Department of Mathematics Carnegie Mellon University

21-393 Operatons Research II Test 2

Name:

Problem	Points	Score
1	10	
2	30	
3	30	
4	30	
Total	100	

Q1: (10pts)

Find a minimum length spanning tree in the graph below:

Q2: (30pts) Carry out one complete iteration of a branch and bound algorithm to solve the Travelling Salesman Problem with the cost matrix below i.e. compute a lower bound, choose a variable to branch on and then compute bounds for the two sub-problems you create.

DO NOT ATTEMPT TO SOLVE THE COMPLETE PROBLEM

$$\begin{bmatrix}
\infty & 7 & 5 & 4 & 3 \\
5 & \infty & 3 & 6 & 4 \\
4 & 8 & \infty & 5 & 7 \\
3 & 5 & 4 & \infty & 5 \\
4 & 5 & 4 & 7 & \infty
\end{bmatrix}$$

Q3: (30pts) Solve the assignment problem with the matrix below:

$$\left[\begin{array}{cccc}
7 & 5 & 4 & 3 \\
5 & 3 & 6 & 4 \\
4 & 8 & 5 & 7 \\
4 & 5 & 5 & 7
\end{array}\right]$$

- **Q4:** (30pts) During any year I can consume any amount that does not exceed my current wealth. If I consume \$c\$ during a year then I earn c^a units of happiness. By the beginning of the next year, the previous years ending wealth grows by a factor α .
- (a) Formulate a recursion that can be used to maximise the total happiness earned during the next T years. Assume that I originally have w_0 . For a possible bonus of 30pts:
- (b) Let $f_t(w)$ be the maximum happiness earned during years t, t + 1, ..., T, given that I have w at the beginning of year t and that $c_t(w)$ is the amount that should be consumed during year t to attain $f_t(w)$. By working backwards from T show that for appropriately chosen constants a_t and b_t ,

$$f_t(w) = b_t w^a$$
 and $c_t(w) = a_t w$.