Department of Mathematics Carnegie Mellon University 21-393 Operatons Research II Test 1

Name:

Problem	Points	Score
1	33	
2	33	
3	34	
Total	100	

Q1: (33pts)

Solve the following linear program for all values of λ :

$$
\begin{array}{llll}
\operatorname{minimise} & x_{1}+x_{2} & \\
\text { subject to } & & \\
& x_{1}+2 x_{2} \geq 3-\lambda \\
& 2 x_{1}-x_{2} \geq 2-\lambda \\
& x_{1}, x_{2} \geq 0 .
\end{array}
$$

[Hint: start computation with the all slack basis.]

Q2: (33pts)
Solve the following integer program:

$$
\begin{aligned}
& \operatorname{maximise} 4 x_{1}+x_{2} \\
& \text { subject to } \\
& x_{1}+2 x_{2} \leq 4 \\
& 2 x_{1}+x_{2} \leq 5 \\
& x_{1}, x_{2} \geq 0 \text { and integer. }
\end{aligned}
$$

Q3: (34pts)

Formulate the following as an integer program:
Suppose that a state sends R persons to the U.S. House of Representatives. There are $D>R$ counties in the state and the state legislature wants to group these counties into R distinct electoral dstricts, each of which sends a delegate to Congress. The total population of the state is P, and the legislature wants to form districts whose population approximates $p=P / R$. Suppose that the appropriate legislative committee studying the electoral districting problem generates a long list of $N>R$ candidates to be districts. Each of the candidates contains contiguous counties and the total population of candidate j is $p_{j}, j=1,2, \ldots, N$. Define $c_{j}=\left|p_{j}-p\right|$ and

$$
a_{i, j}= \begin{cases}1 & \text { if county } i \text { is included in candidate } j \\ 0 & \text { otherwise }\end{cases}
$$

Given the values of $c_{j}, a_{i, j}$, the objective is to select R of these candidates such that each county is contained in a single district and such that the largest of the associated c_{j} is as small as possible.

