Department of Mathematics Carnegie Mellon University 21-393 Operatons Research II Test 1

Name:

Problem	Points	Score
1	25	
2	25	
3	25	
4	25	
Total	100	

Q1: (25pts)

Solve the following linear program by using the Upper Bounded Simplex Algorithm:

$$
\begin{array}{lll}
\operatorname{maximise} & 2 x_{1}-3 x_{2} \\
\text { subject to }
\end{array} \quad \begin{aligned}
& 23 x_{1}+34 x_{2} \leq 837 \\
& \\
& 17 x_{1}+19 x_{2} \leq 596 \\
& 0 \leq x_{1} \leq 1,0 \leq x_{2}
\end{aligned}
$$

Q2: (25pts)

Solve the following linear program for all values of λ :

```
maximise \((\lambda-2) x_{1}-3 x_{2}\)
subject to
\(\begin{array}{lll}x_{1} & +x_{2} \leq 2 \\ -x_{1} & +x_{2} \leq 1\end{array}\)
    \(x_{1}, x_{2} \geq 0\).
```

Q3: (25pts)
Solve the following integer program:

```
maximise \(-3 x_{1}-\frac{1}{2} x_{2}\)
subject to
    \(2 x_{1}+\frac{1}{2} x_{2}+x_{3}=4 \frac{1}{2}\)
\(-x_{1}+\frac{1}{2} x_{2}+x_{4}=2 \frac{1}{2}\)
    \(x_{1}, x_{2}, x_{3}, x_{4} \geq 0\) and integer.
```


Q4: (25pts)

Formulate the following as an integer program:
The Financial Aids office at Carnegie Mellon University is preparing its awards for the coming year. It has selected n students to receive awards, and wants to grant at least m_{i} dollars to Student $i, i=1,2, \ldots, n$. The office has s different scholarships available; Scholarship j confers the amount a_{j} on its recipient. The office may have to award several scholarships to an individual in order to provide the minimum it has decided that he/she will receive. The office cannot however reduce the amount of a scholarship award. If the office does not award a particular scholarship then it becomes available for next year. The office wishes to maximise the amount of money not spent in this way.

