Department of Mathematical Sciences Carnegie Mellon University

21-393 Operations Research II Test2

Name:_____

Problem	Points	Score
1	50	
2	30	
3	20	
Total	100	

Find a minimum spanning tree in the following weighted graph.

Q2: (30pts) Let \mathcal{W} denote the set of walks in a directed graph D. If W_1 is a walk from a to b and W_2 is a walk from b to c then $W_1 + W_2$ is the walk from a to c obtained by following W_1 and then W_2 .

Let $\ell : \mathcal{W} \to \mathbb{R}$ be a real valued function defined on \mathcal{W} . Suppose that it has the following properties:

- 1. $\ell(C) \ge 0$ for any closed walk C. (A walk is closed if it begins and ends at the same vertex).
- 2. If W_1, W'_1 are walks from a to b and W_2, W'_2 are walks from b to c and $\ell(W'_i) \ge \ell(W_i)$ for i = 1, 2 then $\ell(W'_1 + W'_2) \ge \ell(W_1 + W_2)$.

Consider the following algorithm: n is the number of vertices in D. **Initialise** $W_{i,j} = (i, j)$ and $D_{i,j} = \ell(W_{i,j})$ for i, j = 1, 2, ..., n.

```
For k = 1 to n Do
For i = 1 to n Do
    For j = 1 to n Do
    D_{i,j} \leftarrow \min\{D_{i,j}, \ell(W_{i,k} + W_{k,j})\}
    oD
oD
```

oD

Prove that when the algorithm finishes,

 $D_{i,j} = \min\{\ell(P) : P \text{ is a path from } i \text{ to } j\}.$

Q3: (20pts) Give an algorithm to solve the following scheduling problem. There are *n* jobs labelled 1, 2, ..., n that have to be processed one at a time on a single machine. There is an acyclic digraph D = (V, A) such that if $(i, j) \in A$ then job *j* cannot be started until job *i* has been completed. The problem is to minimise $\max_j f_j(C_j)$ where for all *j*, f_j is a monotone increasing. As usual, C_j is the completion time of job *j*. This is distinct from its processing time p_j .