Department of Mathematical Sciences Carnegie Mellon University
 21-393 Operations Research II
 Test 1

Name:

Problem	Points	Score
1	35	
2	35	
3	30	
Total	100	

Q1: (35pts)
(a) Fill in the last column of the table below for solving the following knapsack problem and produce an optimal solution:

$$
\begin{array}{ll}
\operatorname{maximise} & 3 x_{1}+7 x_{2}+15 x_{3} \\
\text { subject to } \\
& 2 x_{1}+3 x_{2}+6 x_{3} \leq 12
\end{array}
$$

$$
x_{1}, x_{2}, x_{3} \geq 0 \text { and integer. }
$$

w	$f_{1}\left(x_{1}\right)$	b_{1}	$f_{2}\left(x_{2}\right)$	b_{2}	$f_{3}\left(x_{3}\right)$	b_{3}
0	0	0	0	0		
1	0	0	0	0		
2	3	1	3	0		
3	3	1	7	1		
4	6	1	7	1		
5	6	1	10	1		
6	9	1	14	1		
7	9	1	14	1		
8	12	1	17	1		
9	12	1	21	1		
10	15	1	21	1		
11	15	1	24	1		
12	18	1	28	1		

(b) Solve the problem
minimise $2 x_{1}+3 x_{2}+6 x_{3}$
subject to
$3 x_{1}+7 x_{2}+15 x_{3} \geq 20$
$x_{1}, x_{2}, x_{3} \geq 0$ and integer.

Q2: (35pts)

A factory uses a single machine to manufacture two distinct products A and B. If the machine is of age t then it costs $c_{A}(x, t)$ to make x units of A and $c_{B}(x, t)$ to manufacture x units of B. A new machine costs M. The demand for A in period j is $d_{j}(A)$ and the demand for B in period j is $d_{j}(B)$. The factory can store at most H units altogether at any one time. Demand must be met in the period that it occurs or in the following period.
Design a dynamic programming algorithm for finding the cheapest way of meeting demand for the next n periods.

Q3: (30pts) Woody the woodcutter will cut a given log of wood, at any place you choose, for a price equal to the length of the given log. Suppose you have a log of length L, marked to be cut in n different locations labeled $1,2, \ldots, n$. For simplicity, let indices 0 and $n+1$ denote the left and right endpoints of the original \log of length L. Let d_{i} denote the distance of mark i from the left end of the log, and assume that $0=d_{0}<d_{1}<d_{2}<\cdots<d_{n}<d_{n+1}=L$. The wood-cutting problem is the problem of determining the sequence of cuts to the log that will cut the log at all the marked places and minimize your total payment. Give a dynamic programming formualtion to solve this problem. Estimate the number of arithmetic operations needed by your algorithm.

