Department of Mathematical Sciences Carnegie Mellon University
 21-393 Operations Research II
 Test 2

Name:

Problem	Points	Score
1	33	
2	33	
3	34	
Total	100	

Q1: (33pts)

Two players simultaneously choose an integer between 1 and n inclusive. if the numbers are equal there is no payoff. If a player chooses a number one larger than the one chosen by his opponent then he wins one. If a player chooses a number two or more larger than his opponent then he loses two. Using dominance, reduce the game to a 3×3 game.

Q2: (33pts)
Solve the following integer programming problem by using a cutting plane algorithm:

$$
\begin{gathered}
\text { Maximise } x_{1}+2 x_{2} \\
\text { Subject to } 3 x_{1}+4 x_{2} \leq 5 \\
x_{1}, x_{2} \geq 0 \text { and integer. }
\end{gathered}
$$

Q3: (34pts)

Formulate the following problem as an integer program: A set of n items are to be repaired in a factory. Item i takes time t_{i} to repair and requires w_{i} workers working continuously. It arrives at time a_{i} and it must be finished by time d_{i}. The problem is to find a repair schedule that minimises the total number of workers. (When a worker has finished working on one job, he/she can work on another job).

