Department of Mathematical Sciences Carnegie Mellon University
 21-393 Operations Research II
 Test 2

Name:

Problem	Points	Score
1	33	
2	33	
3	34	
Total	100	

Q1: (33pts)
Formulate the following as an integer program:
Suppose that a state sends R persons to the U.S. House of Representatives. There are $D>R$ counties in the state and the state legislature wants to group these counties into R distinct electoral dstricts, each of which sends a delegate to Congress. The total population of the state is P, and the legislature wants to form districts whose population approximates $p=P / R$. Suppose that the appropriate legislative committee studying the electoral districting problem generates a long list of $N>R$ candidates to be districts. Each of the candidates contains contiguous counties and the total population of candidate j is $p_{j}, j=1,2, \ldots, N$. Define $\pi_{j}=\left|p_{j}-p\right|$ and

$$
a_{i, j}= \begin{cases}1 & \text { if county } i \text { is included in candidate } j \\ 0 & \text { otherwise }\end{cases}
$$

Given the values of $p_{j}, a_{i, j}$, the objective is to select R of these candidates such that each county is contained in a single district and such $\max \left\{\pi_{j}\right\}$ is as small as possible.

Q2: (33pts)

Analyse the following inventory system and derive a strategy for minimising total cost. There are n products. Product i has demand λ_{i} per period and no stock-outs are allowed. The cost of making an order for Q units of a mixture of products is $A Q^{\alpha}$. The inventory cost is $I \max \left\{L_{1}, L_{2}, \ldots, L_{n}\right\}$ per period where L_{i} is the inventory level of product i in that period.

Q3: (34pts) There are two machines available for the processing of $n=2 m$ jobs. The processing time of job j is $p_{j}>0$ for $j=1,2, \ldots, n$. The objective is to assign jobs to machines in order to minimise $\sum_{j=1}^{n} C_{j}$ where C_{j} is the completion time of job j. Let $m_{i}, i=1,2$ denote the number of jobs executed on machine i.

1. Suppose that machine 1 processes jobs $i_{1}, i_{2}, \ldots, i_{s}$ and machine 2 processes jobs $j_{1}, j_{2}, \ldots, j_{t}$ in this order. Show that the contribution of machine 1 to the objective function is

$$
s p_{i_{1}}+(s-1) p_{i_{2}}+\cdots+2 p_{i_{s-1}}+p_{i_{s}} .
$$

2. Show that in the optimal solution, each machine processes m jobs.
3. Show that $p_{i_{1}} \leq p_{i_{2}} \leq \cdots \leq p_{i_{m}}$.
4. Show that $p_{i_{m}} \geq p_{j_{m-1}}$.

Using 3. and 4. deduce the structure of an optimal solution.

