Department of Mathematical Sciences Carnegie Mellon University

21-393 Operations Research II Test1

Name:_____

Problem	Points	Score
1	30	
2	30	
3	40	
Total	100	

Q1: (30pts)

(a) Fill in the last column of the table below for solving the following knapsack problem:

maximise
$$3x_1 + 7x_2 + 17x_3$$

subject to
 $2x_1 + 3x_2 + 6x_3 \leq 12$

 $x_1, x_2, x_3 \ge 0$ and integer.

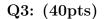
What is the optimal solution?

w	$f_1(x_1)$	b_1	$f_2(x_2)$	b_2	$f_3(x_3)$	b_3
0	0	0	0	0		
1	0	0	0	0		
2	3	1	3	0		
3	3	1	7	1		
4	6	1	7	1		
5	6	1	10	1		
6	9	1	14	1		
7	9	1	14	1		
8	12	1	17	1		
9	12	1	21	1		
10	15	1	21	1		
11	15	1	24	1		
12	18	1	28	1		

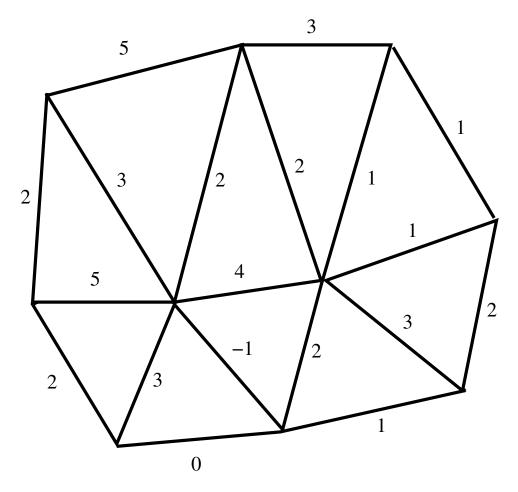
Q2: (30pts)

A factory uses a single machine to manufacture two distinct products A and B. It costs $c_A(x)$ to make x units of A and $c_B(x)$ to manufacture x units of B. The demand for A in period j is $d_j(A)$ and the demand for B in period j is $d_j(B)$. The factory can store at most H units altogether at any one time. Demand for A must be met in the period that it occurs, either from inventory or from production that period. Demand for B can be met in the period that it occurs, or in the following period.

Design a dynamic programming algorithm for finding the cheapest way of meeting demand for the next n periods.



(a) Find a minimum spanning tree in the following weighted graph.



(b) Find a path from vertex 1 to all other vertices of the digraph below that minimises the path function ℓ . Here, if the edges have length $\ell(e), e \in E$ then a path $P = (e_1, e_2, \ldots, e_k)$ has length

$$\ell(P) = \ell(e_1) + 2\ell(e_2) + 3\ell(e_3) + \dots + k\ell(e_k).$$

In the figure below, an edge (i, j) with i < j is directed from i to j and its length is given in the middle of the edge.

