Department of Mathematical Sciences Carnegie Mellon University

21-393 Operations Research II Test1

Name:_____

Problem	Points	Score
1	35	
2	35	
3	30	
Total	100	

Q1: (35pts)

(a) Fill in the last column of the table below for solving the following knapsack problem and produce an optimal solution:

maximise	$3x_1$	+	$7x_2$	+	$16x_{3}$		
subject to							
	$2x_1$	+	$3x_2$	+	$6x_{3}$	\leq	12

,					1	
w	$f_1(x_1)$	b_1	$f_2(x_2)$	b_2	$f_3(x_3)$	b_3
0	0	0	0	0		
1	0	0	0	0		
2	3	1	3	0		
3	3	1	7	1		
4	6	1	7	1		
5	6	1	10	1		
6	9	1	14	1		
7	9	1	14	1		
8	12	1	17	1		
9	12	1	21	1		
10	15	1	21	1		
11	15	1	24	1		
12	18	1	28	1		

 $x_1, x_2, x_3 \ge 0$ and integer.

(b) Solve the problem

minimise	$2x_1$	+	$3x_2$	+	$6x_3$		
subject to							
	$3x_1$	+	$7x_2$	+	$16x_{3}$	\geq	20

 $x_1, x_2, x_3 \ge 0$ and integer.

Q2: (35pts)

A scout has to pack their knapsack. The knapsack has weight capacity W and there are n types of item that can be packed. Each item of type j selected provides v_j in value to the scout. The weight of an item of type j is a random variable and the scout only finds out this weight after deciding how many items of type j to take. Each item of type j does weigh the same amount. The scout does know the weight distribution for items of type j. Thus P(w, j) is the probability that an item of type j weighs w. Set up a recurrence to maximise the expected value of the items that the scout can carry.

Q3: (30pts) Woody the woodcutter will cut a given log of wood of length ℓ , at any place you choose, for a price equal of $f(\ell)$, for some function f > 0. Suppose you have a log of length L, marked to be cut in n different locations labeled $1, 2, \ldots, n$. For simplicity, let indices 0 and n + 1 denote the left and right endpoints of the original log of length L. Let d_i denote the distance of mark i from the left end of the log, and assume that $0 = d_0 < d_1 < d_2 < \cdots < d_n < d_{n+1} = L$. The wood-cutting problem is the problem of determining the sequence of cuts to the log that will cut the log at all the marked places and minimize your total payment. Give a dynamic programming formulation to solve this problem. Estimate the number of arithmetic operations needed by your algorithm.