- 1. Suppose that p = c/n where c > 1 is constant. Show that w.h.p. there does not exist a set of $s \le \frac{1}{2} \log_c n$ vertices that induce a connected subgraph with more than cycle.
- 2. Suppose that p = c/n where $c > 4 \log 2$ is constant. Show that w.h.p. e(A, B) > 0 for every pair of sets A, B of size n/2 each that partition [n]. Here e(A, B) is the number of edges joing a vertex in A to a vertex in B.
- 3. Suppose that $np \leq \log n$. Let a vertex be *small* if its degree is at most np/10. Show that w.h.p. no two small vertices are within distance 10 of each other.
- 4. Suppose that $m = \binom{n}{2}p$ and that \mathcal{P} is a monotone increasing property. Prove that $\mathbf{Pr}(G_{n,m} \in \mathcal{P}) \leq 10\mathbf{Pr}(G_{n,p} \in \mathcal{P})$ without invoking the Central Limit Theorem i.e. just by comparing binomial coefficients.
- 5. Show that if $p \ge 2n^{-1/2} \log n$ then the diameter of $G_{n,p}$ is at most two. (It will be exactly two unless p is very close to one). What is the equivalent statement for $G_{n,m}$?
- 6. Suppose that p = c/n where c > 1 is a large constant.
 - Show that with probability at least 1/2, there are at most $3c^{\log \log n}$ vertices X that lie on cycles of length at most $\log \log n$.
 - Show that w.h.p. there is no independent set of size greater than $\frac{2 \log c}{c} n$.
 - Deduce that for large n, there exists a graph with girth at least $\log \log n$ and chromatic number at least $\frac{c-o(1)}{2\log c}$.
- 7. Consider the following algorithm for finding an independent set I in $G_{n,p}$ where p = o(1) and $np \to \infty$. Initially $I = \emptyset$ and let N(I) denote the set of neighbors of I. At an odd numbered step add any vertex to I that is not in N(I). At an even step add a random vertex not in N(I) to I, choose a vertex arbitrarily from those vertices not in N(I). Prove that w.h.p. at the end of the process $|I| \leq (2 \epsilon) \log_b n$ where b = 1/(1 p) and ϵ is a positive constant. This is regardless of the choices made at the odd steps.
- 8. Let A_1, A_2, \ldots, A_N be events and for $i \in [N]$ let θ_i be the 0/1 indicator for the occurrence of A_i . Let

$$f_k(\theta_1,\ldots,\theta_N) = \sum_{\substack{S \subseteq [N] \\ |S|=k}} \prod_{i \in S} \theta_i \prod_{j \notin S} (1-\theta_j).$$

Let X denote the number of i such that A_i occurs. Show that

(a)

$$f_k(\theta_1, \dots, \theta_N) = \begin{cases} 1 & X = k \\ 0 & X \neq k \end{cases}$$

(b) Let $S_j = {X \choose j}$ for $j \in [N]$. Deduce that

$$\mathbf{Pr}(X=k) = \sum_{j \ge k} (-1)^{j-k} \binom{j}{k} \mathbf{E}(S_j).$$

- 9. Prove a hitting time version for perfect matchings.
- 10. The k-core $C_k(G)$ of a graph G is the largest subgraph with minimum degree k and let $c_k(G)$ denote its size. Prove that if it is non-empty, then it is unique. What is a simple algorithm for constructing it.

Consider the graph process G_0, G_1, \ldots . Show that if $k \ge 3$ then w.h.p. there exists m and a constant $\alpha_k > 0$ such that $c_k(G_{m-1}) = 0$ and $c_k(G_m) \ge \alpha_k n$.

- 11. Let p = c/n where c > 1 is a constant. Let 0 < x < 1 be the solution to $x = 1 e^{-cx}$. Show that w.h.p. $G_{n,p}$ has $\approx cx(2-x)n/2$ edges. (Hint: remove an edge and put it back.)
- 12. Let c, x be as in the previous question. Show that w.h.p. $C_2(G_{n,p})$ has $\approx (x cx + cx^2)n$ vertices and $\approx cx^2n/2$ edges.
- 13. Let c, x be as in the previous question. Show that wh.p. $C_2(G_{n,p})$ is non-planar. (Hint: bound the number of edges in a planar graph of high girth.)