Department of Mathematics Carnegie Mellon University 21-393 Operatons Research II Test 2

Name: \qquad

Problem	Points	Score
1	10	
2	30	
3	30	
4	30	
Total	100	

Q1: (10pts)
Find a minimum length spanning tree in the graph below:

Q2: (30pts) Carry out one complete iteration of a branch and bound algorithm to solve the Travelling Salesman Problem with the cost matrix below i.e. compute a lower bound, choose a variable to branch on and then compute bounds for the two sub-problems you create.
DO NOT ATTEMPT TO SOLVE THE COMPLETE PROBLEM
$\left[\begin{array}{lllll}\infty & 6 & 4 & 3 & 2 \\ 4 & \infty & 2 & 5 & 3 \\ 3 & 7 & \infty & 4 & 6 \\ 2 & 4 & 3 & \infty & 4 \\ 3 & 4 & 3 & 6 & \infty\end{array}\right]$

Q3: (30pts) Solve the assignment problem with the matrix below:
$\left[\begin{array}{llll}6 & 4 & 3 & 2 \\ 4 & 2 & 5 & 3 \\ 3 & 7 & 4 & 6 \\ 3 & 4 & 4 & 6\end{array}\right]$

Q4: (30pts) During any year I can consume any amount that does not exceed my current wealth. If I consume $\$ \mathrm{c}$ during a year then I earn c^{a} units of happiness. By the beginning of the next year, the previous years ending wealth grows by a factor α.
(a) Formulate a recursion that can be used to maximise the total happiness earned during the next T years. Assume that I originally have $\$ w_{0}$.
For a possible bonus of 30pts:
(b) Let $f_{t}(w)$ be the maximum happiness earned during years $t, t+1, \ldots T$, given that I have $\$ w$ at the beginning of year t and that $c_{t}(w)$ is the amount that should be consumed during year t to attain $f_{t}(w)$. By working backwards from T show that for appropriately chosen constants a_{t} and b_{t},

$$
f_{t}(w)=b_{t} w^{a} \text { and } c_{t}(w)=a_{t} w
$$

