Department of Mathematical Sciences Carnegie Mellon University
 21-393 Operations Research II
 Test 2

Name: \qquad

Problem	Points	Score
1	35	
2	35	
3	30	
Total	100	

Q1: (35pts)

Use the KKT conditions to solve
Minimise $\left(x_{1}-2\right)^{2}+\left(x_{2}-2\right)^{2}$ subject to $x_{1}+2 x_{2} \leq 3,2 x_{1}+x_{2} \leq 1$.

Q2: (35pts) There are two machines available for the processing of n jobs. The processing time of job j is $p_{j}>0$ for $j=1,2, \ldots, n$. The objective is to assign jobs to machines in order to minimise $C_{\max }=\max \left\{C_{j}: j=\right.$ $1,2, \ldots, n\}$ where C_{j} is the completion time of job j. Let

$$
P_{1}=\sum_{j=1}^{n} p_{j} \text { and } P_{2}=\max \left\{p_{j}: j=1,2, \ldots, n\right\}
$$

Show that the optimal solution satisfies

$$
\frac{P_{1}}{2} \leq C_{\max } \leq \frac{P_{1}+P_{2}}{2}
$$

Q3: (30pts)

In an inventory system for a single product there is a cost of $A Q^{1 / 2}$ for making an order of size Q. No stockouts are allowed. The inventory cost per period is $I h^{1 / 2}$ where h is the average amount of stock held. Determine an optimal purchasing/stock strategy.

