Department of Mathematics Carnegie Mellon University

21-393 Operatons Research II Test1

Name:_____

Problem	Points	Score
1	25	
2	25	
3	25	
4	25	
Total	100	

Q1: (25pts)

Solve the following linear program by using the Upper Bounded Simplex Algorithm:

maximise
$$2x_1 - 3x_2$$

subject to
 $23x_1 + 34x_2 \le 837$
 $17x_1 + 19x_2 \le 596$
 $0 \le x_1 \le 1, 0 \le x_2.$

Q2: (25pts)

Solve the following linear program for all values of λ :

maximise	$(\lambda - 2)x_1$	-	$3x_2$		
subject to					
	x_1	+	x_2	\leq	2
	$-x_1$	+	x_2	\leq	1
	$x_1, x_2 \ge$	0.			

Q3: (25pts)

Solve the following integer program:

maximise	$-3x_1$	-	$\frac{1}{2}x_2$						
subject to	ე ~	1	1 ~	I	~			_	⊿ 1
	$2x_1$ $-x_1$	++	$\frac{\overline{2}x_2}{\underline{1}x_2}$	Ŧ	x_3	+	x_{\star}	=	$\frac{4}{2}}{2^{\frac{1}{2}}}$
	<i>w</i> 1		2^{ω_2}			'	ω_4		- 2

 $x_1, x_2, x_3, x_4 \ge 0$ and integer.

Q4: (25pts)

Formulate the following as an integer program:

The Financial Aids office at Carnegie Mellon University is preparing its awards for the coming year. It has selected n students to receive awards, and wants to grant at least m_i dollars to Student i, i = 1, 2, ..., n. The office has s different scholarships available; Scholarship j confers the amount a_j on its recipient. The office may have to award several scholarships to an individual in order to provide the minimum it has decided that he/she will receive. The office cannot however reduce the amount of a scholarship award. If the office does not award a particular scholarship then it becomes available for next year. The office wishes to maximise the amount of money not spent in this way.