Department of Mathematical Sciences Carnegie Mellon University
 21-393 Operations Research II
 Test 2

Name: \qquad

Problem	Points	Score
1	25	
2	30	
3	20	
4	25	
Total	100	

Q1: (25pts)
(a) Write down the dual of

$$
\begin{array}{ll}
\operatorname{maximise} & x_{1}+6 x_{2} \\
\text { subject to } & \\
& 2 x_{1}+3 x_{2} \leq 12 \\
& 6 x_{1}+x_{2} \leq 8 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

(b) You are now given that the optimal solution to the above program is $x_{1}=0, x_{2}=4$. Use complementary slackness to solve the dual.

Q2: (30pts)
Write down the Karush-Kuhn-Tucker conditions for the following problem:

$$
\text { minimise }(x-1)^{2}+(y-2)^{2}
$$

subject to

$$
2 x+3 y_{2} \geq 10
$$

Solve the problem by finding a solution to the KKT conditions.

Q3: (20pts)
Set up the initial tableau for solving the problem of Q2 by the restricted simplex algorithm. List the pairs of variables that cannot simultaneously be basic. -YOU DO NOT HAVE TO CONTINUE BEYOND THIS POINT IN THE SOLUTION OF THE PROBLEM

Q4: (25pts)

Players A and B play the following game. A chooses a number
$x_{A} \in\{0,1,2,3\}$ and B chooses a number $x_{B} \in\{0,1,2\}$. If $x_{A}+x_{B}$ is odd, A wins a point, otherwise B wins a point.
Write down a linear program whose solution will produce an optimum strategy for A. YOU DO NOT HAVE TO SOLVE THE PROGRAM.

