Random Graphs Homework 1

1. Suppose that p = c/n where c is constant.

(i) Show that whp $G_{n,p}$ contains no set of vertices S with $s = |S| < (20c^2)^{-1}n$ such that S contains 2s edges.

- (ii) Show that **whp** the maximum degree $\Delta \leq \frac{\ln n}{\ln \ln n}$. (ii) Show that **whp** the vertices of degree at least $\frac{2 \ln n}{3 \ln \ln n}$ form an independent set.
- 2. Let A_1, A_2, \ldots, A_N be events in some probability space. Let \mathcal{E}_k be the event that exactly k of these events occur. Show that

$$\mathbf{Pr}(\mathcal{E}_k) - \sum_{t=k}^{M} (-1)^{t-k} \binom{t}{k} S_t \begin{cases} \leq 0 & M-k \ even \\ \geq 0 & M-k \ odd \end{cases}$$

where

$$S_t = \sum_{X \subseteq [N], |X|=t} \mathbf{Pr}\left(\bigcap_{i \in X} A_i\right).$$

- 3. Let $p = n^{-1}(\ln n + c)$. What is the limiting probability that $G_{n,p}$ has exactly k isolated vertices?
- 4. Suppose that $p = (\ln(n^2/c)/n)^{1/2}$. What is the limiting probability (as $n \to \infty$) that $G_{n,p}$ has diameter 2?
- 5. Suppose that 0 < c < 1 is constant and p = c/n. (i) What is the limiting probability that $G_{n,p}$ has girth g? (The girth of a graph is the length of its shortest cycle). (ii) What is the limiting probability that $G_{n,p}$ is a forest?
- 6. Let C be a component of size k = O(1) in G_m where m = o(n). What is the limiting probability that C is still a component in $G_{m+\alpha n}$?
- 7. Let $B_{m,n,p}$ be the random sub-graph of the complete bipartite graph $K_{m,n}$ obtained by keeping each independently with probability p. (i) When does $B_{\alpha n,\beta n,c/n}$ have a giant component whp? (ii) When is $B_{n,n,p}$ connected **whp**?
 - (iii) When does $B_{n,n,p}$ have a 2-factor whp?
- 8. Suppose that we give each edge of $K_{\alpha n,\beta n}$ an independent uniform [0,1] edge weight. What is the limiting expected value of the length of a minimum spanning tree?
- 9. B_{k-out} is the random bipartite graph with vertex bipartition [n] + [n]. Each vertex chooses k random neighbours from the other side of the bipartition. For what values of k is it true that B_{k-out} has a perfect matching **whp**?
- 10. G_{k-out} is the random graph with vertex set [n]. Each vertex chooses k random neighbours. Show that G_{k-out} is k-connected **whp**, for $k \geq 2$.

- 11. Let T be a fixed tree on k vertices. Show that if K is sufficiently large then whp $G_{kn,Kn\log n}$ contains n vertex disjoint copies of T covering every vertex of [kn].
- 12. Let H be a fixed unicyclic graph on k vertices. Show that if K is sufficiently large then whp $G_{kn,Kn^{3/2}\sqrt{\log n}}$ contains n vertex disjoint copies of H covering every vertex of [kn].