Department of Mathematics Carnegie Mellon University 21-393 Operatons Research II Test 1

Name:

Problem	Points	Score
1	33	
2	33	
3	34	
Total	100	

Q1: (33pts)

Solve the following linear program for all values of λ :

$$
\begin{array}{llll}
\operatorname{minimise} & x_{1}+x_{2} & \\
\text { subject to } & & \\
& x_{1}+2 x_{2} \geq 6-\lambda \\
& 2 x_{1}-x_{2} \geq 4-\lambda \\
& x_{1}, x_{2} \geq 0 .
\end{array}
$$

[Hint: start the computation with the all slack basis.]

Q2: (33pts)
Solve the following integer program:

$$
\begin{aligned}
\operatorname{maximise} & x_{1}+4 x_{2} \\
\text { subject to } & \\
& 2 x_{1}+x_{2} \leq 4 \\
& x_{1}+2 x_{2} \leq 5 \\
x_{1}, x_{2} \geq 0 & \text { and integer. }
\end{aligned}
$$

Q3: (34pts)

Formulate the following as an integer program:
A set of n items is to be stored in a warehouse. Item i has size s_{i}, arrives at time a_{i} and departs at time d_{i}. The problem is to minimise the size D of the storage facility, if upon arrival, item i is allocated an interval of storage $I_{i}=\left[x_{i}, y_{i}\right]$ where $x_{i}, y_{i} \in\{0,1, \ldots, D-1\}$. The allocations must be such that if $I_{j} \cap I_{k} \neq \emptyset$ then $a_{k} \geq d_{j}$ or $a_{j} \geq d_{k}$.

