Department of Mathematical Sciences Carnegie Mellon University
 21-393 Operations Research II
 Test 2

Name:

Problem	Points	Score
1	40	
2	40	
3	20	
Total	100	

Q1: (40pts)

Find a shortest path from vertex 1 to vertex 6 in the digraph above. The numbering of the vertices is such that every arc (i, j) is oriented from i to j when $i<j$. The arc lengths are time dependent: associated with arc $e=(i, j)$ there are two numbers, a_{e}, b_{e} such that the arc length of e is $a_{e}+b_{e} t$ where t is the time of arrival at i. The values of a_{e}, b_{e} are given in the following table:

e	$(1,2)$	$(1,3)$	$(2,3)$	$(2,4)$	$(3,4)$	$(3,5)$	$(4,5)$	$(4,6)$	$(5,6)$
a_{e}	3	4	2	5	1	3	3	4	5
b_{e}	2	1	3	4	1	2	1	1	3

You can put your working on the diagram.

Q2: (40pts) Given that assigning person i to job i for $i=1,2,3$ is optimal for the 3×3 problem associated with the first 3 rows and columns of the matrix below, set up and solve a shortest path problem that will solve the 4×4 problem:
$\left[\begin{array}{llll}0 & 3 & 2 & 4 \\ 3 & 0 & 6 & 2 \\ 3 & 5 & 0 & 3 \\ 0 & 5 & 6 & 7\end{array}\right]$

Q3: (20pts)
Formulate the following problem as an integer program: A set of n items are to be repaired in a factory. Item i takes time t_{i} to repair and requires w_{i} workers working continuously. It arrives at time a_{i} and it must be finished by time d_{i}. The problem is to find a repair schedule that minimises the total number of workers needed. (When a worker has finished working on one job, he/she can work on another job).

