Department of Mathematics Carnegie Mellon University

21-393 Operatons Research II Test 2

Name:_____

Problem	Points	Score
1	10	
2	30	
3	30	
4	30	
Total	100	

Q1: (10pts) Find a minimum length spanning tree in the graph below: Q2: (30pts) Carry out one complete iteration of a branch and bound algorithm to solve the Travelling Salesman Problem with the cost matrix below i.e. compute a lower bound, choose a variable to branch on and then compute bounds for the two sub-problems you create.

DO NOT ATTEMPT TO SOLVE THE COMPLETE PROBLEM

∞	6	$\frac{4}{2}$	3	2]
4	∞	2	5	3
3	7	∞	4	6
2	4	$\frac{\infty}{3}$	∞	4
3	4	3	6	∞

Q3: (30pts) Solve the assignment problem with the matrix below:

[6	4	3	2	1
4	2	5	3	
3	7	4	6	
3	4	4	6	

Q4: (30pts) During any year I can consume any amount that does not exceed my current wealth. If I consume \$c during a year then I earn c^a units of happiness. By the beginning of the next year, the previous years ending wealth grows by a factor α .

(a) Formulate a recursion that can be used to maximise the total happiness earned during the next T years. Assume that I originally have w_0 . For a possible bonus of 30pts:

(b) Let $f_t(w)$ be the maximum happiness earned during years $t, t + 1, \ldots T$, given that I have w at the beginning of year t and that $c_t(w)$ is the amount that should be consumed during year t to attain $f_t(w)$. By working backwards from T show that for appropriately chosen constants a_t and b_t ,

$$f_t(w) = b_t w^a$$
 and $c_t(w) = a_t w$.