Department of Mathematical Sciences Carnegie Mellon University
 21-393 Operations Research II
 Test 1

Name:

Problem	Points	Score
1	40	
2	40	
3	20	
Total	100	

Q1: (40pts)
(a) Fill in the last column of the table below for solving the following knapsack problem:

$$
\begin{aligned}
& \operatorname{maximise} 3 x_{1}+7 x_{2}+17 x_{3} \\
& \text { subject to } \\
& \\
& \\
& 2 x_{1}+3 x_{2}+6 x_{3} \leq 10
\end{aligned}
$$

$$
x_{1}, x_{2}, x_{3} \geq 0 \text { and integer. }
$$

What is the optimal solution?

w	$f_{1}\left(x_{1}\right)$	b_{1}	$f_{2}\left(x_{2}\right)$	b_{2}	$f_{3}\left(x_{3}\right)$	b_{3}
0	0	0	0	0		
1	0	0	0	0		
2	3	1	3	0		
3	3	1	7	1		
4	6	1	7	1		
5	6	1	10	1		
6	9	1	14	1		
7	9	1	14	1		
8	12	1	17	1		
9	12	1	21	1		
10	15	1	21	1		

Q2: (30pts)

A factory uses a single machine to manufacture two distinct products A and B. It costs $c_{A}(x)$ to make x units of A and $c_{B}(x)$ to manufacture x units of B. The demand for A in period j is $d_{j}(A)$ and the demand for B in period j is $d_{j}(B)$. If the factory makes a positive amount of both A and B in a period, then there is an extra changeover cost of K for that period. The factory can store at most H of each product. Demand must be met in the period that it occurs, either from inventory or from production that period.
Design a dynamic programming algorithm for finding the cheapest way of meeting demand for the next n periods.

Q3: (30pts)

Formulate the following problem as an integer program.
The sales area of a company is divided up into n sub-divisions $A_{1}, A_{2}, \ldots, A_{n}$. The company has N sales people altogether. Each salesperson allocated to A_{j} is expected to generate r_{j} dollars in revenue, but is expected to cost s_{j} dollars in expenses. There are at most S dollars available for expenses in the period under discussion. Sub-division A_{j} must be allocated at least L_{j} salespeople. What allocation of salespeople to districts will maximise total profit i.e. total revenue less total expenses.

