Department of Mathematical Sciences Carnegie Mellon University
 21-393 Operations Research II
 Test 1

Name:

Problem	Points	Score
1	35	
2	35	
3	30	
Total	100	

Q1: (35pts)
A factory produces a single product over the next n periods. The demand in period i is $d_{i}, i=1,2, \ldots, n$ and must be met immediately. The cost of producing x items on a machine of age t is $c_{t}(x)$. The cost of repairing a machine age t so that it performs as well as a machine aged s is $r(t, s)$. A machine aged T or more must be replaced at a cost of R. The maximum amount that can be held in stock from one period to the next is H. Construct a recurrence that can be used to solve the problem of meeting demand at minimum total cost.

Q2: (35pts)

Formulate the following as an integer program: A university has n rooms available and there are $2 n$ classes $M_{1}, M_{2}, \ldots, M_{n}$ and $A_{1}, A_{2}, \ldots, A_{n}$ where $M_{1}, M_{2}, \ldots, M_{n}$ and $A_{1}, A_{2}, \ldots, A_{n}$ are both partitions of the set of students S. The classes M_{i} will take place in the morning and the classes A_{i} will take place in the afternoon. The distance between classroom k and classroom ℓ is $d_{k, \ell}$. The problem is to assign classes to rooms in order to minimize the total distance travelled by students in changing classes.
(Hint: let $y_{i, k, j, \ell}=1$ iff M_{i} takes place in room k and A_{j} takes place in room ℓ. It will help you to use the notation $m_{i, j}=\left|M_{i} \cap A_{j}\right|$.)

Q3: (30pts)

The simplex algorithm applied to the LP relaxation of a pure integer program results in the following tableau:

x_{1}	x_{2}	x_{3}	x_{4}	R.H.S.	
$-3 / 2$	0	$-5 / 2$	0	$17 / 2$	z
$-5 / 2$	0	$3 / 2$	1	$7 / 2$	x_{4}
$-1 / 2$	1	$1 / 2$	0	$5 / 2$	x_{2}

Finish the solution of the Integer Program using Gomory cuts. What is the optimal solution?
(One cut and one further pivot should suffice.)

