Department of Mathematical Sciences Carnegie Mellon University
 21-393 Operations Research II
 Test 2

Name: \qquad

Problem	Points	Score
1	50	
2	30	
3	20	
Total	100	

Q1: (50pts)
Find a minimum spanning tree in the following weighted graph.

Q2: (30pts) Let \mathcal{W} denote the set of walks in a directed graph D. If W_{1} is a walk from a to b and W_{2} is a walk from b to c then $W_{1}+W_{2}$ is the walk from a to c obtained by following W_{1} and then W_{2}.
Let $\ell: \mathcal{W} \rightarrow \mathbb{R}$ be a real valued function defined on \mathcal{W}. Suppose that it has the following properties:

1. $\ell(C) \geq 0$ for any closed walk C. (A walk is closed if it begins and ends at the same vertex).
2. If W_{1}, W_{1}^{\prime} are walks from a to b and W_{2}, W_{2}^{\prime} are walks from b to c and $\ell\left(W_{i}^{\prime}\right) \geq \ell\left(W_{i}\right)$ for $i=1,2$ then $\ell\left(W_{1}^{\prime}+W_{2}^{\prime}\right) \geq \ell\left(W_{1}+W_{2}\right)$.

Consider the following algorithm: n is the number of vertices in D.
Initialise $W_{i, j}=(i, j)$ and $D_{i, j}=\ell\left(W_{i, j}\right)$ for $i, j=1,2, \ldots, n$.
For $k=1$ to n Do
For $i=1$ to n Do
For $j=1$ to n Do
$D_{i, j} \leftarrow \min \left\{D_{i, j}, \ell\left(W_{i, k}+W_{k, j}\right)\right\}$
oD
oD
oD
Prove that when the algorithm finishes,

$$
D_{i, j}=\min \{\ell(P): P \text { is a path from } i \text { to } j\}
$$

Q3: (20pts) Give an algorithm to solve the following scheduling problem. There are n jobs labelled $1,2, \ldots, n$ that have to be processed one at a time on a single machine. There is an acyclic digraph $D=(V, A)$ such that if $(i, j) \in A$ then job j cannot be started until job i has been completed. The problem is to minimise $\max _{j} f_{j}\left(C_{j}\right)$ where for all j, f_{j} is a monotone increasing. As usual, C_{j} is the completion time of job j. This is distinct from its processing time p_{j}.

