Department of Mathematics Carnegie Mellon University

21-393 Operatons Research II Test1

Name:_____

Problem	Points	Score
1	33	
2	33	
3	34	
Total	100	

Q1: (33pts)

Solve the following linear program for all values of λ :

minimise
$$x_1 + x_2$$

subject to
 $x_1 + 2x_2 \ge 3 - \lambda$
 $2x_1 - x_2 \ge 2 - \lambda$
 $x_1, x_2 \ge 0.$

[Hint: start computation with the all slack basis.]

Q2: (33pts)

Solve the following integer program:

maximise	$4x_1$	+	x_2		
subject to					
	x_1	+	$2x_2$	\leq	4
	$2x_1$	+	x_2	\leq	5

 $x_1, x_2 \ge 0$ and integer.

Q3: (34pts)

Formulate the following as an integer program:

Suppose that a state sends R persons to the U.S. House of Representatives. There are D > R counties in the state and the state legislature wants to group these counties into R distinct electoral districts, each of which sends a delegate to Congress. The total population of the state is P, and the legislature wants to form districts whose population approximates p = P/R. Suppose that the appropriate legislative committee studying the electoral districting problem generates a long list of N > R candidates to be districts. Each of the candidates contains contiguous counties and the total population of candidate j is p_j , j = 1, 2, ..., N. Define $c_j = |p_j - p|$ and

$$a_{i,j} = \begin{cases} 1 & \text{if county } i \text{ is included in candidate } j \\ 0 & \text{otherwise} \end{cases}$$

Given the values of c_j , $a_{i,j}$, the objective is to select R of these candidates such that each county is contained in a single district and such that the largest of the associated c_j is as small as possible.