Department of Mathematical Sciences Carnegie Mellon University
 21-393 Operations Research II
 Test 1

Name:

Problem	Points	Score
1	30	
2	30	
3	40	
Total	100	

Q1: (30pts)
(a) Fill in the last column of the table below for solving the following knapsack problem:

$$
\begin{array}{ll}
\operatorname{maximise} & 3 x_{1}+7 x_{2}+17 x_{3} \\
\text { subject to } \\
& 2 x_{1}+3 x_{2}+6 x_{3} \leq 12
\end{array}
$$

$$
x_{1}, x_{2}, x_{3} \geq 0 \text { and integer. }
$$

What is the optimal solution?

w	$f_{1}\left(x_{1}\right)$	b_{1}	$f_{2}\left(x_{2}\right)$	b_{2}	$f_{3}\left(x_{3}\right)$	b_{3}
0	0	0	0	0		
1	0	0	0	0		
2	3	1	3	0		
3	3	1	7	1		
4	6	1	7	1		
5	6	1	10	1		
6	9	1	14	1		
7	9	1	14	1		
8	12	1	17	1		
9	12	1	21	1		
10	15	1	21	1		
11	15	1	24	1		
12	18	1	28	1		

Q2: (30pts)

A factory uses a single machine to manufacture two distinct products A and B. It costs $c_{A}(x)$ to make x units of A and $c_{B}(x)$ to manufacture x units of B. The demand for A in period j is $d_{j}(A)$ and the demand for B in period j is $d_{j}(B)$. The factory can store at most H units altogether at any one time. Demand for A must be met in the period that it occurs, either from inventory or from production that period. Demand for B can be met in the period that it occurs, or in the following period.
Design a dynamic programming algorithm for finding the cheapest way of meeting demand for the next n periods.

Q3: (40pts)

(a) Find a minimum spanning tree in the following weighted graph.

(b) Find a path from vertex 1 to all other vertices of the digraph below that minimises the path function ℓ. Here, if the edges have length $\ell(e), e \in E$ then a path $P=\left(e_{1}, e_{2}, \ldots, e_{k}\right)$ has length

$$
\ell(P)=\ell\left(e_{1}\right)+2 \ell\left(e_{2}\right)+3 \ell\left(e_{3}\right)+\cdots+k \ell\left(e_{k}\right) .
$$

In the figure below, an edge (i, j) with $i<j$ is directed from i to j and its length is given in the middle of the edge.

