Department of Mathematical Sciences Carnegie Mellon University

21-393 Operations Research II Test2

Name:_____

Problem	Points	Score
1	33	
2	33	
3	34	
Total	100	

Q1: (33pts)

Find the value of the following 2-person zero-sum games, Justify your answers.

	4	1	2	3	1	$\begin{bmatrix} 0 \\ 3 \\ 1 \\ 2 \\ 1 \end{bmatrix}$
$\left[\begin{array}{rrrr} 6 & 2 & 4 \\ 5 & 2 & 5 \\ 4 & 1 & -3 \end{array}\right]$	3	1	4	2	5	3
5 2 5	5	2	3	3	2	1
4 1 -3	6	3	4	1	3	2
	5	2	3	1	2	1
	-					-

Q2: (33pts)

Find a symmetric equilibrium for the first price sealed bid auction in the case where there are N bidders and F(x) = 1 - 2x for $0 \le x \le 1/2$.

Q3: (34pts) Find an optimal inventory policy for the model with the following parameters: It is a generalisation of Models 2 and 3 of the notes.

- A Cost of making an order.
- λ Demand per period for items.
- ψ Arrival rate of ordered items.
- *I* Inventory cost per item per period.
- π Penalty cost per item out of stock per period.
- 1. First draw a diagram showing the inventory level over time and various parameters.
- 2. Then identify the various costs per period.
- 3. Optimize total cost.