\begin{aligned}
& \geqslant 2\left|s_{1}\right|+5\left|s_{2}\right| \\
& \geqslant 2 \mid s_{1}
\end{aligned}
$$

Summary
(I) $\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\delta\left(G_{n, m}\right) \geqslant 2\right)=e^{-e^{-c}}$.
(II) $G_{n, m}$ is connected whop
(III) \mid SMALL I $\leqslant n^{1 / 4}, v, \omega \in$ SMALL $\Rightarrow \operatorname{dist}\left(v_{0} w\right) \geqslant 5$, If $C_{4}: C_{4} \cap$ small $\neq \varnothing$, whap.
(iv) If $\delta(G) \geqslant 2$ and X is delectable then why

$$
\left|N_{x}(s)\right|<2|s| \Rightarrow|S| \geqslant 10^{-4} n
$$

$G=\{$ all graphs on $[n]$ with m edges $\}$
$G_{0}:\{G \in G: \delta(G) \geqslant 2$ and (II)-(IV) hold $\}$
$G_{1}=\left\{G \in G_{0} ; G\right.$ in not H miltonian $\}$

Couloring Argument
Suppose $G \in G_{1}$ and X be deletablo
Let P be a longest path in G_{X}.

Then
IEND $1 \geqslant 10^{-4} n$ (add subscript X 后 END)
Now for each $b \in E N D$, start with P_{b} and do all possible rotations, starting from P_{b} but with b as a fused endpoint. Let $E N O_{X}(b)$ be the set of end oints produced

We do a bit of renaming

$$
\begin{aligned}
& E N D_{x} \leftarrow E N D_{x} \cup\{a\} \\
& E N D_{x}(a) \leftarrow E N D_{x} /\{a\}
\end{aligned}
$$

Now we com say that for $b \in \in N D$, we have

$$
\left|E N D_{x}(b)\right| \geqslant \frac{n}{1000}
$$

Now for $G \in G$ and $X \subseteq E(G),|X|=\omega=\log n$ choose some fixed longest path P_{x}^{\prime} of G_{x}.
Fwehemore choose so that if $G_{J} G^{\prime} \in G$ and $G_{x}=G_{y}^{\prime}$ then $P_{x}=P_{y}^{\prime}$ i.e. path depends on G_{x} and not $G_{0} X_{0}$

$$
Q(G, X)= \begin{cases}1: & \text { (a) } G \in G_{1} \\ 1: & \text { (b) } \times \cap E\left(P_{x}\right)=\varnothing \\ \text { (c) } \times \text { is dele table }\end{cases}
$$

Note that $a(G, X)=1$ implies
If $u \in E N D_{X}(v)$ then $(u, v) \& X$
$a(G, x)=1$. Longest in G_{x} and G
 I edge $(U, V) \in X$ Either
(i) $\ell\left(P_{b}\right)=n-1$
$\Rightarrow G$ is Hamiltonian
(11)

longer pat

Now a double counting estimate for $\sum_{G} \sum_{X} a\left(G_{0} X\right)$.
(i) $F_{u x} G \in G_{1}$.

$$
\begin{aligned}
\sum_{X} a(G, X) & \geqslant\binom{ m}{w}\left(1-\frac{n+n^{1 / 4} \log n+w}{m-w}\right)^{w} \\
& \geqslant\binom{ m}{w} / 10 . \quad\left(1-\frac{n 2}{\omega}\right)^{\omega}
\end{aligned}
$$

Random chore weirdos $e_{b} e_{2} \ldots$

$$
\operatorname{Pr}(a(G, x)=1) \geqslant \prod_{L=0}^{\omega-1} \operatorname{Pr}\left(e_{i} \text { avoids } P_{x}, \text { sMALL, } e_{l},-e_{L-1} \mid e_{i}, \ldots, e_{i-1}\right)
$$

So

$$
\left|g_{1}\right| \leqslant \frac{10}{\binom{m}{w}} \sum_{G \in G} \sum_{X} a(G, X) .
$$

(ii) Now fix a graph H with m-wedge.

Let

$$
S_{H}=\sum_{G, X: G_{X}=H} a(G, X) .
$$

If $S_{H}>0$ then H has the expansion properties wi expect and it END sets are large. Thus

$$
\begin{aligned}
& \text { expat and to END sets ere large. } \\
& S_{H} \leqslant\binom{ N-m+\omega}{\omega}\left(1-\frac{\binom{n / 1000}{N}}{\omega} \leqslant \begin{array}{c}
\left.\omega \cdot \begin{array}{c}
N \cdot m \times \omega \\
\omega
\end{array}\right)
\end{array} e^{-\left(10^{-6}-0(1)\right) \omega}\right. \text {. }
\end{aligned}
$$

There $\binom{N}{n-w}$ ways to add wolfe to k. k. bounds the probability that a randomly chosen seeing wo edge avoids joining a $5 E N D_{H}(a)$ for $a \in E N D_{B_{A}}$.

Thus

$$
\begin{aligned}
\sum_{G \in G} \sum_{X} a(G, X) & \leqslant\binom{ N}{m-w}\binom{N-m+w}{w} e^{-\beta w} \\
& =\binom{N}{m}\binom{m}{w} e^{-\beta w}
\end{aligned}
$$

and so

$$
\begin{aligned}
\left|G_{1}\right| & \leqslant \frac{10}{\binom{m}{w}} \sum_{G \in G} \sum_{X} a(G, X) . \\
& \leqslant 10 e^{-\beta \omega}\binom{N}{m}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Pr}(G \text { indt Ham \& } \delta(G) \geqslant 2)=\operatorname{Pr}\left(G \in\left(G_{2} \backslash S_{0}\right) \cup S_{1}\right)=0(1) . \\
& \operatorname{Pr}(G \text { in } \operatorname{Han} \& \delta(G) \geqslant 2)=e^{-e^{-c}}-0(1) .
\end{aligned}
$$

Separation of largest degrees,
Graph is omorphism ard edge coloring.

Lemma
Let $k=(n-1) p+x \sqrt{(n-1) p q}, p$ constant, $q=1-p$, where $x \leqslant(1 / \mathrm{g} n)^{2}$ (for comververce).

$$
B_{k}=\binom{n-1}{k} p^{k}(1-p)^{n-1-k}=(1+0(1)) \sqrt{\frac{1}{2 \pi n p q}} e^{-x^{2} / 2}
$$

Then

Proof
Stirling's Formula guises

$$
B_{k}=(1+0(1)) \sqrt{\frac{1}{2 \pi n p q}}\left(\left(\frac{(n-1) p}{k}\right)^{\frac{k}{n-1}}\left(\frac{(n-1) q}{n-1-k}\right)^{1-\frac{k}{n-1}}\right)^{n-1}
$$

$$
\begin{aligned}
& \text { Now } \\
& \left(\frac{k}{(n-1) p}\right)^{\frac{k}{n-1}}=\left(1+x \sqrt{\frac{q}{p(n-1)}}\right)^{k / n-1} \\
& =\exp \left\{\left(x \sqrt{\frac{q}{p(n-1)}}-\frac{x^{2}}{2} \frac{q}{p(n-1)}+0\left(n^{-3 / 2}\right)\right)\left(p+x \sqrt{\frac{p q}{n-1}}\right)\right\} \\
& =\exp \left\{x \sqrt{\frac{p q}{n-1}}+\frac{x^{3}}{\frac{3}{2}} \cdot \frac{q}{n-1}+0\left(n^{-3 / 2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{n-1-k}{(n-1) q}\right)^{1-k / n-1}=\left(1-x \sqrt{\frac{p}{q \operatorname{ln-1}}}\right)^{1-k / n-1} \\
& \left.=\exp \left\{-\left(x \sqrt{\frac{p}{q(n-1}}+\frac{x^{2}}{2} \cdot \frac{p}{q(n-1)}+0\right)^{\prime}\left(n^{-3 / 2}\right)\right)\left(q-x \sqrt{\frac{p q}{n-1}}\right)\right\} \\
& =\exp \left\{-x \sqrt{\frac{p q}{n-1}}+\frac{x^{2}}{2} \frac{p}{n-1}+0\left(n^{-3 / 2}\right)\right\} .
\end{aligned}
$$

So

$$
\begin{aligned}
& \left(\frac{k}{(n-1) p}\right)^{\frac{k}{n-1}}\left(\frac{n-1-k}{(n-1) q}\right)^{1-k / n-1}= \\
& \exp \left\{\frac{x^{2}}{2(n-1)}+O\left(n^{-3 / 2}\right)\right\}
\end{aligned}
$$

Substituting into

$$
(1+0(1)) \sqrt{\frac{1}{2 \pi n p q}}\left(\left(\frac{(n-1) p}{k}\right)^{\frac{k}{n-1}}\left(\frac{(n-1) q}{n-1-k}\right)^{1-\frac{k}{n-1}}\right)^{n-1}
$$

gives required expression.

Lemma
Let $E=\frac{1}{10}$ and p be constant

$$
k_{ \pm}=(n-1) p+(1 \pm e) \sqrt{2(n-1) p q \operatorname{tog} n} .
$$

Then why
(1) $\Delta\left(G_{n, p}\right) \leqslant k_{+}$
(ii) There are $\Omega\left(n^{2 \epsilon(1-\epsilon)}\right)$ vertices of degree at least k.
(III) I $u \neq v$ such that $d(u), d(v) \geqslant k$, and $|d(v)-d(v)| \leqslant 10$.

We fist prove that as $x \rightarrow \infty$

$$
\frac{1}{x} e^{-x^{2} / 2}\left(1-\frac{1}{x^{2}}\right) \leqslant \int_{x}^{\infty} e^{-y^{2} / 2} d y \leqslant \frac{1}{x} e^{-x^{2} / 2} \quad(* \forall \forall)
$$

$$
\begin{aligned}
& \frac{P_{r o s} f}{\infty} \int_{x}^{\infty} e^{-y^{2} / 2} d y=-\int_{x}^{\infty} \frac{1}{y}\left(e^{-y^{2} / 2}\right)^{\prime} d y \\
& =-\left[\frac{1}{y} e^{-y^{2} / 2}\right]-\int_{x}^{\infty} \frac{1}{y^{2}} e^{-y^{2} / 2} d y \\
& =\frac{1}{x} e^{-x^{2} / 2}+\left[\frac{1}{y^{3}} e^{-b^{2} / 2}\right]+3 \int_{\infty}^{\infty} \frac{1}{y^{4}} e^{-y^{2} / 2} d y
\end{aligned}
$$

(1) Let X be the number g vertices I degree k.

$$
E\left(X_{k}\right)=(1+0(1)) \sqrt{\frac{n}{2 \pi p q}} \exp \left\{-\frac{1}{2}\left(\frac{k-(n-1) p}{\sqrt{(n-1) p q}}\right)^{2}\right\}
$$

assuming that $k \leqslant k_{2}=(n-1) p+(\log)^{2} \sqrt{(n-1) p q}$.
Butty $k>k_{2}$ then

$$
\begin{aligned}
E\left(X_{k}\right) & \leqslant E\left(X_{k_{2}}\right)-\text { binomial } \searrow \text { after mem } \\
& \approx \cap \exp \left\{-\Omega\left((\log n)^{4}\right)\right\} \\
& =o(1) .
\end{aligned}
$$

So. $y y_{b_{0}}=X_{k_{b}}+X_{h+1}+\ldots$.

$$
\begin{aligned}
E\left(Y_{k}\right) & \approx \sum_{l=k}^{k_{L}} \sqrt{\frac{n}{2 \pi p q}} \exp \left\{-\frac{1}{2}\left(\frac{l-(n-1) p}{\sqrt{(n-1) p q}}\right)^{2}\right\} \\
& \approx \sum_{l=k}^{\infty} \sqrt{\frac{n}{2 \pi p q}} \exp \left\{-\frac{1}{2}\left(\frac{l-(n-1) p}{\sqrt{(n-1) p q}}\right)^{2}\right\} \\
& \approx \sqrt{\frac{n}{2 \pi p q}} \int_{\lambda=k}^{\infty} \exp \left\{-\frac{1}{2}\left(\frac{\lambda-(n-1) p}{\sqrt{(n-1) p q}}\right)^{2}\right\} d \lambda
\end{aligned}
$$

If $k=(n-1) p+x \sqrt{(n-1) p q}$ then

$$
\begin{aligned}
& \sqrt{\frac{n}{2 \pi p q}} \int_{\lambda=k}^{\infty} \exp \left\{-\frac{1}{2}\left(\frac{\lambda-(n-1) p}{\sqrt{(n-1) p q}}\right)^{2}\right\} d \lambda \\
&=\sqrt{\frac{n}{2 \pi p q}} \cdot \sqrt{(n-1) p q} \cdot \int_{y=x}^{\infty} e^{-y^{2} / 2} d y \\
&= \frac{n}{\sqrt{2 x}} \cdot \frac{1}{x} \cdot e^{-x^{2} / 2}
\end{aligned}
$$

When $k=k_{+}, x=(1+\epsilon) \sqrt{2 \log }$ and (1) follow.

When $k=k, \quad x=(1-\epsilon) \sqrt{2 \log n}$
and

$$
E\left(y_{k}\right)=\Omega\left(n^{2 \in(1-\epsilon)}\right) \rightarrow \infty
$$

We use the second moment method to show concentration.

$$
\begin{aligned}
& E\left(Y_{k}\left(Y_{k-1}-1\right)\right)=n(n-1) \sum_{k \leq k_{1}, k_{2}}^{s k_{2}} \operatorname{Pr}\left(d(1)=k_{1} \wedge d(2)=k_{2}\right) \\
& =n(n-1)\left[\begin{array}{l}
\sum_{k_{1} k_{2}} p\left(\hat{d}(1)=k_{1}-1 \wedge \hat{d}(2)=k_{2}-1\right) \\
\left.+(1-p) P\left(\hat{d}(1)=k_{1} \wedge \hat{d}(2)=k_{2}\right)\right]
\end{array}\right.
\end{aligned}
$$

where $\widehat{d}=\#$ mors in $\{3,4, \ldots, n\}$.

$$
\begin{aligned}
& =n(n-1) \sum_{k_{1} k_{2}}\left[\begin{array}{l}
p P\left(\hat{d}(1)=k_{1}-1\right) P\left(\hat{d}(2)=k_{2}-1\right) \\
\left.+(1-p) P\left(\hat{d}(1)=k_{1}\right) P\left(\hat{d}(2)=k_{2}\right)\right]
\end{array}\right. \\
& \begin{aligned}
& \frac{p\left(\hat{d}(1)=k_{1}-1\right)}{P\left(\hat{d}(1)=k_{1}\right)}=\frac{\binom{n-2}{k_{1}-1}(1-p)}{\binom{n-2}{k_{1}} P}=\frac{k_{1}(1-p)}{\left(n-2 \cdot k_{1}\right) P} \\
&=1+0^{\infty}\left(n^{-1 / a}\right) .
\end{aligned} \\
& =n(n-1) \sum_{k_{1} k_{2}}\left[P\left(\hat{d}(1)=k_{1}\right) P\left(\hat{d}(2)=k_{2}\right)\left(1+0^{\infty}\left(n^{-1 / 2}\right)\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& =n(n-1) \sum_{k_{1} k_{2}}\left[P\left(\hat{d}(1)=k_{1}\right) P\left(\hat{d}(\alpha)=k_{2}\right)\left(1+\tilde{O}\left(n^{-1 / 2}\right)\right]\right. \\
& \frac{P\left(\hat{\alpha}(1)=k_{1}\right)}{P\left(d(1)=k_{1}\right)}=\frac{\binom{n-2}{k_{1}}}{\binom{n}{k_{1}}}(1-p)^{-2}=1+\tilde{O}^{-}\left(n^{1 / 2}\right) \\
& =n(n-1) \sum_{k_{1} k_{2}}\left[P\left(d(1)=k_{1}\right) P\left(d(2)=k_{2}\right)\left(1+\tilde{O}\left(n^{-1 / 2}\right)\right)\right] \\
& =E\left(Y_{k}\right)\left(E\left(Y_{k}\right)-1\right)\left(1+\hat{O}\left(n^{-1 / 2}\right)\right)
\end{aligned}
$$

So, with $k=k_{\text {, }}$

$$
\begin{aligned}
& P_{r}\left(Y_{k} \leqslant \frac{1}{2} E\left(y_{k}\right)\right] \\
& \leqslant \frac{E\left(Y_{k}\left(y_{k}-1\right)\right)+E\left(y_{k}\right)-E\left(Y_{k}\right)^{2}}{E\left(y_{k}\right)^{2} / 4} \\
& =O^{O}\left(\frac{1}{n^{2 \in(1-6)}}\right) \\
& =O(1) .
\end{aligned}
$$

This completes the proof the second part.

$$
\begin{aligned}
& \operatorname{Pr}(\neg(i i i)) \leqslant(0)+\binom{n}{2} \sum_{k_{1}=k_{-}}^{k_{L}} \sum_{1 k_{2}-k_{1} \mid \leqslant 10} \operatorname{Pr}\left(d(1)=k_{1} \wedge d(2)=k_{2}\right) \\
& \left.=O(1)+\binom{n}{2}\right\rangle
\end{aligned} \quad\left[\begin{array}{l}
P\left(\hat{d}(1)=k_{1}-1\right) P\left(\hat{\alpha}(2)=k_{2}-1\right) \\
\left.+(1-p) P\left(\hat{d}(1)=k_{1}\right) P\left(\hat{d}(2)=k_{2}\right)\right]
\end{array}\right.
$$

Now

$$
\begin{aligned}
& \sum_{k_{1}, k_{2}} P\left(\hat{d}(1)=k_{1}-1\right) P\left(\hat{d}(n)=k_{2}-1\right) \\
& \leqslant 21\left(1+\tilde{O}\left(n^{-1 / 2}\right)\right) \sum_{k_{1}} \operatorname{Pr}\left(\hat{d}(1)=k_{1}-1\right)^{2}
\end{aligned}
$$

and

$$
\begin{gathered}
\sum_{k_{1}} \operatorname{Pr}\left(\hat{d}(1)=k_{1}-1\right)^{2} \approx \frac{1}{2 \pi \rho q n} \int_{y=x}^{\infty} e^{-y^{2}} d y, \\
\text { where } x=\frac{k_{-}-(n-1) p}{\sqrt{(n-1) \rho q}} \approx(1-\theta) \sqrt{2} \log n \\
\quad=\frac{1}{\sqrt{8} \pi \rho q n} \int_{z=x \sqrt{2}}^{\infty} e^{-z^{2} / 2} d z \\
\approx \frac{1}{\sqrt{8} \pi \rho q n} \cdot \frac{1}{x \sqrt{2}} \cdot \Omega^{-2(1-\epsilon)^{3}} .
\end{gathered}
$$

We get s umber bail for $\sum_{k_{1}} \operatorname{Pr}\left(\hat{d}(1)=k_{1}\right)^{2}$.

Thus

$$
\begin{aligned}
\operatorname{Pr} l \neg(i i j)) & =o\left(n^{2-1-2(1-6)^{2}}\right) \\
& =o(1) .
\end{aligned}
$$

Edge Colouring
The Chromatic Index $X^{\prime}(G)$ of graph G is the minimum number of Colors that can be used to color the edge of G so that if 2 edges share a vertex, they have a different color.
V izing's Theorem states that

$$
\Delta(G) \leqslant X^{\prime}(G) \leqslant \Delta(G)+1
$$

Also, if there is a uniajes vertex of maxumuen degree, then $X^{\prime}(G)=\Delta(G)$.

So $X^{\prime}\left(\sigma_{n, p}\right)=\triangle\left(\sigma_{n, p}\right)$ why.

Graph Isomorphisin
In this section we describe a procedure for ordering the verlicoo θ a graph G. If it succeed then it to possible Io quale tell if $G \cong H$, for any H_{1}

Algorithm
Input G. Parameter L.
Slip 1
Re-label verlices so that degrees satisfy

$$
d_{G}\left(v_{1}\right) \geqslant d_{C}\left(v_{2}\right) \geqslant \cdots \geqslant d_{G}\left(v_{n}\right)
$$

If $\exists i \leqslant L$ such that $d_{G}\left(v_{i}\right): d_{G}\left(v_{l+1}\right)$: FAIL
Step 2
For $i>L$ let

$$
X_{i}=\left\{j \in\{1,2,-, L\}:\left(v_{i}, v_{j}\right) \in G\right\}
$$

Re-Labed vertices so that these sets salesty $X_{L+1} \gtrsim X_{L+2} \geqslant \cdots \geqslant X_{n}$ - lexicographic ordering.
If $\exists i x L$ such that $X_{i}=X_{i+1}$: FAin.

Suppose now that the above afoonthm succeeds for G.
Oven an n-verters graph H we run tho algorithms on H.
(1) If alyouth foul $G \not \equiv H$.
(ii) Suppose ordering of $V(H)$ is $\omega_{1}, \omega_{2}, \cdots, \omega_{n}$. Thess $G \cong H \longleftrightarrow \quad v_{i} \rightarrow \omega_{i}$ is an isomenghesm.

Claim
Let $p=p^{2}+q^{2}$ and $L=3 \log _{1 / p} n$. Then whip the algontlm swceeco on $G=G_{n, p}$.
Proof
We have already proved that Slép1 succeed why.
We must now show that $X_{i} \not \pm X_{i j} \forall i, j$ whop but there is olight problem because edge $\left(v_{i,} v_{j}\right)$ are condelioned due to us knowing v_{i} hoo a hugh elegrice.

Fux i,j and let $\hat{G}_{i, j}=G \backslash\{i, j\}$.
Now if i, j are not higt elegnee vertices then the L largest degnee verlices in $G ., \hat{G}_{i j}$ will councede, whp.
This is because there is whp, a gap $\sqrt[6]{ }$ >10 between high verless degress in G.

Thes

$$
\operatorname{Pr}(\text { Stepp } 2 \text { foub }) \leqslant
$$

 degnee verlites in $\widehat{G}, \hat{j}\}$

$$
\begin{aligned}
& =o(1)+\binom{n}{2} p^{L} \\
& =o(1) .
\end{aligned}
$$

Automorphisms
It follows from the previous section that whee, $G_{n, p}$ hos no non trial autorkorphomo. For $f \sigma:[n] \rightarrow[n]$ is an automopphiom, then
(i) $\sigma\left(v_{v}\right)=v_{i}, 1 \leqslant i \leqslant 2$ where v_{i} is the vertex with the in largest degree.
(ii) $\sigma(v)=v$ for $v \&\left\{v_{1}, v_{2}, \cdots, v_{L}\right\}$. T his is bereave all f tho sets X_{v} are dust nt.

Janson's Inequality
Suppress that os $p_{i} \leqslant 1$ for $i=1,2, \ldots, M$.
Let X be a random subset $g[M]$ where

$$
P_{r}(i \in X)=P_{i}
$$

independently for $i \in[M]$
Let $S_{1}, S_{2}, \ldots, S_{l} \subseteq[M]$ and let

$$
Z i= \begin{cases}1 & s_{i} \leq X \\ 0 & s_{i} \notin X\end{cases}
$$

Let $Z=Z_{1}+Z_{2}+\cdots+Z_{l}$
Count the number of S_{i} that occur.
Let

$$
\mu=E(Z)=\sum_{i=1}^{\ell} P_{i}
$$

and

$$
\Delta^{*}=\frac{1}{2} \sum_{S_{i} \cap S_{j} \neq \phi} E\left(Z_{i} Z_{j}\right)
$$

Theorem

$$
P_{1}(Z \leqslant \mu-t) \leqslant e^{-t^{2} / \Delta \Delta^{*}}
$$

$$
\begin{aligned}
& \text { Poot } \\
& \text { Let } \Psi(s)=E\left(e^{-s z}\right), s \geqslant 0 . \\
& \operatorname{Pr}(Z \leqslant \mu-t)=\operatorname{Pr}\left(e^{s(\mu-t-Z)} \geqslant 1\right) \\
& \leqslant E\left(e^{s(\mu-t-Z)}\right) \\
&=e^{s(\mu-t)} \Psi(s)
\end{aligned}
$$

Write

$$
\begin{aligned}
& \text { Write } \\
& \log \operatorname{Pr}(Z \leqslant \mu-t) \leqslant \log \Psi(s)+s(\mu-t)
\end{aligned}
$$

TORE SHOWN $\leqslant-\frac{\mu^{2}}{\Delta^{*}}\left(1-e^{-s \Delta^{*} / \mu}\right)+s(\mu-t)$.
If $t=\mu$ we simply let $s \rightarrow \infty$. Otherwise
to minimise RHS we take

$$
\delta=-\frac{\mu}{\Delta^{*}} \log \left(1-\frac{t}{\mu}\right)
$$

and then

$$
\log \operatorname{Pr}(Z \leqslant \mu-t) \leqslant-\frac{\mu}{\Delta^{*}}\left(t+(\mu-t) \log \left(1-\frac{5}{\mu}\right)\right)
$$

$$
\begin{aligned}
\log \operatorname{Pr}(Z \leqslant \mu-t) & \leqslant-\frac{\mu}{\Delta^{*}}\left(t \cdot(\mu-t) \log \left(1-\frac{t}{\mu}\right)\right) \\
& \leqslant-\frac{\mu}{\Delta^{*}}\left(t-(\mu-t) \frac{t}{\mu}\right) \\
& =-\frac{t^{2}}{2 \Delta^{*}}
\end{aligned}
$$

TO be SHOWN

$$
\log \Psi(s) \leqslant-\frac{\mu^{2}}{\Delta^{*}}\left(1-e^{-s \Delta / \mu}\right)
$$

Now

$$
\log \psi(s)=\int_{\omega=0}^{s} \frac{\psi^{\prime}(\omega)}{\psi(n)} d u
$$

and

$$
\begin{aligned}
\psi^{\prime}(u) & =-E\left(Z e^{-u Z}\right) \\
& =-\sum_{i=1}^{M} E\left(Z_{i} e^{-u Z}\right) .
\end{aligned}
$$

For each $i \in[M]$ we conte

$$
Z=X_{i}+Y_{i}
$$

where

$$
X_{i}=\sum_{j: s_{j} \cap s_{i} \neq \varnothing} Z_{j}
$$

$$
\begin{aligned}
& \text { Then } \begin{aligned}
& E\left(z_{i} e^{-u z}\right)=p_{i} E\left(e^{-u X_{i}} e^{-u X_{i}} \mid z_{i}=1\right) \\
& \begin{aligned}
F K G \text { inequality } y & \geqslant p_{i} E\left(e^{-u X_{i}} \mid z_{i}=1\right) E\left(e^{-u X_{i}} \mid z_{i}=1\right) \\
& =p_{i} E\left(e^{-u X_{i}} \mid z_{i}=1\right) E\left(e^{-u X_{i}}\right)
\end{aligned}
\end{aligned} .
\end{aligned}
$$

$$
\begin{aligned}
& =p_{i} E\left(e^{-u X_{i}} \mid Z_{i}=1\right) E\left(e^{-u Y_{i}}\right) \\
& \geqslant p_{i} E\left(e^{-u X_{i}} \mid Z_{i}=1\right) \psi(u) .
\end{aligned}
$$

So

$$
\begin{aligned}
\frac{\psi^{\prime}(s)}{\psi(s)} & \leqslant-\sum_{i=1}^{M} \frac{p_{i}}{\mu} E\left(e^{-s X_{i}} \mid z_{i}=1\right) \\
& \leqslant-\mu \sum_{i=1}^{M} \frac{p_{i}}{\mu} e^{-E\left(s X_{i} \mid z_{i}=1\right)} \quad \text { Jense } \\
& \leqslant-\mu \exp \left\{-\sum_{i=1}^{M} E\left(\left.\frac{s p_{i}}{\mu} X_{i} \right\rvert\, Z_{i}=1\right)\right\} \\
& =-\mu \exp \left\{-\frac{s}{\mu} \sum_{i=1}^{M} E\left(X_{i} \mid Z_{i}=1\right) P\left(Z_{i}=1\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
&=-\mu \exp \left\{-\frac{s}{\mu} \sum_{i=1}^{M} E\left(X_{i} \mid Z_{i}=1\right) P\left(Z_{i}=1\right)\right\} \\
&=-\mu e^{-s \Delta^{*} / \mu} \\
& \sum_{i=1}^{m} E\left(X_{i} \mid Z_{i}=1\right) P\left(Z_{i}=1\right) \\
&=\sum_{i=1}^{M} \sum_{j=s_{j} n s_{i} \neq p} P\left(Z_{j}=1 \mid Z_{i}=1\right) P\left(Z_{i}=1\right) \\
&=\Delta^{*} .
\end{aligned}
$$

So

$$
\begin{aligned}
\frac{\psi^{\prime}(s)}{\psi(s)} & \leqslant-\mu e^{-s \Delta^{*} / \mu} \cdot \\
\log \psi(s) & =\int_{u=0}^{s} \frac{\psi^{\prime}(u)}{\psi(u)} d u \\
& \leqslant-\int_{u=0}^{s} \mu e^{-u \Delta^{*} / \mu} d u \\
& =-\frac{\mu^{3}}{\Delta^{*}}\left(l-e^{-s \Delta^{*} / \mu}\right) .
\end{aligned}
$$

Now let

$$
\Delta=\frac{1}{2} \sum_{\substack{s_{i} \cap s_{j} \neq \phi \\ s_{i} \neq s_{j}}} E\left(Z_{i} Z_{j}\right) .
$$

Theorem
(i) $\operatorname{Pr}(Z=0) \leqslant e^{-\mu+\Delta}$
(11) $\operatorname{Pr}(Z=0) \leqslant e^{-\frac{\mu^{3}}{\mu+\Delta}}$
((ii) foll owe directly from first theorem.)

For (1) we have (see ps)

$$
\begin{aligned}
& \frac{\psi^{\prime}(s)}{\psi(s)} \leqslant-\sum_{i} p_{i} E\left(e^{-s X_{i}} \mid z_{i}=1\right) \\
& \text { so } \\
& \log (P(Z=0))=\int_{0}^{\infty}(\log \psi(s))^{\prime} d s \\
&
\end{aligned} \begin{aligned}
& \leqslant-\int_{0}^{\infty} \sum_{i} p_{i} E\left(e^{-s X_{i}} \mid z_{i}=1\right) d s
\end{aligned}
$$

$$
\begin{aligned}
& =-\sum_{i} p_{i} \int_{s=0}^{\infty} E\left(e^{-s x_{i}} \mid z_{i}=1\right) d s \\
& =-\sum_{i} p_{i} E\left(\left.\frac{1}{x_{i}} \right\rvert\, z_{i}=1\right) \\
& \leqslant-\sum_{i} p_{i} E\left(\left.1-\frac{1}{2}\left(X_{i}-z_{i}\right) \right\rvert\, z_{i}=1\right) \\
& \left.\frac{1}{x_{i}}=\frac{1}{\left(x_{i} z_{i}\right)+z_{i}}=\frac{1}{\left(x_{i}-z_{i}+1\right.}\right) \geqslant 1-\frac{1}{2}\left(x_{i}-z_{i}\right) \\
& \prod_{i n t \operatorname{toger}}
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant-\sum_{i} p_{i} E\left(\left.1-\frac{1}{2}\left(X_{i}-z_{i}\right) \right\rvert\, z_{i}=1\right) \\
& =-\mu+\Delta .
\end{aligned}
$$

The diameter of Random Graphs
Theorem
Let $d \geq 2$ be a furred positive integer. Suppose that $c>0$ and

$$
p^{\alpha} n^{\alpha-1}=\ln \left(n^{2} / c\right)
$$

Then

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\text { da mender } G_{n, p}=k\right)= \begin{cases}e^{-c / 2}: k=d \\ 1-e^{-c / 2}: k=d+1 .\end{cases}
$$

(a.) Whap $\operatorname{dram}(G) \geqslant d$.

Fuss $v \in V$ and let

$$
N_{k}(v)=\{w: \operatorname{dist}(v, w)=k\} .
$$

We show that why, for $0 \leqslant k<d$,

$$
\begin{aligned}
\left|N_{k}\right| v|\mid & \leqslant(2 n p)^{k} \\
& \approx(2 n \ln n)^{k / d} \\
& =o(n) .
\end{aligned}
$$

We observe that giver $N_{v}(v), L \leq 0,1, \cdots, k-1$, that $\left|N_{k}(\sim)\right|$ is distributed es $\operatorname{Bin}(n-\sum_{v=0}^{k-1}\left|N_{i}(v)\right|, \quad 1-\underbrace{\left.(1-p)^{\left|N_{k-1}(v)\right|}\right)}$.

Let $\varepsilon_{i}=\left\{\left|N_{i}(v)\right| \leqslant(2 n p)^{i}\right\}$.
Condition on $\varepsilon_{0}, \varepsilon_{1} \ldots \varepsilon_{k+1}$.
Does not condition edge from $N_{k-1}(v)$ lo $V \backslash \bigcup_{i=0}^{k-1} N_{i}(\sim)$.
$\left|N_{k}(v)\right|$ is distributed as $\operatorname{Bun}(\nu, q)$
where $\nu<n$ and

$$
\begin{aligned}
q & =1-(1-p)^{\left|N_{k-1}(v)\right|} \\
& \leqslant\left|N_{h-1}(v)\right| p . \\
& \leqslant(2 n p)^{k-1} p
\end{aligned}
$$

$\alpha_{\text {hus }}$

$$
\begin{aligned}
& E\left(\left|N_{k}(v)\right| \mid \varepsilon_{0}, \varepsilon_{0} \ldots, \varepsilon_{k-1}\right) \\
= & \nu q \\
\leqslant & \left.n p\left|N_{k-1}\right| v\right) \mid .
\end{aligned}
$$

Chemoff bound givies

$$
\begin{aligned}
& \operatorname{Pr}\left(\left|N_{k}(v)\right| \geqslant(2 n p)^{k} \mid \varepsilon_{0}, \varepsilon_{1} \cdots, \varepsilon_{k-1}\right) \\
& \leqslant \operatorname{Pr}\left(\operatorname{Bin}\left(n,\left|N_{k-1}(v)\right| p\right) \geqslant(2 n p)^{k} \mid \varepsilon_{k-1}\right) \\
& \leqslant \operatorname{Pr}\left(\operatorname{Bin}\left(n,(2 n p)^{k-1} p\right) \geqslant(2 n p)^{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \operatorname{pr}_{r}\left(\sin \left(n,(2 n p)^{k-1} p\right) \geqslant(2 n p)^{k}\right) \\
& \leqslant e^{-(2 n p)^{k-1} n p / 3} \\
& \ll n^{-2} .
\end{aligned}
$$

So

$$
\begin{aligned}
& \text { So } \operatorname{Pr}\left(\bigcup_{l=0}^{d-1} N_{i}(v)=[n]\right) \leqslant \\
& \sum_{k=1}^{d-1} \operatorname{Pr}\left(\bar{\varepsilon}_{k} \mid \varepsilon_{1}, \ldots \varepsilon_{k-1}\right)= \\
& O\left(n^{-2}\right)
\end{aligned}
$$

(b) Whap $\operatorname{diam}(G) \leq d+l$.

Proof
$F \sim v_{j} w \in[n]$. Then for $1 \leqslant k<d$,
Let $f_{k}=\left\{\left|N_{k}(v)\right| \geqslant\left(\frac{n p}{2}\right)^{k}\right\}$.

$$
\begin{aligned}
& \operatorname{Pr}\left(\overline{\mathcal{F}}_{k} \mid \varepsilon_{21} \mathcal{F}_{2}, \ldots, \varepsilon_{k-1}, \mathcal{F}_{k-1}\right)= \\
& \operatorname{Pr}(\operatorname{Bin}(\underbrace{n-\sum_{i=0}^{k-1}\left|N_{i}(v)\right|}_{n-0(n)}, \underbrace{1-(1-p)^{\left|N_{k-1}(v)\right|}}_{\geqslant \frac{3}{4} \cdot\left(\frac{n p}{2}\right)^{k-1} p}) \leqslant\left(\frac{n p}{2}\right)^{k}) \\
& \leqslant e^{-\Omega\left(\left(\frac{p}{2}\right)^{k}\right)}=O\left(n^{-3}\right) .
\end{aligned}
$$

So with probability 1-O($\left.n^{-3}\right)$,

Either $X \cap Y \neq \varnothing$ and $\operatorname{din} t[v, \omega) \leq\lfloor d / 2\rfloor+[d / 2 \mid=d$

$$
\operatorname{Pr}\left(\nexists X: Y_{\text {edge }}\right) \leqslant(1-p)^{\left(\frac{n p}{2}\right)^{d}}
$$

$$
\begin{aligned}
\operatorname{Pr}\left(\nexists X: Y_{\operatorname{edg}}\right) & \leqslant(1-p)^{\left(\frac{n p}{2}\right)^{d}} \\
& \leqslant \exp \left\{-\left(\frac{n p}{2}\right)^{d} p\right\} \\
& \leqslant \exp \{-(2-0(1)) n p \ln n\} \\
& =o\left(n^{-3}\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
\left.P_{v}\left(\exists v_{0} w: \operatorname{dist} \mid v_{0} w\right)>d+1\right) & =O\left(n^{-1}\right) \\
& P^{d} n^{d-1}=\ln \left(n^{2} \mid c\right) .
\end{aligned}
$$

Now consider d or $d+1$ as decameter.
We use Jansons inequality.
For $v_{j} w \in[n]$ let
$A_{v_{s} w}=\left\{v_{j} w\right.$ are not jounced by a path
6 length $d\}$
For $x_{1}, x_{2}, \cdots, x_{d-1}$ let

$$
\begin{gathered}
\underbrace{B_{x_{1}, x_{2}, \cdots, x_{d-1}}}_{x}=\left\{\begin{array}{l}
\left\{v, x_{1}, x_{2}, \ldots, x_{d-1}, w\right) \text { is a } \\
\text { path is } \left.G_{n, p}\right\} .
\end{array} .\right.
\end{gathered}
$$

Let

$$
Z=\sum_{x=x_{1}, \ldots, x_{d-1}} Z_{x} \leftarrow\left\{\begin{array}{l}
1: \mathcal{B}_{x} \text { ocms } \\
0: \text { B }_{x} \text { ocmus }
\end{array}\right.
$$

$$
\begin{aligned}
\mu=E(Z) & =(n-2)(n-3) \cdots(n-d) p^{d} \\
& \approx \ln \left(n^{2} / c\right) .
\end{aligned}
$$

Let

$$
\Delta=\sum_{\substack{x=x_{1}, x_{2} \cdots x_{d-1} \\ y=y_{1}, y_{2}, \cdots y_{d-1}}} \operatorname{Pr}\left(\beta_{x} \cap \beta_{y}\right)
$$

v, x, w and v, y, w shoreanedye

$$
x \neq y
$$

$$
\leqslant \sum_{c=1}^{d-1} n^{2(d-1)-c} p^{2 d-c}
$$

\#edges in common

$$
\begin{aligned}
& \text { betweero xandy } \\
& =O\left(\sum_{c=1}^{2 d-2} n^{2(d-1)-c-\frac{d-1}{d}(2 d-c)}(\log n)^{\frac{2 d-c}{d}}\right) \\
& =\overparen{O}\left(n^{-c / d}\right) \\
& =O(1) .
\end{aligned}
$$

Applying $\operatorname{Pr}(Z=0) \leqslant e^{-\mu+\Delta}$ we get

$$
\operatorname{Pr}(Z=0) \leqslant(1+0(1)) \frac{c}{n^{2}} .
$$

On the other hand the FKG inequality umplie

$$
\begin{aligned}
\operatorname{Pr}(Z=0) & \geqslant\left(1-p^{d}\right)^{(n-2)(n-3) \cdots(n-d)} \\
& =(1-0(1)) d / n^{2}
\end{aligned}
$$

So

$$
\operatorname{Pr}\left(O_{v, \omega}\right)=\operatorname{Pr}(Z=0)=(1+o(1)) \mathrm{C} / \mathrm{n}^{2} .
$$

So

$$
E\left(\# v_{j} w: v_{v_{s} w^{0}} \circ c c u / s\right) \approx \frac{c}{2}
$$

and we should expect that

$$
P_{r}\left(\not v_{0} w: A_{v_{0} w} \text { occurs }\right) \approx e^{-c / 2} \text {. (1) }
$$

Indeed, if we choose $v_{1}, w_{1}, v_{2}, w_{2}, \ldots, v_{k}, w_{k}$, k constant, we fund that

$$
\begin{align*}
& \operatorname{Pr}\left(A_{v_{1}, w_{1}} \cap A_{v_{2}, \omega_{2}} \cap \ldots, A_{v_{k}, \omega_{k}}\right) \tag{2}\\
& \approx\left(\frac{c}{n^{2}}\right)^{k}
\end{align*}
$$

and (1) follows as in prevsiso arguments.

For (2) we define

$$
Z=Z_{1}+Z_{2}+\cdots+Z_{k}
$$

where
$Z_{i}=$ \# paths I length d from $v_{i}, 5 w_{i}$.
We reed D^{-}show that the corresponding $\Delta=O(1)$ and then we need to show that $1 \leqslant r<s \leqslant k$

$$
\Delta_{r_{1} s}=\sum_{\substack{x=x_{1}, x_{2} \cdots x_{d-1} \\ y=y_{1}, y_{2} \cdots y_{d-1}}} \operatorname{Pr}\left(\mathcal{B}_{x}^{r} \cap \mathcal{B}_{y}^{s}\right)=O(1)
$$

v_{r}, x, w_{1} and v_{s}, y, w_{s} share an expo

$$
x \neq y
$$

But

$$
\begin{aligned}
\Delta_{r, s} & \leqslant \sum_{c=1}^{d-1} n^{2(d-1)-c} p^{2 d-c} \\
& =0(1)
\end{aligned}
$$

as before.

Independence and Chromatic Number
Theorem
Suppose $0<p<1$ is constant and $b=\frac{1}{1-p}$. When whip

$$
\alpha\left(G_{n, p}\right) \approx 2 \log _{b} n
$$

$\alpha(G)=$ s, 20 of largest independent set in G.

Proof
Let $X_{k}=\#$ of ind epend ant sets $\sqrt[f]{ }$ size k.
(i) Let $k=\left[2 \log _{b} n\right]$

$$
\begin{aligned}
E\left(X_{k}\right) & =\binom{n}{10}(1-p)^{\left(\frac{k}{2}\right)} \\
& \leqslant\left(\frac{n e}{k(1-p)^{1 / 2}} \cdot(1-p)^{k / 2}\right)^{k} \\
& \leqslant\left(\frac{e}{k(1-p)^{1 / 2}}\right)^{k} \\
& =0(1)
\end{aligned}
$$

(ii)

Let now

$$
k=\left\lfloor 2 \log _{6} n-3 \log _{6} \log _{6} n\right\rfloor
$$

Let $\Delta^{*}=\sum_{\substack{i, j \\ S_{i} \sim S_{i}}} \operatorname{Pr}\left(S_{i} \wedge S_{j}\right.$ are independent in $\left.G_{n, p}\right)$
where $S_{6} S_{2}, \ldots S_{\binom{n}{k}}$ ans all ke-subsetion $[n]$ and $S_{i} \backsim S_{j}$ ifs $\left|S_{i} \cap S_{j}\right| \geqslant 2$.

$$
P_{c}\left(X_{k}=0\right) \leqslant \exp \left\{-\frac{E\left(X_{k}\right)^{2}}{\Delta^{*}}\right\}
$$

Jansen's
Inequality

$$
\begin{aligned}
& \frac{\Delta^{*}}{E\left(X_{k}\right)^{2}}=\frac{\binom{n}{k}(1-p)^{\binom{k}{2}} \sum_{j=2}^{k}\binom{n-k}{k-j}\binom{k}{j}(1-p)^{\binom{k}{2}-\binom{0}{2}}}{\left(\binom{n}{k}(1-p)\right.} \\
& =\sum_{j=2}^{k} \frac{\binom{n-k}{k-i}\binom{k}{j}}{\binom{n}{k}}(1-p)^{-\binom{j}{2}} \\
& \frac{u_{j}}{u_{2}} \leqslant\left[\frac{k}{n-2 k} \cdot \frac{k e}{j-2} \cdot(1-p)^{-\frac{j+1}{2}}\right]^{j-2} \quad j>2 \\
& <1
\end{aligned}
$$

So

$$
\frac{E\left(X_{k}\right)^{2}}{\Delta^{*}} \geqslant \frac{1}{k u_{2}} \geqslant \frac{n^{2}(1-\rho)}{k^{5}}
$$

So

$$
\operatorname{Pr}\left(X_{k}=0\right) \leqslant e^{\left.-\Omega\left(n^{2} / \log n\right)^{5}\right)},(*)
$$

Theovern

$$
X\left(G_{n, p}\right) \approx \frac{n}{2 \log _{6} n}
$$

Proof
(i)

$$
\begin{aligned}
X\left(G_{n, p}\right) & \geqslant \frac{n}{\alpha\left(G_{n, p}\right)} \\
& \approx \frac{n}{2 \log _{6} n} .
\end{aligned}
$$

(ii)

Let $\nu=\frac{n}{(\log n)^{2}}$. It foll ow from (x) on ps that
$\operatorname{Pr}(\exists S:|S| \geqslant 2$ and S \& independent set g size

$$
\begin{aligned}
& \left.\quad \geqslant k_{0}=2 \log _{b} n-3 \log _{6} \log _{6} n\right] \\
& \leqslant\binom{ n}{\nu} \exp \left\{-\Omega\left(\frac{\nu^{2}}{(\log n)^{5}}\right)\right\} \\
& =o(1) .
\end{aligned}
$$

So assume that every set of size $\geqslant V$ contains an independent set of size $\geqslant k_{0}$.

So we repeatedly
Choose an indepen dent set fig size k_{0}.
Grit a new colour.
Repeat until number of uncoloured vertices is $\leqslant V$.
Gre each remaining verless its own colour.
Number of colous used

$$
\leqslant \frac{n}{k_{0}}+\nu \approx \frac{n}{2 \log _{6} n}
$$

Performance of Greedy Algorithm
Algorithm (GREEDY)
k is current colour
A is current set of vertices that night get color k in current round.
U is current set f un oobured vertices.
begmi
$k \leftarrow 0 ; A \leftarrow[n] ; U \leftarrow[n] ;$
whils $U \neq \varnothing$;
$\xrightarrow{\rightarrow k} \leftarrow k+1$; $A \leftarrow U$; Start iternion
begm Chose $v \in A$ and giveit colour $k ;$

$$
U \leftharpoonup U \backslash\{v\}
$$

$A \leftarrow A \backslash(\{v\} \cup N(\omega))$
if $A \neq \varnothing$
otherwise,
end

Theorem
Whap GREEDY uses $\approx \frac{n}{\log _{b} n}$ colours (about livre as many as it "should").

Proof
At the start of an iteration che edges inside U are unexamined. Suppose that $|U| \geqslant \nu=\frac{n}{(\log n]^{2}}$. We show that $\approx \log _{b} n$ verlicos get colour b.

Each iteration chooses a maximal independent set from the remaining uncolored vertices.
$\operatorname{Pr}(\exists S:|S| \leqslant \underbrace{\log _{b} n-3 \log _{b} \log _{b} n}_{l e o}$ and S is maximal independent)

$$
\begin{aligned}
& \leqslant \sum_{s=1}^{k_{0}}\binom{n}{s}(1-p)^{\left(\frac{s}{2}\right)}\left(1-(1-p)^{s}\right)^{n-s} \\
& \leqslant \sum_{s=1}^{k_{0}}\left[\frac{n e}{s}(1-p)^{\frac{s-1}{2}}\right]^{s} e^{-(n-s)(1-p)^{s}} \\
& \leqslant \sum_{s=1}^{k_{0}}\left(n e^{1+(1-p)^{s}}(1-p)^{\frac{s-1}{2}}\right)^{s} e^{-n(1-p)^{s}}
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \sum_{s=1}^{k_{0}}\left(n e^{1+(1-p)^{s}}(1-p)^{\frac{s-1}{2}}\right)^{s} e^{-n(1-p)^{s}} \\
& \leqslant \sum_{s=1}^{k_{0}}\left(n e^{2}\right)^{s} e^{-n(1-p)^{s}} \\
& \leqslant k_{0}\left(n e^{2}\right)^{k_{0}} e^{-(\log n)^{3}} \\
& \leqslant e^{-\left(\log _{s} n\right)^{3} / 2}
\end{aligned}
$$

So the probability that we fail to use $\geqslant k_{0}$ colours while $|U| \geqslant 2$ is at most $n e^{-\left(\log _{b} \nu\right)^{3} / 2}$

$$
=\theta(1) .
$$

On the other hand let

$$
k_{1}=\log _{b} n+2 \log _{b} \log _{b} n
$$

Consider one round. Let $U_{0}=V$ and suppose $u_{1} u_{2}, \cdots$ get color k and $U_{L+1}=U_{i} \backslash\left(\left\{u_{i}\right\} \cup N\left(u_{i}\right)\right.$.

Then

$$
E\left(\left|U_{i+1}\right| \mid U_{i}\right) \leqslant\left|U_{i}\right|(1-p)
$$

and so

$$
E\left(\left|U_{k}\right|\right) \leqslant n(1-p)^{k} .
$$

So
$\operatorname{Pr}\left(k_{1}\right.$ vertices coloured in a round $) \leqslant \frac{1}{\left(\log _{g} n\right)^{2}}$
$\operatorname{Pr}(2 k$, verlicso coloured in a round $) \leqslant \frac{1}{n^{2}}$

So let

$$
S_{i}= \begin{cases}1 & \leqslant k_{1} \text { colour used in Round } i \\ 0 & \text { otherwise }\end{cases}
$$

We see that

$$
\operatorname{Pr}\left(\delta_{v}=1 \mid \delta_{1} \delta_{2} \ldots \delta_{2-1}\right)=1-O\left(1 /(\log n)^{2}\right)
$$

and deduce that why $O\left(n /\left(\log _{b} n\right)^{2}\right)$ round colour more than k_{1} verlics and no round cobous more them $2 k_{1}$ vertexes.

Concentration
Theorem

$$
\operatorname{Pr}\left(\left|X\left(G_{n, p}\right)-E\left(X\left(G_{n, p}\right)\right)\right| \geqslant t\right) \leqslant 2 e^{-\frac{t^{2}}{2 n}}
$$

Proof
Writs $X=z\left(Y_{1}, Y_{2}, \cdots, Y_{n}\right)$ where

$$
y_{j}=\left\{(i, j) \in E\left(G_{n, p}\right): i<j\right\} \text {. }
$$

Then

$$
\left|z\left(y_{1}, \cdots, y_{i}, \cdots, y_{n}\right)-z\left(y_{1}, \cdots, \hat{y}_{1}, \cdots, y_{n}\right)\right| \leqslant 1
$$

and the theorem follows from a martingale inequality.

Concentration from Martingales
A sequence of random variables $X_{0} X_{i} \ldots X_{n} \ldots$ where $X_{i}=X_{i}\left(A_{0}, A_{1}, \cdots, A_{i}\right)$ is called a martingale w.r.l. $A_{0}, A_{1}, \cdots, A_{n}, \ldots$

$$
\begin{aligned}
& \text { Nb: } \underbrace{E\left(X_{i+1} \mid A_{0} A_{i}, \cdots, A_{i}\right)}_{\nearrow \text { this io a random variable }}=X_{i} \\
& X_{i+1}(\omega)=\sum_{\hat{\omega}: A_{i+1}(\hat{\omega})=A_{j}(\hat{\omega})}(\hat{\omega}) \operatorname{Pr}(\hat{\omega}) .
\end{aligned}
$$

Theorem
Suppose that $X_{0}, X_{1}, \cdots, X_{n}$ is a martingale, w.r.t. $A_{0}, A_{1}, \cdots, A_{n}$ and

$$
a_{i} \leqslant X_{i+1}-X_{i} \leqslant b_{i} \quad, i=1,3, \cdots, n_{.}
$$

$$
\begin{aligned}
& \text { Then } \\
& \operatorname{Pr}\left(\left|X_{n}-X_{0}\right| \geqslant t\right) \leqslant 2 e^{-2 t^{2} / \sum_{i}\left(b_{i}-a_{i}\right)^{2}} .
\end{aligned}
$$

Proof We first cons oder $P_{r}\left(X_{n}-X_{0} \geq t\right)$

Fw $\lambda>0$. Shen

$$
\begin{aligned}
\operatorname{Pr}\left(X_{n}-\mu \geqslant t\right) & =\operatorname{Pr}\left(e^{\lambda\left(X_{n}-X_{0}-t\right)} \geq 1\right) \\
& \leqslant E\left(e^{\lambda\left(X_{n}-X_{0}-t\right)}\right) \\
& =e^{-\lambda t} E\left(e^{\lambda\left(X_{n}-X_{0}\right)}\right) \\
& =e^{-\lambda t} E\left(\exp \left\{\sum_{i=0}^{n} \lambda Y_{i}\right\}\right)
\end{aligned}
$$

where $Y_{i}=X_{i}-X_{i-1}$.

$$
=e^{-\lambda t} E\left(\prod_{i=0}^{n} e^{\lambda \nu_{i}}\right)
$$

We show that

$$
E\left(\prod_{i=0}^{n} e^{\lambda Y_{i}}\right) \leqslant e^{\frac{\lambda^{2}}{8}\left(b_{n}-a_{n}\right)^{2}} E\left(\prod_{i=0}^{n-1} e^{\lambda V_{i}}\right)(1)
$$

and then induction gives

$$
E\left(\prod_{i=0}^{n} e^{\lambda y_{i}}\right) \leqslant \exp \left\{\lambda^{2} \sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2} / 8\right\}
$$

and

$$
\operatorname{Pr}\left(X_{n}-X_{0} \geq t\right) \leqslant \exp \left\{-\lambda t+\lambda^{2} \sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2} / 8\right\}
$$

Now choose

$$
\lambda=\frac{4 t}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}
$$

Proof 9 (1).

$$
\begin{aligned}
& E\left(\prod_{i=0}^{n} e^{\lambda y_{i}}\right) \\
& =E\left(\prod_{i=0}^{n-1} e^{\lambda y_{i}} E\left(e^{\lambda y_{n}} \mid A_{0}, A_{1}, \cdots, A_{n-1}\right)\right)
\end{aligned}
$$

and we obtain (1) from

$$
\begin{equation*}
E\left(e^{\lambda y_{n}} \mid A_{0}, A_{1}, \cdots, A_{n-1}\right) \leqslant e^{\lambda^{2}\left(b_{n}-a_{n}\right)^{2} / 8} \tag{2}
\end{equation*}
$$

Proof of (2)
Y_{n} satisfies
(i) $E\left(y_{n}\right)=0$ and
(ii) $a_{n} \leqslant Y_{n} \leqslant b_{n}$
$\left(E\left(Y_{n}\right)=\xi\left(E_{A_{n}}\left(X_{n}-X_{n-1} \mid A_{0}, A_{0}, \cdots, A_{n-1}\right)\right)=0\right)$
Now if $a_{n} \leqslant Y_{n} \leqslant b_{n}$

$$
e^{\lambda y_{n}} \leqslant \frac{y_{n}-a_{n}}{b_{n}-a_{n}} e^{\lambda b_{n}}+\frac{b_{n}-y_{n}}{b_{n}-a_{n}} e^{\lambda a_{n}}
$$

and so

$$
E\left(e^{\lambda y_{n}}\right) \leqslant \frac{b_{n}}{b_{n}-a_{n}} e^{\lambda a_{n}}-\frac{a_{n}}{b_{n}-a_{n}} e^{\lambda b_{n}}
$$

$$
\begin{aligned}
E\left(e^{\lambda y_{n}}\right) & \leqslant \frac{b_{n}}{b_{n}-a_{n}} e^{\lambda a_{n}}-\frac{a_{n}}{b_{n}-a_{n}} e^{\lambda b_{n}} \\
& =e^{f(y)}
\end{aligned}
$$

where is $p=-a_{n} /\left(b_{n}-a_{n}\right), y=\left(b_{n}-a_{n}\right) \lambda$,

$$
\begin{aligned}
& f(y)=-p y+\ln \left(1-p+p e^{y}\right) \\
& f^{\prime \prime}(y)=\frac{p(1-p) e^{-y}}{\left(p+(1-p) e^{-y}\right)^{2}} \leqslant \frac{1}{4} \quad\left[\frac{A B}{(A+B)^{2}} \leqslant \frac{1}{4}\right]
\end{aligned}
$$

and so

$$
f(y) \leqslant \frac{y^{2}}{8}
$$

proving (2).

For the lower bound

$$
\begin{aligned}
\operatorname{Pr}\left(x_{n}-x_{0} \leqslant-t\right) & =\operatorname{Pr}\left(-x_{n}+x_{0} \geqslant t\right) \\
& \leqslant e^{-2 t^{2} / \sum_{i}\left(b_{i}-a_{i}\right)^{2}} .
\end{aligned}
$$

Sometimès our sequence is a submartingale or a supermartingale.

$$
E\left(X_{i+1} \mid \cdots\right) \leqslant X_{i} \quad E\left(X_{i+1} \mid \ldots\right) \geqslant X_{i}
$$

To bound Pr $\left(X_{n}-X_{0} \geqslant z\right)$ we used

$$
\begin{aligned}
e^{\lambda V_{n}} & \leqslant \frac{Y_{n}-a_{n}}{b_{n}-a_{n}} e^{\lambda b_{n}}+\frac{b_{n}-Y_{n}}{b_{n}-a_{n}} e^{\lambda a_{n}} \\
& =Y_{n}\left[\frac{e^{\lambda b_{n}}-e^{\lambda a_{n}}}{b_{n}-a_{n}}\right]+\frac{b_{n}}{b_{n}-a_{n}} e^{\lambda a_{n}}-\frac{a_{n}}{b_{n}-a_{n}} e^{\lambda b_{n}}
\end{aligned}
$$

$E\left(\nu_{n}\right) \leqslant 0$ for a supermartingale.
So owl estimate for $\operatorname{Pr}\left(X_{n}-X_{0} \geqslant 7\right)$ is valid for supermartingules. For $\operatorname{Pr}\left(X_{n}-X_{0} \leqslant-\xi\right)$, th is valid for submartingales.

We now prove a sumlar, but slightly different version:

Theorem
Suppose that $X_{0,}, X_{1}, \cdots, X_{n}$ is a martingale, w.r.t. $A_{0}, A_{1}, \cdots, A_{n}$ and
for $0 \leq a_{i} \leq 1, i=1,2, \cdots, n$,

$$
-a_{i} \leqslant X_{i+1}-X_{i} \leqslant 1-a_{i} \quad, i=1,2, \cdots, n .
$$

Let $a=\frac{1}{n}\left(a_{1}+\cdots+a_{n}\right)$ and $\bar{a}=1-a$. Then

$$
\operatorname{Pr}\left(\left|X_{n}-X_{0}\right| \geqslant n t\right) \leqslant\left(\left(\frac{a}{a+t}\right)^{a+t}\left(\frac{\bar{a}}{\bar{a}-t}\right)^{\bar{a}-t}\right)^{n}
$$

for $t \leqslant \bar{a}$.

We will first observe that

$$
E\left(e^{\lambda y_{n}}\right) \leqslant\left(1-a_{n}\right) e^{-\lambda a_{n}}+a_{n} e^{\lambda\left(1-a_{n}\right)}
$$

So that

$$
\begin{aligned}
P_{k}\left(X_{n}-X_{0} \geqslant n t\right) & \leqslant e^{-\lambda n t} \prod_{k=1}^{n}\left[\left(1-a_{k}\right) e^{-\lambda a_{k}}+a_{k} e^{\lambda\left(1-a_{k}\right)}\right] \\
& =e^{-\lambda n(a+t)} \prod_{k=1}^{n}\left(1-a_{k}+a_{k} e^{\lambda}\right) \\
& \leqslant e^{-\lambda n(a+t)}\left(1-a+a e^{\lambda}\right)^{n}
\end{aligned}
$$

Now put

$$
e^{\lambda}=\frac{(a+t)(1-a)}{a(1-a-t)}
$$

Corollary
Under the conditions above:
(i)

$$
\operatorname{Pr}\left(\left|X_{n}-X_{0}\right| \geqslant t\right) \leqslant 2 e^{-2 t^{2} / n}
$$

(ii)

$$
\begin{aligned}
\operatorname{Pr}\left(X_{n}-X_{0} \geqslant \epsilon a_{n}\right) & \leqslant\left((1+\epsilon)^{1+\epsilon} e^{-\epsilon}\right)^{a n} \\
& \leqslant e^{-\frac{\epsilon^{2} a_{n}}{2(1+\epsilon / 3)}}
\end{aligned}
$$

(iii) $\operatorname{Pr}\left(X_{n}-X_{0} \leqslant-\epsilon a_{n}\right) \leqslant e^{-\epsilon^{2} a n / 2}$
(1)

Let

$$
\begin{aligned}
& \text { Let } \\
& f(t)=\ln \left(\left(\frac{a}{a+t}\right)^{a+t}\left(\frac{\bar{a}}{a-t}\right)^{\bar{a}-t}\right) \\
& f^{\prime}(t)=\ln \left(\frac{a(\bar{a}-\vec{b})}{(a+t) \bar{a}}\right) \\
& f^{\prime \prime}(t)=-((a+t)(\bar{a}-t))^{-1} \leqslant-4 \\
& f(0)=f^{\prime}(0)=0 \text { and so } \\
& f(t) \leqslant-2 z^{2} .
\end{aligned}
$$

(ii)

$$
\operatorname{Pr}\left(X_{n}-X_{0} \geqslant \epsilon a n\right) \leqslant\left[e^{-\lambda a(1+\epsilon)}\left(1-a+a e^{\lambda}\right)\right]^{n}
$$

Now let $e^{\lambda}=1+\epsilon$

$$
\begin{aligned}
& \leqslant\left[(1+\epsilon)^{-a(1+\epsilon)}(1+a \epsilon)\right]^{n} \\
& \leqslant\left[(1+\epsilon)^{-(1+\epsilon)} e^{\epsilon}\right]^{a n}
\end{aligned}
$$

and now use

$$
(1+\epsilon) \ln (1+\epsilon)-\epsilon \geqslant \frac{3 \epsilon^{2}}{6+2 \epsilon}
$$

lo get second inequality in (ii).
(iii)

$$
\begin{aligned}
& f(t)=\ln \left(\left(\frac{a}{a+t}\right)^{a+t}\left(\frac{\bar{a}}{\bar{a}-t}\right)^{\bar{a}-t}\right) \\
& h(x)=f(-a x) \text { for } 0 \leqslant x \leqslant 1 . \\
& h^{\prime \prime}(x)=a^{2} f^{\prime \prime}(-a x)=-\frac{a}{(1-x)(\bar{a}+\infty a)} \leqslant-a
\end{aligned}
$$

and so

$$
f(-a x) \leqslant-a x^{2} / 2 .
$$

Dob Martingale

$$
\Omega=\left\{\left(A_{1}, A_{2}, \cdots, A_{n}\right)\right\}
$$

Let $Z=Z\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ be a random variable with $E(Z)=0$.
Def uni rand on variable, $X_{0}=0$ and

$$
X_{i}=E\left(Z \mid A_{1}, A_{2}, \ldots, A_{i}\right), \quad 1 \leqslant i \leqslant n
$$

Clam
$X_{0}, X_{1}, \ldots, X_{n}$ is a martingale w.r.t.
$A_{0}, A_{1}, \ldots, A_{n}$ with $X_{0}=E(Z)=0$ and $X_{n}=Z$.

Proot

$$
\begin{aligned}
& E\left(X_{i+1} \mid A_{0}, A_{1}, \ldots, A_{i}\right) \\
& \left.=E_{\substack{0 \\
A_{i} i=1}}^{E}\left(E\left(Z \mid A_{0}, A_{1}, \cdots, A_{i+1}\right) \mid A_{0}, A_{1}, \cdots, A_{i}\right)\right) \\
& =X_{i} .
\end{aligned}
$$

Case 1

$$
Z=Z_{1}+Z_{2}+\cdots+Z_{n}
$$

where $Z_{1}, Z_{2}, \ldots, Z_{n}$ are independent.

$$
\begin{aligned}
& \text { Put } X_{i}=\sum_{j=1}^{i}\left(Z_{j}-E\left(Z_{j}\right)\right) \\
& X_{i+1}=X_{i}+Z_{i+1}-E\left(Z_{i+1}\right) \\
& \left.E\left(X_{i+1}\right) X_{i} X_{i-1}, \cdots X_{1}\right)=X_{i}
\end{aligned}
$$

and all the derived inequalities apply.

In particular if $0 \leq Z_{i} \leq 1$ and $E\left(Z_{i}\right)=a_{i}$ then we get bound on

$$
\operatorname{Pr}\left(\left|Z-\sum a_{i}\right| \geq t\right)
$$

by considering

$$
\hat{Z}_{i}=Z_{i}-a_{i} \in\left[-a_{i}, 1-a_{i}\right]
$$

Case 2
$Z=Z\left(A_{1}, \cdots, A_{n}\right)$ and A_{0}, A_{1}, A_{n} are independent.
$\frac{\text { Theorem }}{\text { if }}$

$$
a_{i} \leqslant z\left(A_{1}, \cdots, A_{i}, \cdots A_{n}\right)-Z\left(A_{1}, \cdots, \hat{A}_{i}, \cdots, A_{n}\right) \leqslant b_{i}
$$

for all $i, A_{1}, A_{2}, \cdots, A_{n}, \hat{A}_{i}$ then

$$
\operatorname{Pr}(|Z-E(Z)| \geqslant t) \leqslant 2 e^{\left.-2 t^{2}\right) \sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}
$$

We can arsume w.l. o.g. that $E(Z)=0$. Now dof me $X_{i}=E\left(Z \mid A_{i}, \cdots, A_{i}\right)$ do before

$$
\begin{aligned}
& X_{i+1}-X_{i}= \\
& \in\left[\hat{A}_{i+1}, \cdots \hat{A}_{n}, b_{i}\right] \\
& \left.S \circ a_{i} \leqslant X_{i+1}-X_{i} \leqslant \hat{A}_{i w}\right) \times \hat{A}_{i} .
\end{aligned}
$$

$\ln G_{n, p}$ we com tuke
(i) $A_{1}, A_{2}, \cdots, A_{\binom{n}{2}}$ as undependent $0-1$ random variubles dofining G.
(ii) $A_{i}=\left\{(0, i): v \leqslant i\right.$ and $\left.(0, i) \in E\left(G_{n}, p\right)\right\}$

Case 3
For $G_{n, m}$ we need a slight modyucalion.
Suppose

$$
z=Z\left(u_{1}, u_{20}, \cdots, u_{m}\right)
$$

where $u_{1}, u_{2}, \ldots, u_{N}$ is a rand on permutation g $\{12, \cdots, N\}$.
Suppose that oneinterchanse,

$$
a_{i} \leqslant z\left(u_{1}, \ldots u_{i}, \ldots, u_{m}\right)-z\left(u_{1}, \cdots, \hat{u}_{0}, \ldots, u_{m}\right) \leqslant b_{i}
$$

then

$$
\operatorname{Pr}(|Z-E(Z)| \geqslant t) ? 2 e^{\left.-t^{2}\right) \sum_{i=1}^{M}\left(b_{i}-a_{i}\right)^{2}}
$$

Now definis $X_{i}=E\left(Z \mid u_{1}, u_{2}, \ldots, u_{i}\right)$

$$
\begin{aligned}
& x_{i+1}-X_{i}=
\end{aligned}
$$

Small Subgraphs
Let H be a fixed graph.
We use the notation n_{H}, e_{H} for the number $o f$ verities and edo $f a$.
Also let

$$
\rho_{H}=\frac{e_{H}}{v_{H}} .
$$

Lemma
Let X_{H} denote the number f copies f H in $G_{n, p}$.

$$
E\left(X_{H}\right)=\binom{n}{v_{H}} \frac{v_{H}!}{\text { ant }(H)} p^{e_{H}}
$$

where
$\operatorname{aut}(H)$ is the number f aulomonphusmo of H.

Proof
K_{n} contains $\binom{n}{v_{H}} a_{H}$ distinct copies OH, where a_{H} is the number of copies of
H in $K_{v_{H}}$. Thus

$$
E\left(X_{H}\right)=\binom{n}{v_{H}} a_{H} p^{e_{H}}
$$

and all we need to show is that

$$
a_{H} \times \operatorname{aut}(H)=v_{H}!
$$

Each permutation σ of $\left[v_{H}\right]$ defines a unique copy of H as follows:
A copes of H corresponds to a set of C_{H} edges o $K_{v_{H}}$. The copy H_{σ} corresponding to σ hos edge $\left\{\left(x_{\sigma(i)}, y_{\sigma(i)}\right): 1 \leqslant i \leqslant e_{H}\right\}$ where $\left\{\left(x_{i}, y_{i}\right): 1 \leqslant i \leqslant e_{H}\right\}$ is some fused copy of H in $K_{v_{H}}$.
But $H_{\sigma}=H_{p \sigma}$ iff $\forall i \nexists j$ such that $\left(x_{T \sigma(i)}, y_{r \sigma(i)}\right)=\left(\alpha_{\sigma(j)}, y_{\sigma(j)}\right)$ i.e. Tim an ant ormuphin of H.

Theorem
Suppose $p=0\left(n^{-1 / \rho_{H}}\right)$. Then why, $G_{n, p}$ contains no copies of H.
Proof
Suppose that $p=\frac{1}{w} n^{-1} / \rho_{H}$ where $\omega(n) \rightarrow \infty$. Then

$$
\begin{aligned}
E\left(X_{H}\right) & \leq n^{v_{H}} \omega^{-e_{H}} n^{-e_{H} / \rho_{H}} \\
& =\omega^{-e_{H}} \\
& \rightarrow 0 .
\end{aligned}
$$

Now counter the cave where $n^{1 / p_{H}} p \rightarrow \infty$.
Suppose $p=\omega n^{-1 / \rho_{M}}$ where $\omega \rightarrow \infty$.
Then for some constant $C_{H}>0$

$$
\begin{aligned}
E\left(X_{H}\right) & \geqslant c_{H} n^{v_{H}} \omega^{e_{H}} n^{-e_{H} / \rho_{H}} \\
& =c_{H} \omega^{e_{H}} \\
& \rightarrow \infty .
\end{aligned}
$$

This is not enough to show that whee $G_{n, p}$ Cont aims a copy of.

Suppose

$$
\begin{aligned}
& n_{H}=6 \\
& e_{H}=8
\end{aligned}
$$

Let $p=n^{.5 / 7}$. Then $1 / p_{H}>\frac{5}{7}$ and so

$$
E\left(X_{H}\right)=c_{H} n^{6-8 \times 517} \longrightarrow \infty
$$

On the other hand, if $\hat{H}=K_{4}$ then

$$
E\left(X_{\hat{H}}\right) \leqslant n^{4-6 \times 5 / 7} \rightarrow 0
$$

and so why there are no copies $\hat{H} \hat{H}$ and heme no copies of H.

Theorem
Let $\rho_{H}^{*}=\max _{H^{\prime} \leq H} \rho_{H^{\prime}}$.

$$
v_{H^{\prime}}>0
$$

(a) If $n^{-1 / p_{H}^{*}} p \rightarrow 0$ then whe $X_{H}=0$.
(b) If $n^{-1 / \rho_{H}^{*}} p \longrightarrow \infty$
then whp $X_{H}>0$.

Proof
(a) follows from p^{s} because in this case there is why, an $H^{\prime} \subseteq \mathcal{H}$ such that $X_{H^{\prime}}=0$.
(b) We use the second moment method:

$$
\operatorname{Pr}\left(X_{H}>0\right) \geqslant \frac{E\left(X_{H}\right)^{2}}{E\left(X_{H}^{2}\right)}
$$

$$
\begin{aligned}
& E\left(X_{H}^{2}\right)=\sum_{i, j=1}^{N_{H}} \rho_{r}\left(H_{i} \wedge H_{j}\right) \\
& H_{1}, H_{2}, \ldots \\
& \text { are all copious } \\
& \text { of } \mathrm{H} \text { in } \mathrm{K}_{\mathrm{n}} \text {. } \\
& =E\left(X_{H}\right) \sum_{j=1}^{N_{H}} P_{j}\left(H_{j} \mid H_{j}\right) \\
& \text { (ब) } \mathrm{H}
\end{aligned}
$$

$$
\begin{aligned}
& \text { So constant } \begin{array}{c}
H^{\prime \prime} \neq 1+ \\
e_{H^{\prime}}>0
\end{array} \\
& \frac{E\left(X_{H}^{2}\right)}{E\left(X_{H}\right)^{2}}-1 \leqslant c_{H} \sum_{\substack{H^{\prime} \leq H \\
H^{\prime} \neq H \\
e_{H^{\prime}}>0}} n^{-v_{H^{\prime}}} P^{-e_{H^{\prime}}}
\end{aligned}
$$

$$
\begin{aligned}
\sum_{\substack{H^{\prime} \leq H \\
H^{\prime} \neq H}}^{\text {But }} n^{-v_{H^{\prime}}} p^{-e_{H^{\prime}}} & =\sum_{\substack{H^{\prime} \leq H \\
H^{\prime}+H \\
e_{H^{\prime}}>0}} n^{e_{H^{\prime}}\left(\frac{1}{\rho_{H}^{*}}-\frac{1}{\rho_{H^{\prime}}}\right)_{\omega^{-}}-e_{H^{\prime}}} \quad \rho=\omega n^{-1 / \rho_{H}^{\psi}} \\
& =O\left(w^{-1}\right) .
\end{aligned}
$$

Thus

$$
\frac{E\left(X_{H}^{2}\right)}{E\left(X_{H}\right)^{2}}=1+0(1)
$$

Every mono tons property has a threshold
Let G be a monotone incerecoung property σ graph. Assume $\bar{K}_{n} \notin G$ and $K_{n} \in \mathcal{G}$.
Given $0<\epsilon<1$ we defines $p(\epsilon)$ by

$$
\operatorname{Pr}\left(G_{n, p(\epsilon)} \in G\right)=\epsilon
$$

$P(\epsilon)$ exist because $\operatorname{Pr}\left(G_{n, p} \in G\right)$ in a polynomial in p that uncricases from $O(p=0)$ b $1(p=1)$.

Theorem in
$p^{*}=p\left(\frac{1}{2}\right)$ is a threshold for G.
Proof
Suppose $G_{1} G_{2_{0}} \cdots, G_{k}$ are independent
cop is of $G_{n, p}$. Then "sam edistribution a, "
(i) $G_{1} \cup G_{2} \cup \ldots \vee G_{k} \approx G_{n, \underbrace{1-(1-p)^{k}}_{\text {kp }}} \leq G_{n, k p}$.
(ii) With tho coupling

$$
G_{n, k p} \notin G \Rightarrow G_{1,} G_{2}, \cdots, G_{k} \notin G
$$

So

$$
\operatorname{Pr}\left(G_{n, k_{p}} \notin S\right) \leqslant P_{r}\left(G_{n, p} \notin G\right)^{k}
$$

(i) Suppose now $p=p^{*}$ and $k=\omega \rightarrow \infty$

$$
P P\left(G_{n}, w_{p}^{*} \notin G\right) \leqslant 2^{-\omega}=o(1) .
$$

(ii) Now suppose $p=p^{*} / \omega$.

$$
\frac{1}{2}=\operatorname{Pr}\left(G_{n, p^{*}} \notin\right) \leqslant \operatorname{Pr}\left(G_{n, p^{*} / w} \notin G\right)^{\omega}
$$

So

$$
\left.\operatorname{Pr}\left(G_{n, p^{*} / \omega} \notin G\right) \geqslant 2^{-1 / \omega}=1-o l 1\right) .
$$

Expected Length of Minimum Spanning Tree Let $X_{e}, e \in E\left(K_{n}\right)$ be a collection of independent uniform $[0,1]$ random variables.
Consider $X_{e} t_{0}$ be tho length of edge e.
Let L_{n} be the length of the minimum spanning tree of K_{n} o
Theorem

$$
\lim _{n \rightarrow \infty} E\left(L_{n}\right)=\zeta(3)=\sum_{k=1}^{\infty} \frac{1}{k^{3}}=1,202 \cdots
$$

Proof
Suppose that $T=T\left(\left\{X_{e}\right\}\right)$ is the muxumem spanningtive, unique with probability one.

$$
\begin{aligned}
L_{n} & =\sum_{e \in T} X_{e} \\
& =\sum_{e \in T} \int_{p=0}^{1} 1_{p \leqslant X_{e}} d p \quad a=\int_{0}^{1} 1_{x_{e}} d x \\
& =\int_{p=0}^{1} \sum_{e \in T} 1_{p \leqslant X_{e}} d p
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{p=0}^{1} \sum_{e \in \tau} 1_{p \leqslant x_{e}} d p \\
& =\int_{p=0}^{1}\left|\left\{e \in T: X_{e} \geq p\right\}\right| d p \\
& =\int_{p=0}^{1}\left(k\left(G_{p}\right)-1\right) d p . \\
& K(G)=\# \text { componento } \\
& \text { of } G \text {. } \\
& G_{p}=\text { groph induced } \\
& \text { by lolge } e \\
& \text { with } X_{e} \leqslant p \\
& E\left(L_{n}\right)=\int_{p=0}^{1}\left(E\left(k\left(G_{p}\right)-1\right) d p \quad \equiv G_{n, p}\right.
\end{aligned}
$$

So we estimate $E\left(k\left(G_{p}\right)\right)$.
(i)

$$
\begin{aligned}
& p \geqslant \frac{6 \log n}{n} \Rightarrow E\left(k\left(G_{p}\right)\right)=1+o(1) \\
& E\left(r\left(G_{p}\right)\right) \leqslant 1+n \operatorname{Pr}\left(G_{p} \text { in not connected }\right) \\
& \leqslant 1+n \sum_{k=1}^{\frac{1}{2} n}\binom{n}{k} k^{k \cdot 2} p^{k-1}(1-p)^{k(n-k)} \\
& \leqslant 1+n^{2} \sum_{k=1}^{\frac{1}{2} n}\left(n e \cdot \frac{6 \log n}{n} \cdot \frac{1}{n^{3}}\right)^{k} \\
&= 1+o(1) .
\end{aligned}
$$

$$
\begin{aligned}
& E\left(L_{n}\right)=\int_{p=0}^{\frac{G \log m}{n}} E\left(k\left(G_{p}\right)-1\right) d p+o(1) \\
& =\int_{p=0}^{6 \log _{p}} E\left(k\left(G_{p}\right)\right) d p+o(1) . \\
& \text { \#componention } \\
& \text { (12e } \geqslant(\log n)^{2} \text {. } \\
& \text { Write } \\
& k\left(G_{p}\right)=\sum_{k=1}^{(\log n)^{2}} A_{k}+\sum_{k=1}^{(\log n)^{2}} A_{k} \\
& +C^{k} \\
& \text { \#g } k \text {-componento } \\
& \text { that are tree } \\
& \text { \#f } k \text {-componat } \\
& \text { that ons not tries }
\end{aligned}
$$

$$
\begin{aligned}
E\left(A_{k}\right) & =\binom{n}{k} k^{k-2} p^{k-1}(1-p)^{k(n-k)+\binom{k}{2}-k+1} \\
& =(1+0(1)) n^{k} \cdot \frac{k^{k-2}}{k!} p^{k-1}(1-p)^{k n} \\
E\left(R_{k}\right) & \leqslant\binom{ n}{k} k^{k-2}\left(\frac{k}{2}\right) p^{k}(1-p)^{k(n-k)} \\
& \leqslant(1+0(1))\left(n p e^{1-n p)^{k}}\right. \\
& \leqslant(1+0(1)) \\
C & \leqslant \frac{n}{(\log n)^{2}} .
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\int_{p=0}^{\frac{6 \log \theta}{\infty}} \sum_{k=1}^{(\operatorname{lom} 0)^{2}} E\left(B_{k}\right) d p & \leqslant \frac{6 \log n}{n} \cdot(\log n)^{2} \cdot(1+0(1)) \\
& =0(1) .
\end{aligned} \\
& \int_{p=0}^{\frac{6 \log n}{n}} C d p \leqslant \frac{6 \log n}{n} \cdot \frac{n}{(1 \log n)^{2}}=o(1) \\
& E\left(L_{n}\right)= \\
& o(1)+(1+0(1)) \sum_{k=1}^{(\log n)^{2}} n^{k} \cdot \frac{k^{k-2}}{k!} \int_{p=0}^{\frac{6 \log n}{n}} p^{k-1}(1-p)^{k n} d p
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{k=1}^{(\log n)^{2}} n^{k} \cdot \frac{k^{k-2}}{k!} \int_{p=\frac{6 \log n}{n}}^{1} p^{k-1}(1-p)^{k n} d p \\
& \leqslant \sum_{k=1}^{(\log n)^{2}} n^{k} e^{k} \int_{p=\frac{6 \log p}{n}}^{1} n^{-6 k} d p=o(1) . \\
& E\left(L_{n}\right)= \\
& o(1)+(1+o(1)) \sum_{k=1}^{(\log n)^{2}} n^{k} \cdot \frac{k^{k-2}}{k!} \int_{p=0}^{1} p^{k-1}(1-p)^{k n} d p
\end{aligned}
$$

$$
\begin{aligned}
& =0(1)+(1+0(1)) \sum_{k=1}^{(\log n)^{2}} n^{k} \cdot \frac{k^{k-2}}{k!} \frac{(k-1)!(k(n-k))!}{(k(n-k+1))!} \\
& =0(1)+(1+0(1)) \sum_{k=1}^{(\log n)^{2}} n^{k} k^{k \cdot 3} \prod_{i=1}^{k} \frac{1}{k(n-k)+i} \\
& =0(1)+(1+0(1)) \sum_{k=1}^{(\log n)^{2}} \frac{1}{k^{3}} \\
& =0(1)+(1+0(1)) \sum_{k=1}^{\infty} \frac{1}{k^{3}} .
\end{aligned}
$$

Random Graphs with a Fused Degree Sequence.
Let $\underline{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$
where $d_{1}+d_{2}+\cdots+d_{n}=2 m$ is even.
Let $G_{n, \text { d }}=\{$ simple graphs with vertex set $[n]$
such shut degree $\left.d(i)=d_{i}, \quad i \in[n]\right\}$
$G_{n_{0}}$ is chosen randomly from $G_{n_{0} d}$.
We assume that $d_{1}, d_{2}, \cdots, d_{n}>1$ and that $\sum d_{i}\left(d_{l}-1\right)=\Omega(n)$.

Configuration model
Let $W_{i}, W_{2}, \cdots, W_{n}$ be a partition of W, where $\left|W_{i}\right|=d_{i}$ for $15 i \leqslant n$.
For $x \in W$ define $\phi(x)$ by $x \in W_{\phi(x)}$.
Let F be a partition of W into pars (a configuration).
Gunew F we define tho (multi) graph $\gamma(F)$

$$
\gamma(F)=\left([n], \quad\left\{(\phi(x), \phi(y)):\left(x_{y} y\right) \in F\right\}\right.
$$

Lemma

$$
\begin{aligned}
& \text { If } G \in G_{n_{0} \underline{d}} \text {, then } \\
& \left|\gamma^{-1}(G)\right|=\prod_{i=1}^{n} d_{l}!
\end{aligned}
$$

Prof
Arrange the edges of G in lexi cographis order. Now go through the sequence of $2 m$ symbols, replacing lark i by a new member of W_{i}. We get all F for which $\gamma(F)=G$.

Corollary
If F^{-}is chosen uniformly at random from Ω (the set f configuration) and $G_{1}, G_{2} \in G_{n, \underline{d}}$ then

$$
\operatorname{Pr}\left(\gamma(F)=G_{1}\right)=\operatorname{Pr}\left(\gamma(F)=G_{2}\right) .
$$

so we con choose a randion f and accept $\gamma(F)$ iff there are no loops or miltiplo edges.

The nest question is: What is

$$
\operatorname{Pr}(\gamma \mid F) \text { is simple) }
$$

Semi

$$
\begin{equation*}
|\Omega|=\frac{(2 m)!}{m!2^{m}} \tag{i}
\end{equation*}
$$

Take d_{i} "distinct" copies gi for $i \because 0 ?_{0}, \cdots, n$ and tote a permutation of there $2 m$ symbols. Read off F, puss by pace.
Each durant f anesa in $m!2^{m}$ ways
(i) $(i i)$ will tell us low big in $G_{n, d}$.

Alternative Construction of F
Begin

$$
\begin{aligned}
& U=W ; F=\varnothing ; \\
& \text { For } i=1,2, \cdot, m \text { de }
\end{aligned}
$$

Begin
Choose x ar butrarily from U;
Choose y randomly from $U \backslash\{n\} ;$

$$
\begin{aligned}
& F:=F v\{(x, y)\} ; \\
& U:=U \backslash\{x, y\}
\end{aligned}
$$

End

$$
\begin{aligned}
& \text { Each } F \text { arises with probubility } \frac{1}{(2 m+1)(2 m-3) \ldots \cdot 1} \\
& =\left.1 \Omega\right|^{-1} \text {. }
\end{aligned}
$$

Let $\Delta=\max \left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$.
 from Ω.
Lemma
Assume that $\Delta \leqslant n^{1 / 6}$ and $F \stackrel{\text { rem }}{\epsilon} \Omega$. Then whop
(a) $\gamma(F)$ has no double loges
(b) $\gamma(F)$ bros $\leqslant \Delta$ log loops
(c) $\gamma(F)$ has no light edges.
(d) $\gamma(F)$ has no sodjacent double edges.
(e) $\gamma(F)$ has $\leqslant \Delta^{2}$ logan double edges.

Proof
(a) $\operatorname{Pr}(F$ contains a double loop)

$$
\begin{aligned}
& \leqslant \sum_{i=1}^{n}\binom{d_{i}}{4} \cdot 3 \cdot\left(\frac{1}{2 m-3}\right)^{2} \\
& \leqslant n \Delta^{4} m^{-2} \\
& =0(1),
\end{aligned}
$$

(b)

Let $k_{1}=\Delta \log n$.

$$
\begin{aligned}
& \operatorname{Pr}\left(F \text { has } \geqslant k_{1} \text { loops }\right) \leqslant o(1)+ \\
& \sum_{\substack{x_{1}+\cdots+\cdots x_{n}=k_{1} \\
x_{2}=0,1}} \prod_{i=1}^{n}\binom{d_{i}}{2}^{x_{i}}\left(\frac{1}{2 m-2 k_{1}}\right)^{k_{1}} \\
& \leqslant 0(1)+\left(\frac{\Delta}{2 m}\right)^{k_{1}} \sum_{x_{1}+x_{2}+\cdots+x_{n}+k_{1}}^{n} d_{i=1}^{n} d_{i}^{x_{i}} \\
& \leqslant 0(1)+\left(\frac{\Delta}{2 m}\right)^{k_{1}} \frac{\left(d_{1}+\cdots+d_{n}\right)^{k_{1}}}{k_{1}!} \leqslant(l)+\left(\frac{\Delta e}{k_{1}}\right)^{k_{1}}=0(1) .
\end{aligned}
$$

(c)

Pe(F contauns a ligpls edge)

$$
\begin{aligned}
& \leqslant \sum_{1 \leqslant i<i s n}\binom{d_{i}}{3}\binom{d_{j}}{3} \cdot 6 \cdot\left(\frac{1}{2 m-5}\right)^{3} \\
& \leqslant \Delta^{4}\left(\sum d_{i}\right)^{2} n^{-3} \\
& =o(1) .
\end{aligned}
$$

(d)

Pr (F contains 2 adjacent double edob) \leqslant

$$
\begin{aligned}
& \sum_{l=1}^{n}\binom{d_{i}}{2}^{2}\left(\frac{\Delta}{2 m-8}\right)^{2} \quad= \\
\leqslant & \frac{\Delta^{3}}{(2 m-8)^{2}} \sum_{i=1}^{n} d_{i} \\
= & O(1)_{0}
\end{aligned}
$$

(e)

Let $k_{2}=\Delta^{2} \log n$.
$\operatorname{Pr}\left(F\right.$ has $\geqslant k_{2}$ double edges)

$$
\begin{aligned}
& o(1)+\sum_{o c_{1}+\ldots \cdot x_{n}=k_{2}} \prod_{i=1}^{n}\left[\binom{d_{i}}{2} \frac{\Delta}{2 m-4 k_{2}}\right]^{x_{i}} \\
& 0(1)+\left(\frac{\Delta^{2}}{m}\right)^{k_{2}} \sum_{x_{1}+\cdots+x_{n}=k_{2}} \prod_{i=1}^{n} d_{1}^{x_{i}} \\
& \leqslant 0(1)+\left(\frac{\Delta^{3}}{m}\right)^{x_{2}} \cdot \frac{(2 m)^{k_{i}}=0,1}{k_{2}!} \\
& =O(1) .
\end{aligned}
$$

Switching
Let now
$\Omega_{i, j}=\{F \in \Omega: F$ has i loops, i double edge and no double lops - lippe edge and no vertex incident with 2 double edges $\}$

Lemma (swlitump) Let $M_{1}=2 m$ and $M_{2}=\sum_{i} d_{i}(d,-1)$ For $i \leqslant k$, and ' $j \leqslant k_{2}$

$$
\begin{aligned}
& \frac{\left|\Omega_{i-1, j}\right|}{1 \Omega_{i, 0} \mid}=\frac{2 i M_{1}}{M_{2}}\left(1+\tilde{O}\left(\frac{\Delta^{3}}{n}\right)\right) \\
& \frac{\left|\Omega_{0, j-1}\right|}{\left|\Omega_{0, j}\right|}=\frac{4 j M_{1}^{2}}{M_{2}^{2}}\left(1+\vec{O}\left(\frac{\Delta^{3}}{n}\right)\right)
\end{aligned}
$$

Corollary

$$
\frac{\left|\Omega_{000}\right|}{|\Omega|}=(120(1)) e^{-\lambda(\lambda+1)}
$$

where $\lambda=\frac{M_{2}}{2 M_{1}}$.
Thus

$$
\text { Thus }\left|g_{n, \underline{d}}\right| \approx e^{-\lambda(\lambda+1)} \cdot \frac{1}{\prod_{i=1}^{m} d_{i}!} \cdot \frac{(2 m)!}{m!2^{m}}
$$

Proof
It follows from the swrdchung lemma that $i \leq k_{1}$ and $j \leq k_{2}$ umplioo

$$
\frac{\left|\Omega_{i, j}\right|}{\left|\Omega_{0,0}\right|}=\left(1+0(11) \frac{\lambda^{i+2 j}}{i!j!}\right.
$$

Therefore

$$
\begin{aligned}
& \text { Therefore } \\
&(1-0(1))|\Omega|=(1+0(1))\left|\Omega_{0,0}\right| \sum_{i=0}^{\lambda_{1}} \sum_{j=0}^{\lambda_{2}} \frac{\lambda^{i+2 j}}{i!j!} \\
&=(1+0(1))\left|\Omega_{0,0}\right| e^{\lambda(\lambda+1)}
\end{aligned}
$$

Proof of surlchung lemmes

In general this operation takes a member F of $\Omega_{i, j}$ to a membel F^{\prime} b $\Omega_{i-1, j}$, unless it creatios new loopsor mullyple edgron

Now

$$
\begin{aligned}
& \sum_{F \in \Omega_{i, j}} d_{L}(F)=\sum_{F^{\prime} \in \Omega_{L-1, j}} d_{B}\left(F^{\prime}\right) \\
& \leqslant \quad i M_{1}^{2}\left|\Omega_{i, 0}\right| \\
& \leqslant \frac{1}{2} M_{1} M_{2}\left|\Omega_{i-1, j}\right| \\
& \geqslant i M_{1}^{2} \mid \Omega_{i, j}{ }^{1} \\
& \geqslant \frac{1}{2} M_{1} M_{2}\left|\Omega_{i-1, j}\right| \\
& *\left(1-o b\left(i s^{2} / m_{1}\right)\right) \\
& \times\left(1-0\left(\frac{\Delta B^{3}}{m}+\frac{\Delta^{3}}{m_{2}}\right)\right)
\end{aligned}
$$

So

$$
\frac{\left|\Omega_{i-1, j}\right|}{\left|\Omega_{i, j}\right|}=\frac{2 i M_{1}}{M_{2}}\left(1+\tilde{0}\left(\frac{\Delta^{3}}{n}\right)\right)
$$

In general this operation takes a member f - $\Omega_{i, j}$ to a member $F^{\prime} f \Omega_{i, j-1}$ unless it creation new loopsor mullyple edglon

Now

$$
\begin{array}{ll}
\sum_{F \in \Omega_{0, j}^{\prime}} d_{L}(F)= & \sum_{F^{\prime} \in \Omega \Omega_{0, j-1}} d_{B}\left(F^{\prime}\right) \\
\leqslant j M_{1}^{2}\left|\Omega_{0, j}\right| & \left.\leqslant \frac{1}{4} M_{2}^{2} \backslash \Omega_{0, j-1} \right\rvert\, \\
\left.\geqslant j m_{1}^{2} \mid \Omega_{0, j}\right) & \leqslant \frac{1 m_{2}^{2} \mid \Omega_{0, j-1)}}{*\left(1-o\left(j \Delta^{2} \mid m_{1}\right)\right)}
\end{array}
$$

So

$$
\frac{\left|\Omega_{0, j-1}\right|}{\left|\Omega_{0, j}\right|}=\frac{4 j M_{1}^{2}}{M_{2}^{2}}\left(1+\widetilde{0}\left(\frac{\Delta^{3}}{n}\right)\right)
$$

$\operatorname{sol} f F \underset{\in}{\operatorname{ran}} \Omega$,

$$
P_{1}(\gamma(F) \text { in sumplo }) \approx e^{-\lambda(\lambda+1)}
$$

where

$$
\lambda=\frac{\sum d_{i}\left(\alpha_{v}-1\right)}{2 \sum d_{i}},
$$

So for any imulti) graph property T^{0}

$$
\operatorname{Pr}\left(G_{n, d} \in P\right) \leqslant(1+\sigma(1)) e^{\lambda(\lambda+1)} \operatorname{Pr}(\gamma(F) \in P)
$$

assuruming $\Delta s n^{1 / 6}$ [Not heot Rnown.]

$$
\operatorname{Pr}\left(G_{n}, d \in P\right) \leqslant(1+\sigma(i)) e^{\lambda(\lambda+1)} P_{r}(\gamma(F) \in D)
$$

This'is particularty usful 'f $\lambda=O$ (1) e.g. random r-regulal grapls where σ is a comotant. Here $\lambda=\frac{r-1}{2}$.

Theorem
Let $G_{n, r}$ denote a randan r-regular graph, $r \geqslant 3$ constant, verless set $[n]$. then why $G_{n_{s} r}$ is reconnected.

Corollary
If n is even then why $G_{n, r}$ his a perfect matching.
[An r-edge connected, r-regular graph, with n even, has a perfect matching:]

$$
\begin{aligned}
& \text { (i) } \overbrace{\frac{r}{r-2}}^{r_{0}} \leqslant k=|k| \leqslant n e^{-10} \\
& P_{1}(\exists k, l) \leqslant \sum_{k, l}\binom{n}{k}\binom{n}{l}\binom{r k_{k}}{\frac{k_{2}}{2}}\left(\frac{r\left(k_{k}+l\right)}{n}\right)^{\frac{r k_{k}+l}{2}} \\
& \leqslant \sum_{k, l} n^{-\left(\frac{r}{2}-1\right) k+l / 2} \frac{e^{k+l}}{k^{k} l^{l}} 2^{r k}(k+l)^{\frac{r k+l}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \sum_{k, l} n^{-\left(\frac{r}{2}-1\right) k+l / 2} \frac{e^{k+l}}{k^{k} l^{l}} 2^{r k}(k+l)^{\frac{r k+l}{2}} \\
& \left(\frac{k+l}{l}\right)^{l / 2} \leqslant e^{k / 2}\left(\frac{(k+l}{k}\right)^{k / 2} \leqslant e^{l / 2} \\
& (k+l)^{r k / 2} \leqslant k^{r k / 2} e^{l / 2} \quad \begin{array}{l}
\frac{r-1}{2 k}<\frac{r}{2}-1 \\
h>\frac{r-1}{r-2}
\end{array} \\
& \leqslant C_{r} \sum_{k=r}^{0 / 10} \sum_{l=0}^{r-1} n^{-\left(\frac{r}{2}-1\right) k+l / 2} e^{3 k / 2} k^{(r-2) k / 2} \\
& \text { constant } \\
& =C_{r} \sum_{k=10}^{n / 10} \sum_{l=0}^{r-1}\left(n^{-\left(\frac{r}{2}-1\right)+l / k} e^{3 / 2} k^{r-1} 2^{r}\right)^{k} \\
& =o(1) .
\end{aligned}
$$

(ii) $2 \leqslant k \leqslant \frac{r}{r-2} \leqslant 3$
$(K) \begin{aligned} & K v L \text { contains } \\ & \frac{r k}{2}+l \geqslant k+l+1 \text { edges }\end{aligned}$
$\operatorname{Pr}(\exists S: s=|\delta| \leqslant r-1+3$, contains $S+1$ edges

$$
\begin{aligned}
& \leqslant \sum_{s=4}^{r+2}\binom{n}{s}\binom{r s / 2}{s+1}\left(\frac{r s}{r n}\right)^{s+1} \\
& \leqslant \sum_{s=4}^{r+2} n^{s} \cdot 2^{r s / 2} \cdot s^{s+1} \cdot n^{-s-1} \\
& =o(1) .
\end{aligned}
$$

(iii)

$$
n e^{-10}<k \leqslant \frac{n}{2} \quad \phi(2 m)=\frac{(2 m)!}{m!2^{m}} \approx 2^{\frac{2}{2}\left(\frac{2 m}{e}\right)^{m}}
$$

$$
\begin{aligned}
& \operatorname{Pr}\left(\exists k_{l} L\right) \leqslant \sum_{k, l, a}\binom{n}{k}\binom{n}{l}\binom{r l}{a} \frac{\phi(r k+r l-a) \phi(r(n-k-l)+a)}{\phi(r n)} \\
& \leqslant C_{r} \sum_{k, l, a}\left(\frac{n e}{k}\right)^{k}\left(\frac{n e}{l}\right)^{l} \frac{(r k+r l-a)^{r(k+r l-a}(r(n-k-l)+a)}{(n-k-l)+a} \\
& (r n)^{r n} \\
& \leqslant C_{l^{r}} \sum_{k_{1} l_{j} a}\left(\frac{n e}{r}\right)^{k}\left(\frac{n e}{l}\right)^{l} e^{O(l)}\left(\frac{k}{n}\right)^{r k-}\left(1-\frac{k}{n}\right)^{r(n-l e)}
\end{aligned}
$$

$$
\begin{aligned}
& =C_{l} \sum_{k, l_{j} a}\left(\frac{n e}{k}\right)^{k}\left(\frac{n e}{l}\right)^{l} e^{O(1)}\left(\frac{k}{n}\right)^{r k}\left(1-\frac{k}{n}\right)^{r(n-k)} \\
& \leqslant c_{r} \sum_{k, b l}\left(\left(\frac{k}{n}\right)^{r-1} \cdot e^{1-r / 2} \cdot n^{r / k}\right)^{k} \\
& =O(1)
\end{aligned}
$$

Differential Equations Method
Consider the following simple process: We start with n isolated vertices $1,2, \ldots, n$.

At a general step, we choose a (still) isolated vertex v and add an edge to a randomly chosen w.
Question: how long before there are no is elated vertices?

Let
$X(E)=$ \# isolated vertices after t steps.

$$
\begin{align*}
& X(0)=n \\
& E(X(t+1)-X(t)) X(t))= \\
& -1-\frac{X(t)}{n-1} \tag{*}
\end{align*}
$$

Now put $t=\uparrow n, 0 \leqslant \uparrow \leqslant 1$
and $n x(T)=X(t)$.
(*) on pa suggest that

$$
\left.x^{\prime}(T)=-1-x(\urcorner\right)
$$

given

$$
x(T)=2 e^{-P}-1
$$

In which case we would expect that the process ends when $t \approx n \ln 2$.

We now consider tho foll owing greedy algorithm for finding an independent set in a graph.

GREEDY
begin

$$
\underset{I}{\operatorname{egm}} \phi ; \quad A \leftarrow V ;
$$

While $A \neq \varnothing$ do
Choose vet; [Random Choice]

$$
\begin{aligned}
& \text { choose vet } H ; \\
& I<I \cup\{v\} ; A \leftarrow A \backslash(\{v\} \cup N(v))
\end{aligned}
$$

end

Greedy produces an independent set.
We begin by studying the likely size of the output, f G is a random r-regular graph.

We use the configuration model of r-regular graphs i.es $W=W_{1} \cup W_{3} v \cdots W_{n}$ where $W_{i}=[(i-1) r+1, i r]$

We will expose the random pairing of W as the algorithm progresses i.e. not before.

If vertex i is placed in the independent sot I, then and only then, do we expose the pains involving W_{0}.

Lot the degree of a vertex j at a general step of the algorithm be the number of exposed pairs involving W_{j}

Thus a general slop of $G R G E D y$ involves
(i) Choose a vertex io degree zero.
(i) Expose the peris involving W_{i}.

Lot $t=|I|$ to the number of steps taken so far and let P_{b} refer to tho current set of exposed pars.
Let $X(t)$ be tho number of vertices of degree zero.
The number of vertices in the set chosen bey $\left(r R G B Y\right.$ is F_{0}, where $X\left(t_{0}\right)=0$.

$$
\begin{align*}
& E\left(X(F+1)-X(t) \mid P_{F}\right)= \\
& v \in I-\frac{X(F) r}{n-2 k}+O\left(\frac{1}{\alpha n_{R}}{\underset{\sim}{\operatorname{assuming}}}_{t \leqslant\left(\frac{1}{2}-\alpha^{2}\right) n}(*)\right. \tag{*}
\end{align*}
$$

We expose r pairs 0.550 cicited with v. For first pair there are still $r(X(H)-1)$ points associated with vertices of degree zero, (excluchng v). There are $r n-2 r t$ points unpaired altogether. So the probability of pairing with vertex of degree zero is $\frac{r(x(t)-1)}{r n-2 r t-1}=\frac{X(t)}{n-2 t}+O\left(\frac{1}{n}\right)$. Repeat r timio to get (*).

Putting $t=\sim n$ and $X(t)=n x(\eta)$, this suggests that we solve

$$
\begin{aligned}
& x^{\prime}(p)=-1-\frac{r x(p)}{1-2 p} \\
& x(0)=1 .
\end{aligned}
$$

$$
\text { Solution: } x(T)=\frac{(r-1)(1-2 T)^{r / 2}-(1-2 T)}{r-2}
$$

The smallest positive solut ion $t=x(T)=0$ b

$$
T_{0}=\frac{1}{2}\left(1-\left(\frac{1}{r-1}\right)^{2 /(r-2)}\right)
$$

and then number g vertices in independent set chosen ley GREGDV is why, $\approx T_{0} n$ 。

For the following:
$q_{0}, q_{1}, \ldots q_{t}, \ldots q_{n} \in S$ is a random process. $H_{D}=\left(q_{0,} q_{1}, \ldots, q_{t}\right)$ is the history to time t.
$X(0), X(1), \ldots X(t), \ldots$ are r and om varrables where

$$
X(t)=X_{t}\left(H_{t}\right)
$$

$D \leq \mathbb{R}^{2}$ is open and connected anch

$$
\left(0, \frac{x_{0}\left(q_{0}\right)}{n}\right) \in S \quad \begin{aligned}
& {[\text { We can assume }} \\
& {\left[q_{0}\right. \text { io fixed }}
\end{aligned}
$$

We further assume
(i) $|X(b)| \leqslant C_{0} n, \quad \forall \forall<T_{D}$ where C_{0} is convent.
(ii) $|X(t+1)-X(t)| \leqslant \beta=\beta(n) \geq 1, \forall t<T_{D}$
(iii) $\left|E\left(X(t+1)-X(t) \mid H_{r}\right)-f(t / n, X(t) / n)\right| \leqslant \lambda_{0}$,
$\forall E<T_{D}$
(iv) $f(t, x)$ is continuous and satisfies a Lipschitis condition on $D_{n}\{(t, x): t \geqslant 0\}$ i.e. $\left|f(\underline{x})-f\left(\underline{x}^{\prime}\right)\right| \leqslant L\left\|\underline{x}-\underline{x}^{\prime}\right\|_{\infty}$.

Example 1

$$
\begin{aligned}
& H_{b}=\left(i_{0}, i_{2}\right),\left(i_{3}, i_{4}\right), \ldots\left(i_{2 b-1}, i_{2 E}\right) \mid \leqslant i_{b} \leqslant n \\
& X_{t}\left(H_{E}\right)=n-\left|\left\{i_{1}, i_{3}, \ldots, i_{2 t}\right\}\right| \\
& C_{0}=1 \\
& f\left(F_{0} x\right)=-1-x
\end{aligned} \begin{array}{ll}
\lambda_{0}=\frac{1}{n-1} \\
D=(-1,1)^{2} & L=1
\end{array}
$$

Example 2

$$
\begin{aligned}
& W=[r n] \\
& H_{t}=\left(i_{1}, i_{2}\right),\left(i_{3}, i_{4}\right), \ldots\left(i_{2 t-1}, i_{2 t}\right) \quad 1 \leqslant i_{6} \leqslant n \\
& X_{t}\left(H_{v}\right)=\eta-\mid\left\{a: \exists \mathrm{s} \text { s.t. } i_{s} \in W_{a}\right\} \mid \\
& f(5, x)=-1-\frac{r x}{i-2 t} \\
& C_{0}=1 \\
& \lambda_{0}=\frac{1}{2 n} \\
& L=\Gamma / 2 \alpha \\
& D=\left(-1, \frac{1}{2}-\alpha\right) \times(0,1)
\end{aligned}
$$

Theorem
S appose $\lambda>\lambda_{0}$ and C is sufficiently large and. $\sigma=m f\left\{T:(T, z(T)) \& D_{0}=\left\{(t, z) \in D: l^{\infty}\right.\right.$ distance of $(t, 2)$ to boundary of $D \geqslant C \lambda\}\}$ Here $Z(L), 0 \leqslant T \leqslant \sigma$ be the unique Solution to

$$
\begin{align*}
& \dot{z}(T)=f\left(T, x_{0}\right) \tag{k}\\
& z(0)=\frac{x_{0}\left(q_{0}\right)}{n}
\end{align*}
$$

With probability $1-O\left(\frac{\beta}{\lambda} \exp \left(-\frac{n \lambda^{3}}{\beta^{3}}\right)\right)$

$$
X(t)=n z(b / n)+O(\lambda n)
$$

uniformly in 0stson.

Proof
Let $\omega=\left\lceil\frac{n \lambda}{\beta}\right\rceil$.
We con assume that $\frac{\lambda}{\beta} \geq n^{-1 / 3}$ else there to nothing to prove.
We study the concentration of $X(t+w)-X(t)$,
so assume that $(t / n, X(t / n)) \in D_{0}$.
For $0 \leq k \leq w$ we hare
Note that $\left|\frac{X\left(t+\beta_{0}\right)}{n}-\frac{X(t)}{n}\right| \leqslant \frac{k \beta}{n} \leqslant 2 \lambda$
So $\|(\underbrace{\left.\frac{t+k}{n}, \frac{X(t+k)}{n}\right)}-\left(\frac{t}{n}, \frac{X(t)}{n}\right) \|_{\infty} \leqslant 2 \lambda$ and so is in D, assuming $C \geqslant 2$ 。

$$
\begin{aligned}
& E\left(X(t+k+1)-X(t+k) \mid H_{t+k}\right)= \\
& \left.f\left(\frac{t+k}{n}, \frac{X(t+k)}{n}\right)+\theta_{k}\right)=\left|\theta_{k}\right| \leq \lambda \\
& f\left(\frac{t}{n}, \frac{X(t)}{n}\right)+\Psi_{k}+\theta_{k}=\left|\psi_{k}\right| \leqslant \frac{L \beta k}{n} \\
& f\left(\frac{t}{n}, \frac{X(t)}{n}\right)+\rho
\end{aligned}
$$

where $|\rho| \leqslant 2 L \lambda$.

Now, given H_{5}, let

$$
\left.Z_{k}=X(t+k)-X(t)-k f(t / n) \frac{X(t)}{n}\right)-2 k 2 \lambda .
$$

Then

$$
E\left(z_{k}-z_{k-1} \mid z_{0}, \cdots z_{k-1}\right) \leqslant 0
$$

ie. $Z_{0,} Z_{1}, \ldots, Z_{w}$ is a super martingale.
Also

$$
\begin{aligned}
\left|Z_{k}-Z_{k-1}\right| & \leqslant \beta+\left|f\left(\frac{t_{n}}{n} \frac{x_{(t)}}{n}\right)\right|+2 L \lambda \\
& \leqslant K_{1} \beta
\end{aligned}
$$

where $K_{0}=O(1)$.

$$
\leqslant K_{0} \beta
$$

$O(1)$ by continuity and bounded ness of S.

So, condit ional on H_{F},

$$
\begin{aligned}
\operatorname{Pr}(X(t+\omega)-X(L)-w f(b / n, X(b / n) & \left.\geqslant 2 L \omega \lambda+K_{0} \beta \sqrt{2 \alpha \omega^{3}}\right) \\
& \leqslant e^{-\alpha} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\operatorname{Pr}(X(t+\omega)-X(L)-w f(b / n, X(b / n) & \left.\leqslant-2 L \omega \lambda-K_{0} \beta \sqrt{2 \alpha \omega^{*}}\right) \\
& \leqslant e^{-\alpha} .
\end{aligned}
$$

Hers we produre a supermartingerte or equeralently consider $-X(t)$.

$$
\begin{aligned}
& \text { Thus } \\
& \left.\begin{array}{rl}
\operatorname{Pr}(\mid X(t+w)-X(L)-w f(b / n, X(t / n) \mid & \geqslant \\
& \leqslant 2 L \omega \lambda+K_{0} \beta \sqrt{2 \alpha \omega}
\end{array}\right) \\
&
\end{aligned}
$$

We will choose

$$
\alpha=\frac{n \lambda^{3}}{\beta^{3}}
$$

so that $\omega \lambda$ and $\beta \sqrt{2 \alpha \omega}$ are both $\theta\left(n \lambda^{2} / \beta\right)$ giving

$$
\operatorname{err} \leqslant K_{1} \frac{n \lambda^{2}}{\beta}
$$

Now let $k_{i}=i w$ for $i=0,1, \cdots, i_{0}=\left[\sigma_{n} / w\right]$. We will show by induction that

$$
P_{2}\left(\exists j \leqslant i:\left|X\left(k_{j}\right)-z\left(k_{j} / n\right) n\right| \geqslant B_{j}\right) \leqslant 2 i e^{-\alpha}
$$ where

$$
B_{j}=B\left(\left(1+\frac{L w}{n}\right)^{j}-1\right) \frac{n \lambda^{2}}{\beta}
$$

and where B is another constant.
The induction beg wis with $z(0)=\frac{X(0)}{n}$.
Note that $B_{i_{0}}=O\left(\frac{n \lambda^{3}}{\beta}\right)=O(\lambda n)$.

Now write

$$
\begin{aligned}
& \left|X\left(k_{i+1}\right)-z\left(k_{i+1} \mid n\right) n\right|=\left|A_{1}+A_{2}+A_{3}+A_{4}\right| \\
& A_{1}=X\left(k_{i}\right)-z\left(k_{i} / n\right) n \\
& A_{2}=X\left(k_{i+1}\right)-X\left(k_{i}\right)-\omega f\left(k_{i} / n, X\left(k_{i} \mid n\right)\right) \\
& A_{3}=\omega z^{\prime}\left(k_{i} / n\right)+z\left(k_{i} / n\right) n-z\left(k_{v+1} \ln \right) n \\
& A_{4}=\omega f\left(k_{i} / n, X\left(k_{i}\right) / n\right)-\omega Z^{\prime}\left(k_{i} \mid n\right)
\end{aligned}
$$

$$
A_{1}=X\left(k_{i}\right)-z\left(k_{i} / n\right) n
$$

The induction gre

$$
\left|A_{1}\right| \leqslant B_{i}
$$

$$
\begin{aligned}
& A_{2}=X\left(k_{i+1}\right)-X\left(k_{i}\right)-\omega f\left(k_{i} / n, X\left(k_{i} \mid n\right)\right) \\
& \left|A_{2}\right| \leqslant K_{1} \frac{n \lambda^{3}}{\beta}
\end{aligned}
$$

with probability $1-2 e^{-\alpha}$.

$$
\begin{aligned}
& A_{3}=\omega z^{\prime}\left(k_{i} / n\right)+z\left(k_{i} / n\right) n-z\left(k_{v+1} \ln \right) n \\
& \left|A_{3}\right| \leqslant L \frac{\omega^{2}}{n^{2}} \cdot n=L \frac{\omega^{2}}{n} \leqslant 2 \operatorname{Ln} \frac{\lambda^{3}}{\beta^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& A_{4}=\omega f\left(k_{i} \mid n, X\left(k_{i}\right) / n\right)-w Z^{\prime}\left(k_{i} \ln \right) \\
& \left|A_{4}\right| \leqslant \frac{w L A_{1}}{n} \leqslant \frac{w L}{n} B_{i} .
\end{aligned}
$$

Thur, for some $B>0$,

$$
\begin{aligned}
B_{i+1} & \leqslant\left|A_{1}\right|+\left|A_{2}\right| 1\left|A_{3}\right|+\left|A_{4}\right| \\
& \leqslant\left(1+\frac{\omega L}{n}\right) B_{i}+B_{n} \frac{\lambda^{2}}{\beta} .
\end{aligned}
$$

Finally consider $k_{i} \leqslant t<k_{i+1}$
From "tums" $k_{i}{ }^{t} 5$, the change in X and $n z$ is at most $\omega \beta=O(n \lambda)$.

The above proof generalises easels ti" tho case where
(i) $X(t)$ is replaced by $X_{1}(t), X_{2}(t), \ldots X_{a}(t)$ where $a=O(1)$.
(ii) Condition (iii) on P11 holds wits probability $1-\gamma$.
This adds $O(n \gamma)$ to the error probabolly. We simply condition on (iii) always holding.

Eigenvalues of Random Graphs
Theorem
Suppose $(\ln n)^{5} \leqslant n p \leqslant n-(\ln n)^{5}$.
Let A denote the adfacerrcy matrix f $G_{n, p}$ Let the engenvaluesif A be $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. Then whop
(i) $\lambda_{1} \approx n p$
(ii) $\left|\lambda_{i}\right| \leqslant 2(\log n)^{2} \sqrt{n p(i p p)}$ $2 \leqslant i \leqslant n$.

With more work V can be replaced by 2+0(1).

Main Lemma
Let J bo the all i's matin' and $M=p J-A$. Then whip

$$
\begin{array}{r}
\|M\| \leqslant 2(\log n)^{2} \sqrt{n p(1-p)} \\
\|M\|=\max _{|x|=1}\left|M_{x}\right|=\left|\lambda_{1}(M)\right|
\end{array}
$$

We frit show that the lemme ump hes the theorems.

Let e denote the all i's vector.
(a)

$$
\begin{aligned}
|A e-n p e| & =|M e| \\
& \leqslant\|M\| \cdot|\underline{e}| \\
& \leqslant 2(\log n)^{2} n \sqrt{p(1-p)}
\end{aligned}
$$

(h) Now suppose that $|\xi|=\mid$ and $\xi \perp$.. Then $J \xi=0$ and

$$
|A \xi|=|M \xi| \leqslant\|M\| \mid \leqslant 2(\log n)^{2} \sqrt{n p(1-p)}
$$

Now let $|x|=1$ and let $x=\alpha u+\beta y$ where $u=\frac{1}{\sqrt{n}} 1$ and $y \perp e$ and $|y|=1$. Then

$$
\left|A_{x}\right| \leqslant|\alpha|\left|A_{u}\right|+|\beta|\left|A_{y \mid}\right|
$$

We have

$$
\begin{aligned}
\left|A_{w}\right|=\frac{1}{\sqrt{n}}|A \underline{e}| & \leqslant \frac{1}{\sqrt{n}}(n p|e|+\||n \| \cdot| e \mid) \\
& \leqslant n p+2(\log n)^{2} \sqrt{n p(1-p)}
\end{aligned}
$$

$$
\left|A_{y}\right| \leqslant \alpha(\log n)^{2} \sqrt{n p(1-p)}
$$

Thus

$$
\begin{aligned}
\left|A_{x}\right| & \leqslant|\alpha| n p+2(|\alpha|+1 p 1)(\log n)^{2} \sqrt{p(1-p)} \\
& \leqslant n p+3(\log n)^{2} \sqrt{p(1-p)} .
\end{aligned}
$$

This umphise that $\lambda_{1} \leqslant(1+0(1)) n p$
But

$$
\begin{aligned}
|A u| & \geqslant|(A+M) u|-\left|M_{u}\right| \\
& =|p J u|-\left|M_{u}\right| \\
& \geqslant n p-2(\log n)^{2} \sqrt{n p(1-p)}
\end{aligned}
$$

implying $\lambda_{1} \geq(1-o(1)) n p$.

Now

$$
\begin{aligned}
\lambda_{2} & =\min _{\eta} \max _{0 \neq \xi 1 \eta} \frac{|A \xi|}{|\xi|} \\
& \leqslant \max _{0 \neq \xi \perp \varrho} \frac{\mid A \xi]}{|\xi|} \\
& \leqslant 2(\log n)^{2} \sqrt{n p(1-p)} \\
\lambda_{n} & =\min _{|\xi|=1} \xi^{\top} A \xi \geqslant \min _{|\xi|=1} \xi^{\top} A \xi-p \xi^{2} J \xi \\
& =\min _{|\xi|=1}-\xi^{\top} M \xi \geqslant-\|M\| \geqslant-2(\log n)^{2} \sqrt{n p(1-p)}
\end{aligned}
$$

Proof of Main Lemma
Putting $\widehat{M}=M-p I_{n}$ (zerousi diagonal) we see that

$$
\|M\| \leqslant\|\hat{M}\|+\left\|p I_{n}\right\|=\|\hat{M}\|+p
$$

and so we bound $\|\hat{M}\|$.
Letting $M_{i j}$ denote (i, j) entry of \hat{M} we have
(i) $E\left(m_{i j}\right)=0$
(ii) $\operatorname{Var}\left(m_{i j}\right) \leqslant p(1-p) \leftarrow \sigma^{2}$.
(iii) $m_{i j}, m_{i,}$, are independent, unless $\left(i, j^{\prime}\right)=(j, i)$.

Now let $k \geq 2$ be an even integer.

$$
\begin{aligned}
\operatorname{Trare}\left(\hat{M}^{k}\right) & =\sum_{l=1}^{n} \lambda_{i}(\hat{M})^{k} \\
& \geqslant \max \left\{\lambda_{1}(\hat{M})^{k}, \lambda_{n}(\hat{M})^{k}\right\} \\
& =\|\hat{M}\|^{k}
\end{aligned}
$$

We estimate

$$
\|\hat{M}\| \leqslant \operatorname{Trace}\left(\hat{M}^{k}\right)^{1 / k}
$$

where

$$
k=(\log n)^{2}
$$

$$
\begin{aligned}
& E\left(\text { Trace }\left(\hat{M}^{k}\right)\right)=\sum_{i_{0}=1}^{n} \sum_{i=1}^{n} \cdots \sum_{i_{k=1}=1}^{n} E\left(m_{i_{0} i_{1}} m_{i_{i, i},} \cdots m_{i_{k-2}} i_{k-1} m_{i_{k-1}, i}\right) \\
& \text { so } \hat{M} \|^{k} \leqslant \sum_{\rho=2}^{k+1} E_{n, k, \rho} \\
& \|
\end{aligned}
$$

where

$$
E_{n, k, \rho}=\sum_{\substack{i_{0}=1 \\\left(\left\{i_{c}, i_{1}, \ldots, i_{k-1} \mid\right.\right.}}^{n} \sum_{\substack{i_{k-1}}}^{n} \cdots \sum_{\substack{n \\ \text { where }}}^{n}\left|E\left(\prod_{j=0}^{k-1} m_{i_{j} b_{j+1}}\right)\right|
$$

Note that $m_{i, i}=0$ imphiss $E_{n_{0,1}}=0$.

Each sequent $i=i_{0} i_{1}, \ldots, i_{k-,} i_{0}$ corresponds ts a walk on $W(\underline{i})$ on K_{n} s witt n loops added. Note that

$$
E\left(\prod_{j=0}^{k-1} m_{i_{j} i_{j+1}}\right)=0
$$

'if the walk $W(\underset{i}{i})$ cont airs an $e d g e$ that is crossed exactly once

On the other hand, $\left|m_{i j}\right| \leq 1$ and so

$$
\left|E\left(\prod_{j=0}^{k-1} m_{i_{j} i_{j+1}}\right)\right| \leqslant \sigma^{2(p-1)}
$$

if each edge of $W(\underline{\underline{b}})$ is crossed at least livice and $i f\left|\left\{i_{0} i_{i_{0}} \cdots, i_{k-3}\right\}\right|=\rho$.

Let $R_{k, p}$ denotes the number of (k, p) - walks.

We use ohs following trivial estimates:
(1) $\rho>\frac{k}{2}+1$ implies $R_{k_{\rho} \rho}=0$
(ii) $\rho \leqslant \frac{k}{2}+1$ umphis

We have

$$
\begin{aligned}
& \text { We have }\|\hat{M}\|^{k} \leqslant \sum_{\rho=2}^{\frac{1}{2} k+1} R_{k, \rho} \sigma^{2(\rho-1)} \\
&
\end{aligned} \begin{aligned}
& \sum_{\rho=2}^{\frac{1}{2} k+1} \\
& n^{\rho} k^{k} \sigma^{2(\rho-1)} \\
& \leqslant 2 n^{\frac{1}{2} k+1} k^{k} \sigma^{k}
\end{aligned}
$$

Thus

$$
E\left(\|\hat{M}\|^{k}\right) \leqslant 2 n^{\frac{1}{2} k+1} k^{k} \sigma^{k}
$$

Then

$$
\begin{aligned}
& \operatorname{Pr}\left(\|\hat{M}\| \geq 2 k \sigma n^{\frac{1}{2}}\right) \\
& =\operatorname{Pr}\left(\|\hat{M}\|^{k} \geq\left(2 k \sigma n^{\frac{1}{2}}\right)^{k}\right) \\
& \leqslant \frac{\in\left(\|M\|^{k}\right)}{\left(2 k \sigma n^{\prime 2}\right)^{k}}
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \frac{2 n^{\frac{1}{2 k+1}} k^{k} \sigma^{k}}{\left(2 k \sigma n^{d / 2}\right)^{k}} \\
& =\left(\frac{(2 n)^{1 / k}}{2}\right)^{k} \\
& =\left(\frac{1}{2}+o(11)^{k}\right. \\
& =o(k) .
\end{aligned}
$$

Preferential Attachment.
Fix $m>0$, constant.
Sequence of graphs

$$
\Gamma_{1}, \Gamma_{2}, \cdots \Gamma_{m-1}, G_{1}, \Gamma_{m+1}, \Gamma_{m+3} \cdots \Gamma_{2 m-1)} G_{2}, \cdots \Gamma_{m b-1} G_{t}, \ldots
$$

$\Gamma_{(m-1) t+1)} \ldots \Gamma_{m t-1}, G_{t}$ have vertex set $v_{i} v_{2, \ldots}, v_{t}$

$$
\operatorname{Pr}(y=v)= \begin{cases}\frac{\operatorname{deg}\left(v_{1} \Gamma_{r}\right)}{2 \uparrow+1} & v \neq v_{t+1} \\ \frac{1}{2 \uparrow+1} & v=v_{t+1}\end{cases}
$$

Expeotied Degree Sequence.
$D_{k}(t)=\#$ of verlices g degree k in G_{t}, $m \leqslant k=O\left(t^{1 / 2}\right)$.

$$
\bar{D}_{k}(z)=E\left(D_{k}(k)\right) .
$$

$$
\begin{aligned}
E\left(D_{k}(t+1) \mid G_{t}\right) & =D_{k_{k}}(t)+1_{k=m}+E(k, t) \\
& +m\left(\frac{(k-1) D_{k-1}(t)}{2 m t}-\frac{k D_{f_{k}}(t)}{2 m t}\right)
\end{aligned}
$$

$$
\begin{aligned}
& |E(k, t)|=O\left(\sum_{i=2}^{m} \frac{(k-i)^{i} D_{k-i}(t)}{(m t)^{i}}\right)=O\left(\frac{k}{t}\right)=O\left(t^{-1 / 2}\right) . \\
& \quad V_{l}(t) \leqslant 2 \mathrm{mt}
\end{aligned}
$$ demominator bexng $2 m t+(S m)$.

Taking ex pectations over G_{b},

$$
\begin{aligned}
\vec{D}_{k}(t+1) & \left.=\bar{D}_{k}(t)+1_{k=m}+\vec{O}^{-1 / 2}\right) \\
& +m\left(\frac{(k-1) \bar{D}_{k-1}(t)}{2 m t}-\frac{k \bar{D}_{f_{k}}(t)}{2 m t}\right)
\end{aligned}
$$

Under the assumption $\bar{D}_{k}(t) \backsim d_{k} t$ we ans led to the recurrence

$$
\begin{array}{rlr}
d_{k} & =1_{k=m}+\left[(k-1) d_{k-1}-k d_{k}\right] / 2 & \\
d_{k} & =\frac{k-1}{k+2} d_{k-1}+\frac{1_{k=m}}{k+2} \times 2 & k \geqslant m \\
& =0 & k<m
\end{array}
$$

$$
\begin{aligned}
d_{k} & =\frac{k-1}{k+2} d_{k-1}+\frac{1_{k=m}}{k+2} & & k \geqslant m \\
& =0 & & k<m
\end{aligned}
$$

Therofore

$$
\begin{aligned}
d_{m} & =\frac{2}{m+2} \\
d_{k} & =d_{m} \prod_{l=m+1}^{k} \frac{l-1}{l+2} \\
& =\frac{2 m(m+1)}{k(k+1)(k+2)} .
\end{aligned}
$$

Theorem

$$
\left|\bar{D}_{k}(t)-d_{k} t\right|=\tilde{0}\left(t^{1 / 2}\right)
$$

Proof
Let $\Delta_{k}(t)=\bar{D}_{k}(t)-d_{p} t_{0}$ Then

$$
\Delta_{k}(t+1)=\frac{k-1}{2 t} \Delta_{k-1}(t)+\left(1-\frac{k}{2 t}\right) \Delta_{k}(t)+\frac{\tilde{O}\left(t^{-1 / 2}\right)}{\leqslant \alpha t^{-1 / 2}(\log t)^{\beta}}
$$

Now assume indudinely on to that

$$
\left.\left|\Delta_{h}(t)\right| \leqslant A t^{1 / 2} U_{o g} t\right)^{\beta} \quad \forall k \geqslant 0
$$

This is trivially line for small ty (make A large) and $k<m$.

So

$$
\begin{aligned}
\left|\Delta_{k}(t+1)\right| & \leqslant \frac{k-1}{2 t}\left|\Delta_{k-1}(t)+\left|\left(1-\frac{k}{2 t}\right) \Delta_{k}(t)\right|+\alpha t^{-1 / 2}(\log t)^{\beta}\right. \\
& \leqslant \frac{k-1}{2 t} A t^{\frac{1}{2}}(\log t)^{\beta}+\left(1-\frac{k}{2 t}\right) A t^{\frac{1}{2}}(\log t)^{\beta}+\alpha t^{-1 / 2}(1 \log t)^{\beta} \\
& \leqslant(\log t)^{\beta}\left(A t^{\frac{1}{2}}+\alpha t^{-1 / 2}\right) \\
(t+1)^{1 / 2} & =t^{\frac{1}{2}}\left(1+\frac{1}{t}\right)^{\frac{1}{2}} \geqslant t^{k}+\frac{1}{3 t^{k} 2} \quad t \text { lorgenentige } \\
& \left.\leqslant(\log (t+1))^{\beta}\left(A(t+1)^{1 / 2}-\frac{1}{3 t^{1 / 2}}\right]+\frac{\alpha}{t^{1 / 2}}\right) \\
& \leqslant A(\log (t+1))^{\beta}(t+1)^{1 / 2} .
\end{aligned}
$$

Con centration

$$
\operatorname{Pr}\left(\left|D_{k}(t)-\bar{D}_{h}(t)\right| \geqslant u\right) \leqslant 2 \exp \left\{-\frac{u^{2}}{\sin t}\right\} .
$$

Proof
Let $Y_{1}, Y_{2}, \ldots, Y_{m t}$ be the sequence of chores made in the construction of G_{E}.

$$
\begin{aligned}
z_{i} & =Z_{i}\left(Y_{1}, y_{2}, \ldots, Y_{i}\right) \\
& =E\left(D_{k}(t) \mid Y_{1}, Y_{2}, \cdots, Y_{i}\right)
\end{aligned}
$$

Rout follows from

$$
\left|z_{i}-z_{i-1}\right| \leqslant 4
$$

Fux $Y_{1}, Y_{2}, \ldots, Y_{i}$ and $\hat{Y}_{0} \neq Y_{i}$. We definio map

$$
y_{1}, y_{2}, \cdots, y_{1,1}, y_{i}, y_{i 21}, \ldots, y_{m b}
$$

\forall meas ner preemening progection ϕ

$$
y_{1}, y_{2}, \cdots, y_{i \ldots}, \hat{y}_{i}, \hat{y}_{i z 1}, \ldots, \hat{y}_{m b}
$$

D_{k} changes by at mort 4 .

In preferential attachment we can near verless ch cries as chris of a random ar

リ

Choose vertex v according li degree
chose random are

So $Y_{1,}, Y_{2, \ldots}$ can be rewed as a sequence of are chorics.

Let

$$
\begin{array}{ll}
y_{i}=(x, v) & \hat{v}>v \\
\hat{y}_{0}=(\hat{x}, \hat{v}) & \hat{x}>\hat{v}
\end{array}
$$

$[x=\widehat{O C}$ if $i \bmod m \neq 1]$
Now suppose $j>i$ and $Y_{j}=\left(y_{0} z\right)$. Then

Now suppose $j>i$ and $Y_{j}=\left(y_{0} z\right)$. Then

Only $x_{0} \hat{x}_{0}, v_{0} \hat{u}$ Change degree in transformation.
In \wedge world

If (y, z) exists else

$z=v \Rightarrow \hat{z}=\hat{v}$
$z=x \Rightarrow \hat{z}=\hat{x}$

Maximum Degree
Fix $k \leq t$ and let $X_{l}=\operatorname{degree} f v_{k}$ in Γ_{l}.
Lemma

$$
\frac{\operatorname{Pr}}{\operatorname{Pr}}\left(X_{m} \geqslant A(t / k)^{\frac{1}{2}}(\log t)^{2}\right)=O\left(t^{-A / 2}\right) .
$$

Proof

$$
x_{m k} \leqslant 2 m
$$

If $0<\lambda<\frac{1}{\log t}$ then

$$
\begin{aligned}
& E\left(e^{\lambda X_{l+1}} \mid X_{l}\right)=e^{\lambda X_{l}}\left(1-\frac{X_{l}}{2 l}+\frac{X_{l}}{2 l} e^{\lambda}\right) \\
& \leqslant e^{\lambda X_{l}}(1-2 l \\
& \frac{x_{l}}{2 l} \frac{X_{l}(1+\lambda(1+\lambda))}{2 l} \\
& \leqslant e^{\lambda\left(1+\frac{1+\lambda}{2 l}\right) X_{l}}
\end{aligned}
$$

So if we defin' a sequerce

$$
\lambda=\lambda_{m s}, \lambda_{m+1}, \cdots, \lambda_{m b}
$$

where

$$
\lambda_{j+1}=\left(1+\frac{1+\lambda_{j}}{2 j}\right) \lambda_{j}<1 / \log t
$$

then

$$
\begin{aligned}
E\left(e^{\lambda X_{m t}}\right) & \leqslant E\left(e^{\lambda_{m t+1} X_{m t-1}}\right) \\
& \leqslant E\left(e^{\lambda_{m t} X_{m l}}\right) \\
& \leqslant e^{2 m / \log t}
\end{aligned}
$$

$$
\lambda_{j+1} \leqslant\left(1+\frac{1+1 / \log t}{2 j}\right) \lambda_{j}
$$

umphis that

$$
\begin{aligned}
& \lambda_{m t} \leqslant \lambda_{m l} \prod_{j=m l}^{m t}\left(1+\frac{1+1) \log t}{2 j}\right) \\
& \leqslant \lambda_{m l} \exp \left\{\sum_{j=m l}^{m t} \frac{1+1 / \operatorname{leg} t}{2 j}\right\} \\
& \leqslant 2(t / l)^{1 / 2} \lambda_{m l}
\end{aligned}
$$

So argument worth for

$$
\begin{aligned}
& \text { works for } \\
& \lambda_{m l}=\frac{(l / t)^{1 / 2}}{2 \log t} \text {. }
\end{aligned}
$$

α his gives

$$
E(\exp \{\underbrace{\left\{\frac{(e l t)^{1 / 2}}{2 \log t}\right.}_{\lambda} x_{m b}\}) \leqslant e^{2 m / \log t}
$$

Finally,

$$
\begin{aligned}
& \operatorname{Prall}\left(X_{m t} \geqslant A(t / l)^{1 / 2}(\log t)^{2}\right) \\
& \leqslant e^{\left.-\lambda A(t / /)^{\frac{1}{2}} \log g\right)^{2}} E\left(e^{\lambda X_{m v}}\right) \\
& \leqslant t^{-A / 2} e^{2 m / \log t .}
\end{aligned}
$$

Largest component in $G_{n, p}$ near $p=1 / n$.
Therein
Let $p=\frac{1}{n}+\frac{\lambda}{n^{4 / 3}}$ where $|\lambda|=O(1)$.
Let $C_{2} C_{2}, \cdots$ denote the connected components
of $G_{n, p}$ where $\left|C_{1}\right| \geqslant\left|C_{2}\right| \geqslant \ldots$. Then
(i) $E\left(\sum_{j}\left|c_{j}\right|^{2}\right) \leqslant \begin{cases}3 n^{4 / 3} & \lambda=0 \\ 4 n^{4 / 3} & 0<1|1| 1 / 0 \\ n^{4 / 3}\left[2+5|\lambda| \lambda^{k}\right] & |\lambda| \geqslant 1 / 1 / 8\end{cases}$
(ii) $\operatorname{Pr}\left(\left|C_{1}\right| \geqslant A n^{2 / 3}\right) \leqslant \quad A^{-2}(4+5 \sqrt{|\lambda|})$.
(iii) $\operatorname{Pr}\left(\left|C_{1}\right| \leqslant \delta n^{2 / 3}\right) \leqslant(33+2|1| 1) \delta^{8 / 5}$.
if \sin sufficiently small and n sufficiently large.

Fus vertex v. In BFS from v we construnt Sequenics I sels

$$
V_{t}=\left|L_{t}\right|
$$

$$
\begin{aligned}
& y_{0}=1 \\
& y_{v}= \begin{cases}y_{t-1}+\eta_{t}-1, & y_{t-1}>0 \\
\eta_{t} & y_{t-1}=0\end{cases}
\end{aligned}
$$

where $D_{t}=B\left(n-Y_{t-1}-1, p\right)$. $\eta_{1}, \eta_{2}, \ldots$ are independent.

Note that if $C(v)$ is the componenent containing v then

$$
\begin{aligned}
|C(\nu)| & =\min \left\{t: V_{t}=0\right\} . \\
& \stackrel{d}{=} T .
\end{aligned}
$$

$$
S_{t}=1+\sum_{i=1}^{t}\left(\xi_{i}-1\right)
$$

$\xi_{10} \xi_{2} \ldots$ are indep. copley $B(n, p)$.
We couple so that $\eta_{1} \leqslant \xi_{1}, \eta_{2} \leqslant \xi_{2}, \cdots$.
It follows that

$$
S_{t} \geqslant y_{t} \text { for } t=0,1,2, \ldots p
$$

$$
E\left(S_{t+1}-S_{t} \mid S_{t}\right) \cdot n p-1
$$

Let

$$
\hat{S}_{t}=S_{t}-t|n p-1|
$$

Then

$$
E\left(\hat{S}_{t+1} \mid \hat{S}_{t}\right)=(n p-1)-|n p-1| \leqslant 0
$$

and so $\left(\widehat{S}_{t}\right)$ is a super-martingala,

Now fuss an integer $H>0$ and let

$$
\gamma=\min \left\{t \geqslant 1: S_{t} \geqslant H \text { or } S_{t}=0\right\}
$$

Note that

$$
S_{\gamma} \geqslant H \Rightarrow Y_{\gamma} \leqslant S_{\gamma}
$$

Let $T_{0}=\min \left\{t \geqslant 0: Y_{\gamma+t}=0\right\}$

$$
\begin{aligned}
\tau & \leqslant \gamma+T_{0} 1_{\left\{S_{\gamma} \geqslant H\right\}} \\
{\left[S_{\gamma}\right.} & =0 \Rightarrow \uparrow \leqslant \gamma] .
\end{aligned}
$$

$$
E(\uparrow) \leqslant E(\gamma)+E\left(T_{0} \mid S_{\gamma} \geq H\right) P\left(S_{\gamma} \geq H\right)
$$

We prove
(i) $P\left(S_{\gamma} \geqslant H\right) \leqslant \frac{1+E(\gamma)|n p-1|}{H}$

(iii) $E\left(T_{0} \mid S_{\gamma} \geqslant H\right) \leqslant\left(\frac{2(H+n p)}{p}\right)^{\frac{\eta}{2}}$

So,

$$
\begin{aligned}
& E(T) \leqslant \\
& \frac{H+2}{n p q-4 H|n p-1|}+\left(\frac{2(H+n p)}{p}\right)^{\xi}\left(\frac{n p q-3 H|n p-1|}{n p q-4 H|n p-1|}\right) \cdot \frac{1}{H}
\end{aligned}
$$

We choose it to (approximately) momus the RHS.
If $\lambda=0$

$$
E(T) \leqslant \frac{H+2}{n-1}+\frac{\sqrt{2 n(H+1)}}{H} .
$$

Put $H=n^{1 / 3} \Rightarrow E(P) \leqslant 3 n^{1 / 3}$.

If $0<|\lambda|<\frac{1}{10}$ then

$$
E(\tau) \leqslant 2(H+2)+\frac{\sqrt{(2+0(1)) n(H+1)} \times 7}{6 H}
$$

Putting $H=n^{1 / 3}$ gives

$$
E(\tau) \leqslant 4 n^{1 / 3}
$$

If $|\lambda| \geq \frac{1}{10}$ we put $H=\frac{n^{1 / 3}}{10|\lambda|}$ and then

$$
\begin{aligned}
E(P) & \leqslant 2 H+\frac{\sqrt{(2+0(1)) n H} \times>}{6 H} \\
& \leqslant n^{1 / 3}\left[2+5|\lambda|^{\frac{1}{2}}\right] .
\end{aligned}
$$

Now writs

$$
\begin{aligned}
E(T) & =E(|C(v)|) \\
& =\frac{1}{n} \sum_{v=1}^{n} E(|C(v)|) \\
& =\frac{1}{n} E\left(\sum_{i}\left|c_{0}\right|^{2}\right)
\end{aligned}
$$

So $E\left(\sum_{j}\left|C_{j}\right|^{2}\right) \leqslant n E(P)$.

Main tool [OPTIONAZ STOPPING]
Let $Z_{i}, Z_{1}, \cdots Z_{v}, \cdots$ be a random process.
T is a stopping lime if tho event $\{T=k\}$ depends only on $Z_{0}, Z_{l} \cdots, Z_{z}$ and not on the fullers.

Optional Stopping
Suppose T io a stopping time.
(i) $\left(Z_{t}\right)$ is a martingale $\Rightarrow E\left(Z_{T}\right)=E\left(Z_{0}\right)$.
(ii) $\left(Z_{t}\right)$ is a supermarelngule $\Rightarrow E\left(Z_{T}\right) \leqslant E\left(Z_{0}\right)_{V}$
(iii) $\left(Z_{t}\right)$ is a submartinale $\Rightarrow E\left(Z_{T}\right) \geqslant E\left(Z_{\partial}\right)$

We must also assume $\left(Z_{t}\right)$ is bounded.

$$
\begin{aligned}
1 & =E\left(\hat{S}_{0}\right) \geqslant E\left(\hat{S}_{\gamma}\right)=E\left(S_{\gamma}\right)-E(\gamma)\left(n_{p}-1\right)^{+} \\
& \geqslant H P\left(S_{\gamma} \geqslant H\right)-E(\gamma)(n 0-1)^{+}
\end{aligned}
$$

so

$$
P\left(S_{\gamma} \geqslant H\right) \leqslant \frac{1+E(\gamma)|n p-1|}{H}
$$

Lemma
oven $S_{\gamma} \geqslant H$, the condilional dortinbuliong

$$
S_{\gamma}-H \stackrel{\alpha}{\leqslant} B(n, p)
$$

Proof

$$
\xi=B(n, p)=I_{1}+I_{2}+\cdots \cdot I_{n}
$$

Green $\xi \geqslant r, \xi-r \leqslant B(n, p)$.
$\left\{\begin{array}{l}\text { Suppose } r=\sum_{j=1}^{J} I_{j} \text { so that } \xi-r \text { hoo distribution } . ~\end{array}\right.$

$$
[\leqslant B(n-J, p) .
$$

Conditioned on $\{\gamma=\ell\} \cap\left\{S_{l-1}=H-r\right\} \cap\left\{S_{\gamma} \geqslant H\right\}$,

$$
S_{\gamma}-H \stackrel{d}{=} \xi_{l}-r \stackrel{d}{\leqslant} B(n, p)
$$

Now average over l, r.

$$
\text { * } A \leqslant B \text { if } P_{1}(A \geqslant x) \leqslant P_{r}(B 3 x), \forall x \text {. }
$$

Write

$$
S_{\gamma}^{2}=H^{2}+2 H\left(S_{\gamma}-H\right)+\left(S_{\gamma}-H\right)^{2}
$$

Then, lemma on plo imphes

$$
\begin{aligned}
E\left(S_{\gamma}^{2} \mid S_{\gamma} \geqslant H\right) & \leqslant H^{2}+2 H n p+n p q+(n p)^{2} \\
& \leqslant H^{2}+3 H .
\end{aligned}
$$

Define

$$
t_{n} \gamma=\min \{t, \gamma\} .
$$

and

$$
A_{t}=S_{t \wedge \gamma}^{2}-B(t \wedge \gamma)
$$

where

$$
B=n p q-2 H|1-n p|
$$

We claim that
$\left(A_{t}\right)$ is a sub-martingale

$$
\begin{aligned}
& E\left(S_{t+1}^{2}-S_{t}^{2} \mid S_{t}\right)= \\
& 2 E\left(S_{t}\left(\xi_{t+1}-1\right)\right)+E\left(\left(\xi_{t+1}-1\right)^{2}\right) \\
& =2 S_{t}(n p-1)+n p q+1-n p \\
& \geqslant \underbrace{n p q-2 H \mid n p-1)}_{B}, \quad \forall t \leqslant \gamma . \\
& E\left(\left(S_{t+1}^{2}-B(t+1)\right]-\left[S_{t}^{2}-B E\right] \mid S_{t}\right) \leqslant 0, t \leqslant \gamma .
\end{aligned}
$$

So

$$
\begin{gathered}
A_{0} \leqslant E\left(A_{\gamma}\right) \\
o r 1 \leqslant E\left(S_{\gamma}^{2}\right)-B E(\gamma)
\end{gathered}
$$

So

$$
\begin{aligned}
& \text { So } \\
& \begin{aligned}
1+B E(\gamma) \leqslant E\left(S_{\gamma}^{2}\right) & =E\left(S_{\gamma}^{2}\left|S_{\gamma} \geqslant H\right| D_{\gamma}\left(S_{\gamma} z H\right)\right. \\
& \leqslant(H+3)(1+E(\gamma)|n p-1|)
\end{aligned}
\end{aligned}
$$

So

$$
E(\gamma) \leqslant \frac{H+2}{B-(H+3) /(n p-1)} \leqslant \frac{H+2}{\left(\left.\begin{array}{l}
\text { npq } \\
\text { we enowe the sh in pe }
\end{array} \right\rvert\, n p-1\right)}
$$

We enome the is portive.

Now consider $\quad T_{0}=\min \left\{t \geqslant 0: Y_{\gamma+b}=0\right\}$

$$
Z_{t}=Y_{\gamma+E n p_{0}}+\sum_{j=1}^{E_{n} T_{0}} j p
$$

If $t<T_{0}$ then

$$
\sigma=(t+1) \wedge \psi_{0}
$$

$$
\begin{aligned}
& E\left(Z_{t+1}-Z_{t} \mid Z_{t}\right)=E\left(\eta_{\gamma+\sigma}+\sigma p\right) \\
&=-1+\left(n-Y_{\gamma+t+T_{0}}-\left(\gamma+t_{n} T_{0}\right)+\sigma\right) p \\
& \leqslant 0
\end{aligned}
$$

and $Z_{t+1}=Z_{t} \cdot d t \geqslant T_{0}$.
So $\left(Z_{t}\right)$ is a supermarlunpala.

$$
\begin{aligned}
& H+n p \geqslant E\left(S_{\gamma} \mid S_{\gamma} \geqslant H\right) \quad \text { Lemma on plo } \\
& \geqslant E\left(Z_{0} \mid S_{\gamma} \geqslant H\right) \quad S_{\gamma} \geqslant y_{\gamma} \\
& \geqslant E\left(Z_{r_{0}} \mid S_{\gamma} \geqslant H\right) \quad \text { optional Stapmeng } \\
& \geqslant E\left(T_{0}^{2} \mid S_{\gamma} \geqslant H\right) \rho / 2 \text { make sum orly. }
\end{aligned}
$$

By Cauchy-S Chare

$$
\begin{aligned}
E\left(T_{0} \mid S_{\gamma} \geqslant H\right) & \leqslant E\left(P_{\gamma}^{2} \mid S_{\gamma}=H\right) \\
& \leqslant\left(\frac{2(H+n p)}{P}\right)^{\frac{1}{2}}
\end{aligned}
$$

Proof of (iii)
$F_{v x h}=A n^{1 / 3}, A=O(1)$ is be determined.
S7 age 1

$$
T_{h}= \begin{cases}\min \left\{t \leqslant \frac{n}{8 h}: V_{t} \geq h\right\} \leqslant & \text { set non empty } \\ \frac{n}{8 h} & \text { otherwise }\end{cases}
$$

If $Y_{t-1}>0$ then

$$
Y_{t}^{2}-Y_{t-1}^{2}=\left(\eta_{t}-1\right)^{2}+2\left(\eta_{t}-1\right) Y_{t-1}
$$

If $Y_{t-1} \leqslant h$ then

$$
\begin{aligned}
E\left(Y_{t}^{2}-Y_{t-1}^{2} \mid Y_{t-1}\right) & \geqslant(n-t-h) p q-2(t+h) p h \\
& \geqslant \frac{1}{2} .
\end{aligned}
$$

If $y_{t-1}=0$ then $E\left(y_{t}^{2}-\gamma_{t-1}^{2}\right)=E\left(\eta_{t}^{2}\right) \geqslant \frac{1}{2}$, under these assumptions.
so $Y_{t \wedge p_{h}}^{2}-\frac{1}{2}\left(l_{\wedge} T_{h}\right)$ is a submartingule and so

$$
E\left(Y_{T_{h}}^{2}\right)-\frac{1}{2} P_{h} \geqslant 0 .
$$

Lemma on PIS \Rightarrow

$$
E\left(Y_{T_{h}}^{2}\right) \leqslant h^{2}+3 h \leqslant 2 h^{2}
$$

So

$$
2 h^{2} \geqslant E\left(Y_{T_{h}}^{2}\right) \geqslant \frac{1}{2} E\left(P_{h}\right) \geqslant \frac{T_{1}}{2} P_{r}\left(T_{h}=\frac{n}{8 h}\right)
$$

or

$$
\operatorname{Pr}\left(\varphi_{h}=\frac{n}{8 h}\right) \leqslant \frac{32 h^{3}}{n} .
$$

$$
\begin{array}{ll}
T_{0}= \begin{cases}\min \left\{t \leqslant \delta n^{2 / 3}: Y_{1_{h}+t}=0\right\} & \text { set nonempty } \\
\delta n^{2 / 3} & \text { otherwise }\end{cases} \\
M_{t}=h-\min \left\{h, Y_{T_{h}+t}\right\} .
\end{array}
$$

If $0<M_{t-1}<h$ then

$$
M_{t}^{2}-M_{t-1}^{2}=\left(\eta_{p_{h}+t}-1\right)^{2}+2\left(1-\eta_{p_{h}+t}\right) M_{v-1}
$$

and so

$$
\begin{aligned}
\left.E\left(M_{t}^{2}-M_{t-1}^{2}\right) M_{t-1}\right) & \leqslant n p q+2 h\left(1-\left(n-\frac{n}{8 t}-\delta n^{2 / 3}\right) p\right) \\
& \leqslant 2(1+A|\lambda|) .
\end{aligned}
$$

If $Y_{t-1} \geq h$ then $M_{t-1}=0$ and $M_{t} \leqslant 1$.
So $Z_{t}=M_{t \wedge T_{0}}^{2}-2(1+A|\lambda|)\left(t \wedge P_{0}\right)$ is a supermarlingalo.
Now ues P_{n}, E_{h} to denots condlloning on $\left\{V_{p_{L}}>h\right\}$.
$Z_{0}=0$ and so

$$
\begin{aligned}
0 \geqslant E\left(Z_{T_{0}}\right) & =E_{h}\left(M_{T_{0}}^{2}\right)-2(1+A|\lambda|) E\left(T_{0}\right) \\
& \geqslant E_{2}\left(M_{T_{0}}^{2}\right)-(1+A|\lambda|) \delta n^{2 / 3}
\end{aligned}
$$

So

$$
P_{h}\left(T_{0}<\delta n_{\text {Imples }}^{2 / 3} \leqslant P_{h}\left(M_{T_{0}} \geqslant h\right) \leqslant \frac{E_{h}\left(M_{T_{j}}^{2}\right)}{h^{2}} \leqslant \frac{(1+A(1)) \delta R^{2 / 3}}{h^{2}}\right.
$$

so

$$
\begin{aligned}
P\left(T_{0}<\delta n^{2 / 3}\right) & \leqslant P\left(T_{\omega}=\frac{n}{8 L}\right)+P_{h}\left(T_{0}<n^{2 / 3}\right) \\
& \leqslant \frac{32 h^{3}}{n}+\frac{\left(1+A| || | \cdot \delta n^{2 / 3}\right.}{h^{2}}
\end{aligned}
$$

$$
P\left(\Upsilon_{0}<\delta n^{2 / 3}\right) \leqslant 32 A^{3}+\frac{(1+A|\lambda|) \delta}{A^{2}} .
$$

Putting $A=\delta^{1 / s}$ for sumplectity, we get
whech g wiss

$$
P\left(T_{0}<\delta n^{2 / 3}\right) \leqslant(33+2|\lambda|) \delta^{3 / 5} .
$$

We fundly noto that

$$
\begin{aligned}
\left|C_{1}\right|<\delta n^{2 / 3} & \Rightarrow|C(\sim)|<\delta n^{2 / 3} \\
& \Rightarrow P<\sin ^{2 / 3} \\
& \Rightarrow T_{0}<\delta n^{2 / 3}
\end{aligned}
$$

Perfect Matchings in Bipartite 2-OVT
$B_{k-o u t ~ i s ~ a ~ r o n d o m ~ b i p a r l i t e ~ g r a p l ~}$ with vestix parlition $X, Y Y$ where $\left|X_{1}\right|=|Y|=n$. Each $x \in X$ chooses k random nors in Y Euch $y \in Y$ chooses k random Nors $m X$.

Theoreni $B_{\text {2-out }}$ has a peffect matching whe.

Algorithm

Sep 1: If every isolded brio of H_{1} contains a marked vertex: FOUND PGRFECS MATCHING.
step 2: Choose unmarked isolated lie T_{j} choose root oc for $T_{\text {; }}$ Mark x.

Slop 3: Add edge with label x有 H_{2}

$$
y_{i} \bullet \quad \alpha
$$

x chose y_{i}, y_{j}

$\because \beta_{2}$

Step 4 Possbilitios.
(i)

- oherked vertex
- unchecked vertex

Give prefuence to vertex b if edge b in CORE of H_{1} and edge a is not.
(ii)

(iII)

FAIL

In cases (i) \& (ii) delete edge x from H_{1}.
Repeat from Step 1

Invariants
(i) \#marked vertices $=n$ - \#edges in H_{1}.

Each round marks one vertex and deletes one offer of $H_{y} *$
(ii) $\#$ checked vertices $=\#$ edges $0 \mathrm{H}_{2}$.

Each round ohectes one vertex and adds ono edge. $10 \mathrm{H}_{2}{ }^{\circ}$

Suppose there are no unmarked lies.

\# vertices $n_{1}+n_{2}+\cdots+n_{k}+m_{1}+\cdots+m_{l}=n$ \# edges $\left(n_{1}-1\right)+\left(n_{2}-1\right)+\cdots+\left(n_{R^{-1}}\right)+\left(\geqslant m_{1}\right)+\cdots+\left(3 m_{l}\right)=n-k$
$\Rightarrow m_{0}$-m are unecydic
The edos give a matching M_{1} in B_{2} of size $n-k$ covering all unmarked oc's.
Note \#rounds = \#edges lost τk
H_{2} cont ain k edges, also y welding mulching

The mums dervied edge covers x. M_{1} does not cover x, but M_{2} does.

Finally, supposes that M, doe not cover y
 so y in a checked vertex of H_{2} and is covered by M_{2},
Thus $M_{1} \cup M_{2}=\pi$ edges covering $X_{U} V_{,}$, is perfect $\begin{aligned} & \text { mans. }\end{aligned}$

Conversely, suppose H_{1} consots of liees and uncyclio componento

$$
\# e d g b=n-k
$$

$=n$ - \# mouked vertices
So every linee has a marted vertex and algorithm stopsas soon ev thios happers.

Probability of Failure
Claim (proved bellow)
Why H_{A} consists only of trees and unicyclis components before. 49 n rounds.

Assume cloum: H_{2} consists of $\leqslant .49 n$ random edges and so why only contauss trees and uncyctio components and so case (iii) of Step 4 dole not happen.

Proof of Claim

Each H_{2}-tres
has one unchecked vertex

Edge of H_{1} cor to unchecked verlucesf H_{2}.

If corresponds to edge g CORE then our rule \Rightarrow every vertex of T corresponds do edge. 0 CORE.
So \# vertices left in (what wis) CORE $=$ \#trees of H_{2} where every vertex corr. to an edge of CORE.

Size of CORE
Suppose $O G e^{-x}=2 e^{-2}, 0<x<1$.
Then CORE has $\approx\left(1-\frac{x_{2}}{2}\right)^{2} n$ edge.

$$
\begin{aligned}
& .4 \leqslant x \leqslant .41 \\
& .63 \leqslant\left(1-\frac{x}{2}\right)^{2} \leqslant .64
\end{aligned}
$$

Let $Z=$ \#trees in H_{2} made up O vertices $y \in V$ whose edge in H_{1} belong to CORE:. .49 n

$$
\begin{aligned}
& E(Z) \leqslant O(1)+ \\
& \left.\sum_{k=1}^{(\log n)^{2}}\binom{n}{k} k^{k-2}\binom{49 n}{(\log -1)}^{2}\right)(k-1)!\left(\frac{1}{\left(\frac{1}{2}\right)}\right)^{k-1} \cdot(.64)^{k-1} \cdot\left(1-\frac{k(n-6)}{(n)}\right)^{-4 i n} \\
& \left\{0 n!: 64 n \sum_{k=1}^{(\log n)^{2}} \frac{k^{k-2}}{k!}(64)^{k-1} \exp \left\{-\frac{.98 k(n-k)}{(n-1)}\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant .64 n \sum_{k=1}^{(\log)^{2}} \frac{k^{k-3}}{k!}(.64)^{k-1} \exp \left\{-\frac{.98 k(n-k)\}}{(n-1)}+0(n)\right. \\
& \leqslant\left(1+0(11)(.64) n\left(e^{-.98}\left(\frac{.6}{2}+\frac{3(.64)^{3}}{4}+\frac{16(.64)^{3}}{24}\right)\right.\right. \\
& \left.\leqslant \frac{1}{3}+\sum_{k=5}^{(\log n)^{2}} \frac{1}{k^{5 / 2}} \cdot \frac{1}{.64} \cdot\left(.64 e^{.022}\right)^{k}\right)
\end{aligned}
$$

So, after. 49 rounds, in expectation, H edges left in CORE,

$$
\mu \leqslant \frac{1}{6^{5 / 2} \times .644\left(1-.65 \times e^{.02}\right)}
$$

$$
\leqslant \frac{1}{15}
$$ is $\leqslant \frac{2}{5} \mathrm{~J}$ original, and Chebysher can be used ts show this whap.

But deleting $\approx \frac{3}{5} 0$ CORE's edges will whp leare just trees and uncychis componento:

Choose n randon edgo.
Buld CORE
Deleterin $\frac{3}{5}$ of edgs.
fiWhp $a \frac{3}{5}$ of edges 9 CORE are deletel.
(ii) Graph has $\approx \frac{2}{5} n$ edges and so hus only liees plus unkyelis componenti.
So whp algorithre funsohes bofore. 49n rounds with a perfect matiching.

Random Mappings
Let f be chosen uniformly at random from the set of all n^{n} mappings from $[n] \rightarrow[n]$.

Let D_{f} be the digraph $\left([n]_{2}(x f(x)]\right)$ and let G_{f} be obtained from D_{f} by 1 goring onentialion.

$$
\begin{array}{rllccccccccc}
E x: & \propto & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
f(x) & 2 & 10 & 5 & 4 & 2 & 5 & 8 & 9 & 7 & 5
\end{array}
$$

$$
{\underset{9}{7}}_{\nabla^{*}} \underbrace{}_{4}
$$

In general D_{f} consists of uneychis componento, where each such consists of a durested cycleC with liees rooled at each verlisi of C.

Tho 1

$$
\operatorname{Pr}\left(G_{f} \text { is conneded } d\right) \approx \sqrt{\frac{\pi}{2 n}}
$$

Proof
Let $T(n, k)$ denote the number of forests with vertex set $[n], k$ hies, in which $12 \partial_{0}$-jp are in different lies. We show later that

$$
T(n, k)=k n^{n-k-1}
$$

$$
\begin{aligned}
& \operatorname{Pr}\left(G_{f} \text { is connected }\right)= \\
& n^{-n} \sum_{k=1}^{n} \sum_{\text {choose cock }}^{\binom{n}{k}(k-1)!} \underbrace{T(n, k)}_{\text {finish off mappuns }} \\
& \text { of length } \text { b } \\
& =\frac{1}{n} \sum_{k=1}^{n} \underbrace{\prod_{j=0}^{k-1}\left(1-\frac{j}{n}\right)}_{u_{k}} \\
& \text { if } k \geqslant n^{3 / s} \text { then } u_{k} \leqslant \exp \left\{-\frac{k(k-1)}{2 n}\right\} \leqslant e^{-\frac{1}{3} n^{1 / 5}} \text {. } \\
& \text { If } k<n^{3 / 5} \text { then } u_{k}=\exp \left\{-\frac{h^{3}}{2 n}+O\left(\frac{h^{3}}{n^{2}}\right)\right\}
\end{aligned}
$$

So

$$
\begin{aligned}
& \quad \operatorname{Pr}\left(G_{f} \text { is connected }\right)= \\
& \frac{1+0(1)}{n} \sum_{k=1}^{n^{3 / s}} e^{-n^{2} / 2 n}+O\left(n \theta^{-n^{1 / 5 / 3}}\right) \\
& =\frac{1+0(1)}{n} \int_{0}^{\infty} e^{-x^{2} / 2 n} d x+O\left(n \theta^{-n^{1 / 5} / 3}\right) \\
& =\frac{1+0(1)}{\sqrt{n}} \int_{0}^{\infty} e^{-y^{2} / 2} d y+O\left(n e^{-n^{1 / 5} / 3}\right) \\
& \sim \sqrt{\frac{\pi}{2 n}} .
\end{aligned}
$$

Formula for $T(n, k)$:

$$
\begin{aligned}
& T(n, 1)=n^{n-2} \quad \text { Cay bejs Formule } \\
& T(n, k)=\sum_{l=0}^{n-k}\binom{n-k}{l}(l+1)^{l-1} T(n-l-1, k-1)
\end{aligned}
$$

Herehict in tiore

$$
=\sum_{l=0}^{n-k}\binom{n-k}{l}(l+1)^{l-1}(k-1)(n-l-1)^{n-k \nu l-1} \quad \text { indur }
$$

Abel's formulea

$$
\sum_{l=0}^{m}\binom{m}{l}(x+l)^{l-1}(y+m-l)^{m-l-1}=\left(\frac{1}{2 x}+\frac{1}{b}\right)(x+y+m)^{m-1}
$$

Take $m=n+k, x=1, y=k-1$.

Number of ry clos:
Let $Z_{k}=\# 0$ cycles f length k.

$$
E\left(Z_{k}\right)=\binom{n}{k}(k-1)!n^{-k}=\frac{1}{k} \prod_{j=0}^{k-1}(1-j / n)
$$

If $Z=Z_{1}+\cdots+Z_{n}$ then

$$
\begin{aligned}
E(Z) & =\sum_{k=1}^{n} \frac{1}{k} \prod_{j=0}^{k-1}\left(1-y_{n}\right) \\
& \sim \int_{1}^{\infty} \frac{1}{x} e^{-x^{2} / 2 n} d x \\
& \sim \log _{e} n .
\end{aligned}
$$

Number of verlizes on yocles:

$$
\begin{aligned}
E\left(\sum_{k=1}^{n} k Z_{k}\right) & =\sum_{k=1}^{n} \prod_{j=1}^{k-1}(1-j / k) \\
& \sim \sqrt{\frac{\pi n}{2}} .
\end{aligned}
$$

Shortest Paths
Let tho arcs of the complete digraph D_{n} on $[n]$ be given independent lengths $X_{e}, e \in[n]^{3}$.
Here X_{e} is exponential with mean 1 ie.

$$
\operatorname{Pr}\left(x_{e} \geqslant \eta\right)=e^{-t}
$$

for all $L \geqslant 0$.

Theorem
Let $X_{i j}=$ distance from i bs i. Then
(i) For any foxed i, j,

$$
\operatorname{Pr}\left(\left|\frac{X_{i j}}{\log n / n}-1\right| \geqslant E\right) \rightarrow 0, \quad \forall E>0
$$

(ii) For any fixed i,

$$
P_{1}\left(\left|\frac{Z_{i}}{2 \log n / n}-1\right| \geqslant t\right) \rightarrow 0, \quad \forall \epsilon>0
$$

Here $z_{i}=\max _{j} X_{i j}$

Proof
Two main properties of exponential X :

$$
(\operatorname{p1}) \operatorname{Pr}(X>\alpha+\beta \mid X>\alpha)=\operatorname{Pr}(X>\beta) .
$$

(P2) If $X_{1}, X_{2}, \ldots, X_{m}$ are independent exponential then $\min \left\{X_{1}, X_{2}, \cdots, X_{m}\right\}$ is an exponential with mean $1 / m$.

Fix $l=1$ and consular Diykstreis shortest path algorithm. This produces a tree

Suppose that vertices are added to the lies in the order $v_{1}, v_{2}, \ldots, v_{n}$ and that $d \operatorname{ist}\left(v_{1}, v_{j}\right)=Y_{j}$.

It follows from $P(1 p 3)$ that

$$
\begin{aligned}
Y_{k+1}= & \min _{i=1, \cdots k}[
\end{aligned} \begin{aligned}
v Y_{k} & \left.Y_{i}+X_{(v, v)}\right] \\
& \stackrel{\alpha}{=} Y_{k}+\text { Exponential }
\end{aligned}
$$

So $Y_{k+1}=Y_{k}+E_{k} \quad$ where E_{k} in exponential with mean $\frac{1}{k(n-k)}$ and is independent of V_{p}.

So

$$
\begin{aligned}
E\left(Y_{n}\right) & =\sum_{k=1}^{n-1} \frac{1}{k(n-k)} \\
& =\frac{1}{n} \sum_{k=1}^{n-1}\left(\frac{1}{k}+\frac{1}{n-k}\right) \\
& =\frac{2}{n} \sum_{k=1}^{n-1} \frac{1}{k} \\
& \approx \frac{2 \log _{e} n}{n} .
\end{aligned}
$$

Also

$$
\begin{aligned}
& \operatorname{Var}\left(Y_{n}\right)=\sum_{k=1}^{n-1} \operatorname{Var}\left(E_{k}\right)=\sum_{k=1}^{n-1}\left(\frac{1}{k(n-k)}\right)^{2} \\
& \leqslant 2 \sum_{k=1}^{n / 2}\left(\frac{1}{(k \ln -k)}\right)^{2} \leqslant \frac{8}{n^{2}} \sum_{k=1}^{n / 2} \frac{1}{k^{2}}=O\left(n^{-2}\right)
\end{aligned}
$$

cine we can use Chester bo prove (ii).

Now fox $\cdot j=2$. Then y is is defined by $v_{i}=2$, we see that i is uniform over $\{2,3, \cdots, n\}$.

So

$$
\begin{aligned}
E\left(X_{1,2}\right) & =\frac{1}{n-1} \sum_{i=2}^{n} \sum_{k=1}^{i} \frac{1}{\left.k \ln -b_{0}\right)} \\
& =\frac{1}{n-1} \sum_{k=1}^{n-1} \frac{n-k}{k(n-k)} \\
& =\frac{\log _{e} n}{n} .
\end{aligned}
$$

For vanamios we hove

$$
x_{1,2}=\delta_{2} y_{2}+\delta_{3} y_{3}+\cdots+\delta_{n} y_{n}
$$

where

$$
\begin{aligned}
& \text { where } \\
& \delta_{i} \in\{0,1\} ; \delta_{0}+\cdots \delta_{n}=1 ; \quad P_{r}\left(\delta_{i}=1\right)=\frac{1}{n-1} \\
& \begin{aligned}
\operatorname{Var}\left(X_{1,2}\right) & =\sum_{i=2}^{n} \operatorname{Var}\left(\delta_{i} Y_{i}\right) \\
& +\sum_{i \neq j} \operatorname{Covar}\left(\delta_{i} Y_{i} \delta_{j} y_{j}\right) \\
& \leqslant \sum_{i=2}^{n} \operatorname{Var}\left(\delta_{i} y_{i}\right) \\
\operatorname{Covar}\left(\delta_{i} y_{i} \delta_{i} y_{j}\right) & =E\left(\delta_{i} y_{i} \delta_{j} y_{i}\right)-E\left(\delta_{i} y_{i}\right) E\left(\delta_{j} y_{i}\right) \leqslant 0
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}\left(X_{1,2}\right) & \leqslant \sum_{i=2}^{n} \operatorname{Var}\left(f_{i} Y_{i}\right) \\
& \leqslant \sum_{i=2}^{n} \frac{1}{n-1} \sum_{k=1}^{i-1}\left(\frac{1}{k(n-k)}\right)^{2} \\
& =O\left(\frac{1}{n^{2}}\right) .
\end{aligned}
$$

Spit sum at $n / 2$

We con now use Chobysher.

Digraphs
In this chapter we study the random digraph $D_{n, p}$. This has vertex set $[n]$ and each of the $n(n-1)$ possible edges occurs independently with probabilityp.
We will first study the size of the strong components of $D_{n, p}$.

Case 1: $p=\frac{c}{r}, c<1$
We will show that in this care

Theorem 1
Whap
(i) all strong components of $D_{n, p}$ are either Cycles or single vertices.
(ii) The number of vertices on cycles is at most ω, for any $\omega=\omega(n) \longrightarrow \infty$

Proof

The expected number of cycles is

$$
\sum_{k=2}^{n}\binom{n}{k}(k-1)!\left(\frac{c}{n}\right)^{k} \leqslant \sum_{k=2}^{n} \frac{c^{k}}{k}=O(1) .
$$

Part (ii) now follows from the Markov in equality

To tackle (i) we argue that if there is a component that is not a cycle or single vertex then there io a cycle C and vertices $a, b \in C$ and a path P from $a t b$ that is internally disjoint from C.

However, the expected number of such sub-graphs is bounded by

$$
\begin{aligned}
& \sum_{k=2}^{n} \sum_{l=1}^{n-k}\binom{n}{k}(k-1)!\left(\frac{c}{n}\right)^{k}\binom{n}{l} l!\left(\frac{c}{n}\right)^{l+1} \\
\leqslant & \sum_{k=2}^{\infty} \sum_{l=1}^{\infty} \frac{c^{k+l+1}}{k n}=O\left(\frac{1}{n}\right) .
\end{aligned}
$$

Here is the number of vertices on the path P, excluding a, b.

We now consider the case $p=\frac{c}{n}$ where $c>1$.
We will prove the following theorem that is a directed analogue of the existence of a giant component in $G_{n, p}$.
Theorein 2
Let x be defined by $x<1$ and $x e^{-x}=c e^{-c}$.
Then why $D_{n, p}$ contains a uniquestrong component of dizen $\left(1-\frac{x}{c}\right)^{2} n$. All o the strong componentio are of logarithmic size.

General Strategy: For a vertex v let

$$
\begin{aligned}
& D^{+}(v)=\left\{w: \exists \text { path } v \text { to } w \text { in } D_{n, p}\right\} \\
& D^{-}(v)=\left\{w: \exists \text { path wt } v \text { in } D_{n, p}\right\} .
\end{aligned}
$$

We will fist prove
Lemma 1
There exist constants α, β (dependent only on e) such that whop \# v such that $\left|D^{\ddagger}(v)\right| \in[\alpha \log n, \beta n]$.

Proof
If there is a v such that $\left|D^{+}(v)\right|=S$ then $D_{n, p}$ cont ain a liresTof size s, rooted at v such that (1) all arson ore onented away from v and (ii) there are no ares oriented from $V[T]$ is $[n] \backslash V[T]$.

The expected number If such lies io bounded ab ore by

$$
\begin{aligned}
& \binom{n}{s} s^{s-2}\left(\frac{c}{n}\right)^{s-1}\left(1-\frac{c}{n}\right)^{s(n-s)} \leqslant \\
& \frac{n}{c s^{2}}\left(c e^{1-c+s / n}\right)^{s}
\end{aligned}
$$

Now $c e^{1-c}<1$ for $c \neq 1$ and so
there exists β such that i when $s \leqslant \beta n$ we can bound $c e^{1-c+\delta / n}$ by some constant $\gamma<1$ (γ depends only on $<$). In which case
$\frac{n}{\operatorname{cs}^{2}} \gamma^{s} \leqslant n^{-3}$ for $s \geqslant \frac{4}{\log 1 / \gamma} \log n$.

Fur a vertex $v \in[n]$ and consider a directed breadth first search from. v.
Let $S_{0}^{+}=\{v\}$ and given $S_{0}^{+}, S_{1}^{+}, \ldots, S_{k}^{+} \subseteq[n]$ let $T_{k}^{+}=\bigcup_{i=1}^{k} S_{\text {, and let }}^{+}$

$$
S_{k+1}^{+}=\left\{w \notin T_{k}^{+}: \exists x \in T_{k}^{+} \text {s.t. }\left(x_{0} v\right) \in E\left(D_{n, p}\right)\right\} \text {. }
$$

Not surprisingly, we can show that the sub-graph Γ_{k} induced by T_{k}^{+}is close in distribution to the tree defined by
the first k+1 levels of a Galton-Watson branching process with $P(c)$ as the distribution of the number of offspring from a single parent.

Lemma 2
If $\hat{S}_{0}, \hat{S}_{1}, \ldots, \hat{S}_{k}$ and \hat{T}_{k} are defined with ropect to the branching process and if $k \leqslant k_{0}=\log ^{3} n$ and $s_{0} s_{1} \ldots, s_{k}$ $\leqslant \log ^{4} n$ then

$$
\operatorname{Pr}\left(\left|S_{i}^{+}\right|=s_{i}, 0 \leqslant i \leqslant k\right)=\left(1+0\left(\frac{1}{n^{2}+000}\right)\right) \operatorname{Pr}\left(\left|\hat{S}_{i}\right|=s_{i}, 0 \leqslant c \leqslant k\right)
$$

Proof

$$
\operatorname{Pr}\left(\left|\hat{S}_{l}\right|=s_{i}, 0 \leqslant i \leqslant k\right)=\prod_{i=1}^{k} \frac{\left(c s_{i-1}\right)^{s_{i}} e^{-c s_{n-1}}}{s_{i}!}
$$

Furthermore, putter $t:=S_{0}+S_{1}+\cdots+S_{i}$ we have

$$
\operatorname{Pr}\left(\left|s_{i}^{+}\right|=s_{i}, 0 \leqslant i \leqslant k\right)=\prod_{i=1}^{k}\binom{s_{i-1}\left(n-t_{i}\right)}{s_{i}}\left(\frac{s}{n}\right)^{s_{i}}\left(1-\frac{s}{n}\right)^{s_{i},\left(n-t_{i}\right)-s_{i}}
$$

and the lemma foll ow by simple estimations.

Lemma 3
(a) $\operatorname{Pr}\left(\left|S_{l}^{+}\right| \geqslant s \log n| | S_{i-1}^{+} \mid=s\right) \leqslant n^{-10}$.
(b) $\operatorname{Pl}\left(\left|\hat{S}_{l}\right| \geqslant \operatorname{slog} n| | \hat{S}_{l-1} \mid=s\right) \leqslant n^{-10}$.
$\frac{\text { Proof }}{\text { (a) }}$

$$
\begin{aligned}
& \operatorname{Pr}\left(\left|S_{i}^{+}\right| \geq s \log n| | S_{b-1}^{+} \mid=s\right) s \\
& \operatorname{Pr}\left(B\left(s n, \frac{c}{n}\right) \geqslant s \log n\right) \leqslant(s \log)\left(\frac{c}{n}\right)^{s \log n} \\
& \leqslant\left(\frac{\text { sne } c}{\operatorname{sn} \log n}\right)^{\text {slogn }} \\
& \leqslant\left(\frac{e c}{\log n}\right)^{\log n} \text {. }
\end{aligned}
$$

(b) is sumular.

Next let

$$
\mathscr{F}=\left\{\exists i:\left|{T_{i}^{+}}_{i}^{+}\right|>\log ^{2} n\right\}
$$

Lemme 4

$$
P_{1}(\vartheta)=1-\frac{x}{c}+o(1)
$$

Proof

$$
\operatorname{Pr}(F)=\operatorname{Pr}\left(F_{1}\right)+o(1)
$$

where

$$
\Psi_{1}=\left\{\exists i \leqslant \log ^{2} n:\left|{K_{0}}_{0}^{+}\right|, \cdots,\left|K_{i-1}^{+}\right|<\log _{n}^{2} n \leqslant\left|K_{0}^{+}\right|\right\}
$$

Tho foll rows from Lemma 3.

Applying Lemma, 2 (onpl2) we see that

$$
P_{1}\left(\mathscr{f}_{1}\right)=P_{1}\left(\hat{y}_{1}\right)+o(1)
$$

where \hat{f}_{1} is defined w.r.t. the branching process.
Now let $\widehat{\mathcal{E}}$ be the event that the branching process becomes extinct.
We write

$$
\begin{equation*}
\operatorname{Pr}\left(\hat{f}_{1}\right)=\operatorname{Pr}\left(\hat{f}_{1} \mid \neg \hat{\varepsilon}\right) \operatorname{Pr}(\neg \hat{\varepsilon})+\operatorname{Pr}\left(\hat{\mathcal{F}_{1}} \wedge \varepsilon\right) \tag{1}
\end{equation*}
$$

To estimate (1) we first de fine

$$
\begin{aligned}
\rho & =p_{l}(\hat{\varepsilon}) \\
& =\sum_{k=0}^{\infty} \frac{c^{k} e^{-c}}{k!} \rho^{k} .
\end{aligned}
$$

This in. f the ongin of the process has k chechen then each of the processes spawned by then must become extinct fo E to occur. α hus

$$
\rho=e^{c p-c}
$$

Substituting $\rho=\frac{\xi}{c}$ proves that

$$
P_{l}(\hat{\varepsilon})=\frac{\xi}{c} \text { where } \frac{\xi}{c}=e^{\xi-c}
$$

and so $\xi=x$.
The lemme will follow from (1] [p16] and this and $P_{r}(\widehat{f} \mid \neg \varepsilon)=1-0(1)$ (see Lemma $3[\rho \mid i]$) and

$$
\begin{equation*}
\operatorname{Pr}(\hat{f} \wedge \varepsilon)=\sigma(1) . \tag{2}
\end{equation*}
$$

Let us break the f int $\log ^{2} n$ generations of the branching process ant loge rounds of length $\log n$.
If \neg \& occurs then we start each round with a non-sero population.
Claim 1
Esech member of this population hon a probability IJ at lat $t>0$ O producing $\log ^{2} n$ doconncumits at depth $\log n$. Here $\leqslant>0$ depends only on C and so

$$
P_{1}\left(\bar{f}_{\wedge\urcorner}, \varepsilon\right) \leqslant(1-\epsilon)^{\log n}=0(1)
$$

If the current population of the process in s then the probability bl al it reach she at least $\frac{C_{+1}}{2} s$ in the next round is

$$
\sum_{k \geq \frac{c+1}{2} s} \frac{(c s)^{k} e^{-c s}}{k!} \geqslant 1-e^{-\alpha s}
$$

for some constant $\alpha>0$ provided $S \geqslant 100$, sey.
Now there is a positive probabiting ϵ say that a single object spars at least 100 descendants and so there is a probally of at least

$$
\epsilon_{1}\left(1-\sum_{s=100}^{\infty} e^{-\alpha s}\right)
$$

that a singe object spawn o

$$
\left(\frac{c+1}{2}\right)^{\log n}>\log ^{2} n
$$

descendants at depth $\log n$.
This proves Clam $1([\rho 19])$ and completes the proof of Lemma 4 .

We stale for fuline reference that the above argument supports the following claim.
Clam?

$$
\operatorname{Pr}\left(\exists i:\left|S_{i}^{+}\right| \geqslant \log ^{2} n \text { and }\left|T_{t}^{+}\right|\right.
$$

We must now consider the probabitty that both $D^{+}(v)$ and $D^{-}(v)$ are large.
Lemma S

$$
\operatorname{Pr}\left(\left|D^{-}(v)\right| \geqslant \log ^{2} n\left|1 D^{+}(v)\right| \geqslant \log _{n}^{2}\right)=\left\{-\frac{x}{c}+o(1) .\right.
$$

Proof
Expose $S_{\partial}^{+}, S_{1}^{+} \cdots S_{t_{0}}^{+}$until either $S_{r}^{+}=\varnothing$ or we see that $\left|T_{k}^{+}\right| \geqslant \log ^{2} n$.
Now let S dense the set I eedpo/vertics dafernad by y $S_{0}^{+}, S_{1}^{+}, \cdots S_{n}^{+}$we see that (sec Lemma 2 [p127])

Let C bo the event that there are no edge from $T_{l}^{-} i_{0} S_{k}^{+}$where T_{l}^{-}is the set f realises we reach through our BFS wt v, up t_{0} $t-$ point where we fist find that $\left|D^{-}(v)\right|<\log ^{2} n$ or $\geq \log ^{2} n$. Then

$$
\operatorname{Pr}(\varphi)=1-\frac{1}{n^{1-011)}}
$$

end

$$
\operatorname{Pr}\left(\left|s_{i}^{-}\right|=s_{i}, 0 \leq i \leqslant k \mid C\right)=\prod_{i=1}^{k}\left(\begin{array}{l}
s_{1-1}\left(n_{i}^{n}-t_{i}\right) \\
\left.s_{i}\right)\left(\frac{s}{n}\right)^{s_{i}}\left(1-\frac{s}{n}\right)^{s_{i},\left(n^{n}-t_{i}\right)-s_{i}}
\end{array}\right.
$$

where $n^{\prime}=n \sim\left|T_{k}^{+}\right|_{\text {. }}$
Given this we can prove a conditional reasoning Lemme 2 and continue es before.

We have now shown that if

$$
S=\left\{v:\left|D^{+}(v)\right|,\left|D^{-}(v)\right|>\alpha \log n\right\}
$$

been

$$
E(|s|)(1+o(1))\left(1-\frac{x}{c}\right)^{2} n
$$

We absoctain that for any tiv vertices $v_{s} w$

$$
\begin{equation*}
\operatorname{Pr}\left[v_{s} w \in S\right]=(1+\sigma(1)] \operatorname{Pr}(v \in S) \operatorname{Pr}(w \in S) \tag{3}
\end{equation*}
$$

and therefore the Chebysher inequality implies that whip

$$
|S|=(1+o(1))\left(1-\frac{x}{c}\right)^{2} n
$$

But (3) follows in a sumer manner los the proof of Lemma 5 (p22).

All that remains of the proof of theorem 2 is is show that
why S is a strong component. (4)
(Any vieS is in a strong component $?$ size $\leqslant \alpha \log n{ }^{2}$.

We prove 4] by arguing that

$$
\begin{equation*}
\operatorname{Pr}\left(\exists v_{j} w \in S: \omega \notin D^{+}(v)\right)=O(4) \text {. } \tag{S}
\end{equation*}
$$

For this we expose $S_{j}^{+}, S_{1,}^{+}, \ldots, S_{b}^{+}$until we find that $\left|T_{f}^{+}(v)\right| \geqslant n^{\frac{1}{2}} \log n$.
At the same : cine we expose $S_{0,}^{-} S_{1}^{-}, \cdots, S_{l}^{-}$ until $\left|T_{e}^{-}(\omega)\right| \geqslant n^{1 / 2} \log n$.
If $w \notin D^{+}(v)$ then this experiment will have tired at least $\left(n^{\frac{1}{2}} \log n\right)^{2}$ limes t find an edge from D^{+}ios $: D^{-}(\omega)$ and faded every lina.

The probabluliy the n at moot

$$
(1-c / n)^{n \log ^{2} n}=o\left(n^{-2}\right)
$$

This completes the proof of Theorem 2 .

Strong Connectarety Khushold
Here we prove
Theorem 3
Suppose that $p=\frac{\log n+c_{n}}{n}$. Then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \operatorname{Pr}\left(D_{n, p} \text { bstiongly connected }\right): \begin{cases}0 & e_{n} \longrightarrow-\infty \\
e^{-2 e^{-c}} & e_{n} \rightarrow c \\
1 & c_{n} \rightarrow+\infty\end{cases} \\
& =\lim _{n \rightarrow \infty} P_{1}\left(\nexists v \text { such that } d^{+}(v)=0 \sim d(v)=0\right) .
\end{aligned}
$$

Proof
We leave it as an exceriss to prove that

$$
\lim _{n \rightarrow \infty} P_{1}\left(\nexists v \operatorname{such} d^{+}(v)=0 \text { or } d^{-}(v)=0\right)= \begin{cases}1 & c_{n} \rightarrow-\infty \\ 1-e^{-2 e^{-c}} & c_{n} \rightarrow 0 \\ 0 & c_{n} \rightarrow \infty\end{cases}
$$

Given this, ore only hes to show that y $\left.c_{n}\right\rangle>-\infty$ then why there does nob exist a verleix v such. that $2 \leq\left|D^{+}(v)\right| \leq n / 2$ ar $2 \leqslant\left|0^{-}(v)\right| \leqslant n / 2$.

But, here with $s_{21}=10^{2}(v) \mid$,

$$
\begin{aligned}
\operatorname{Pr}(\exists v) & \leqslant 2 n \sum_{\delta=1}^{n / 2}\binom{n}{\delta}(s+1)^{s-1}\left(\frac{c}{n}\right)^{s}(1-p)^{(\delta+1)(n-1-s)} \\
& =O(1) . \quad \text { (Exercise) }
\end{aligned}
$$

Hamilton Cycles
Here we prove the following remarkable unequally:
Theorem 4

$$
\operatorname{Pr}\left(D_{n, p} \text { is Hame Ionian }\right) \geqslant \operatorname{Pr}\left(G_{n, p}\right. \text { ibltamul toman) }
$$

Proof
Remake: This show that $y p=\frac{\log n+\log \log n+10}{n}$ then $D_{n, p}$ io Hamiltoman whee. α his result hos been strengthened but it rappers a much more dyffalt argument. She loglogn com be elimunalal.

Proof
We onside a sequence of rand om digraph o $\Gamma_{0}^{1} \Gamma_{1}, \Gamma_{2}, \cdots \Gamma_{N}, N=\binom{n}{2}$ defined a follows:
Let $e_{i} e_{2}, \ldots e_{N}$ be an enumeration of the edge of K_{n}. Each $e_{i}=\left(v_{i}, \omega_{1}\right)$ guest rose to live durectel edges $\vec{e}_{\dot{\theta}}=\left(v_{1}, \omega_{i}\right)$ and $\stackrel{\rightharpoonup}{e}_{0}=\left(\omega_{i}, v_{i}\right)$.
In Γ_{i} we includes \vec{e}_{j} and $\stackrel{\rightharpoonup}{e}_{j}$ independently g each other, with probability p, for $j \leqslant i$. W hale $f_{\text {o }} i>i$ we include both or nether with probability p.

Thus Γ_{0} is just $G_{n, p}$ with each edge (v, w) replaced by a pair of dereclad bede $\left(v_{0} \omega\right),(\omega, v)$ and $\Gamma_{N}=D_{n, p}$. Theorem 4 follows from $P_{r}\left(\Gamma_{i s}\right.$ Hamultoman $) \geqslant P_{r}\left(\Gamma_{i-1}\right.$ is Hamulloman $)$

To prove this we condition on the existence or othenviso of directed edges associaled wets $e_{w} \cdots, e_{i c i}, e_{i+1} \ldots, e_{N}$.
Let C dense this condilornng.

Ether C is swh that
(a) \circlearrowright guins us a Homiltor yects wothout arss associalid wictil E_{i} a there is no tumilton ay cle even y bok $\overrightarrow{e_{i}}, \bar{e}_{0}$ oecur
or C is such thati
(b) \exists a Hamilton cycla if at least one $f \vec{e}_{v}, \widetilde{e}_{i}$ occers.
In Γ_{l-1} this happens wich probabilly P
In Γ_{i} thes happens with probublly $1-(1-p)^{2}>p$
[We will neved nequro that boch $\vec{e}_{i}, \widehat{\varepsilon}_{v}$ occast.]

