Piano Major Practice Room Scheduling Project

Julia Schraml, Joyce Qiu, Youwei Jiang, Mia Yuan

21-393 Fall 2024

Introduction

Effective resource allocation in educational settings is critical to improving the learning experience and
maximizing utility. In a professional environment such as a conservatory or university, managing in-
strument rooms and ensuring their effectiveness is a common logistical challenge. In this project, we
specifically focused on optimizing the allocation of piano-equipped instrument rooms for piano majors
at CMU. This aims to ensure that each student receives adequate practice time while making the best
use of resources.

The idea for this project came from the personal experience of two of the team members, who are
currently taking piano lessons at CMU, where the existing system of using the piano practice rooms is
based on a first-come, first-served basis so that if the room is empty, it can be used without a reservation.
However, our team members reported that when they needed to use the piano rooms, they were usually
not available, leading to significant frustration and inefficiency. This situation prompted us to formu-
late a scheduling solution to solve this problem by allocating practice time more efficiently and equitably.

Since students usually have different class schedules and other activities, their practice times can vary
greatly. Based on such variations and the limited number of piano rooms, schools need an effective
scheduling program that ensures equity while increasing the efficiency of piano room use. Specifically,
we will consider a situation where the room is used from 8 a.m. to 8 p.m. in 24 slots, and each student
needs at least one hour of practice time per day, preferably in consecutive slots.

This scheduling problem can be solved from different perspectives, including mathematical optimization
and heuristic techniques. In this project, we explored the integer programming model, which provides
the optimal solution, and the greedy heuristic algorithm, which provides a faster alternative, although
potentially non-optimal. The insights gained from solving this problem can provide valuable guidance
on similar distributional issues in educational settings and other areas in the future.

By comparing these approaches, we aim to understand the trade-offs between optimality and com-
putational efficiency in solving this type of scheduling problem. The insights gained from this project
can provide valuable guidance for similar allocation issues in educational settings and beyond.

Assumptions

To model the problem effectively, we made the following assumptions:

1.
2.

There are 15 students majoring in piano performance, and 10 rooms with pianos available.
All rooms are identical; students do not have any preference for specific rooms.

Rooms are available from 8 am to 8 pm, divided into 24 half-hour time slots to accommodate
varying availability, such as classes ending at half-past the hour.

These rooms are not used for any other purpose during the available hours, so they are always
open for student practice.

Each student needs at least 1 hour (two consecutive half-hour slots) to practice daily.
Students can only practice during their available time slots, which vary based on their schedules.

Each student can be assigned to at most one room per day, and one student can be assigned to
each room at any given time slot.

Initial Program

Variables
o z;;+ad € {0,1}: 1if student ¢ is assigned to room j at time ¢ on day d, otherwise 0.
e y;jq € {0,1}: 1if student ¢ is assigned to room j on day d, otherwise 0.
e T € {0,23}: half-hour slots from 8 a.m. to 8 p.m.

e D €{0,5}: days of the week from Monday to Friday

Objective
Maximize the total assigned hours across all students:

n—1lm—-1T—-1D—-1

maximizeg E E E T jt.d

i=0 j=0 t=0 d=0

Constraints
e Each room can only have one student assigned at any time slot on any day:

n—1
Y wijea<l Vje{0,...,m—1},vtef0,....T—1},Vde{0,....D—1}
=0

Students can only be assigned during their available time slots:

Tijta =0 if t ¢ availability, , Vi€ {0,...,n—1},¥j € {0,...,m—1},vt € {0,...,T—1},Vd € {0, . ..

If a student 7 is assigned to any time slot in room j on day d, then y; j 4 = 1:

~

xi,j,t,dST'yi,j,d ViE{O,...7n—1},VjE {0,...,m—1},Vd€{O,...,D—l}

t

Il
=

Each student can be assigned to at most one room per day:

-1

yija<l Vie{0,...,n—1},vde{0,...,D—1}

3

Il
=)

J

e Each student must be assigned at least 1 hour (2 consecutive half-hour slots) across all days:

[

D—

=

m

Z Tijea>2 Vie{0,...,n—1}

Jj=0 d=0 teavailability, 4

e Each room can have at most 24 half-hour slots assigned per day:
n—1T-1
S wijra<24 Vjiefo,...,m—1},vde{0,...,D—1}
i=0 t=0

,D—1}

Non-Optimal Program

We used Greedy Algorithm as our heuristic to assign rooms to students by sequentially selecting stu-
dents based on the least total available time and filling available rooms until constraints are violated.
The Greedy Algorithm does not guarantee an optimal solution but can quickly produce a satisfactory
allocation of rooms to students.

1 def hour_range_to_slots (hour_range):

N

def

def

rooms = [1, 2,
days_of_week =

return [i for hour in hour_range for i in range (hour * 2, (hour + 1) * 2) if i < 24]

assign_rooms (rooms, days_of_week, availability):

Initialize room availability with None for 24 half-hour slots from 8am to 8pm
room_availability = {room: {day: [None] * 24 for day in days_of_weekl} for room in
rooms}

for student_id, days_avail in availability.items():
for day, time_ranges in days_avail.items():
for time_range in time_ranges:
slots = hour_range_to_slots(time_range)
for index in range(len(slots) - 1):
slot = slots[index]
next_slot = slots[index + 1]
for room in rooms:
room_slots = room_availability[room][day]
if room_slots[slot] is None and room_slots[next_slot] is None:
room_slots[slot] = f"Student {student_idl}"
room_slots[next_slot] = f"Student {student_id}"
print (f"Student {student_id} assigned to Room {room} on {day
} from {slot//2 + 8}:{(’30’ if slot % 2 else ’00’)} to {(next_slot//2 + 9):00}")
break
else:
continue
break

return room_availability

print_schedule(room_availability):
for room_id, days in room_availability.items():
print (f"\nRoom {room_id} Schedule:")
for day, slots in days.items():
print (£" {dayl}:")
for i, student in enumerate(slots):
status = ’Free’ if student is None else student
print (£" {i//2 + 8}:{(°30’ if i % 2 else ’00°)} - {status}t")

3, 4, 5, 6, 7, 8]
[’Monday’, ’Tuesday’, ’Wednesday’, ’Thursday’, ’Friday’]

availability = {

0: { # Student 0’s availability
"Monday": [range (0, 6), range(8, 10), range (15, 16), range(20, 21)],
"Tuesday": [range(4, 9), range(19, 20)1]1,
Yo
1: { # Student 1’s availability
"Monday": [range(l, 3), range(8, 9)],
"Tuesday": [range(0, 5), range(10, 12)1],
Fe
2: { # Student 2’s availability
"Monday": [range(2, 5), range(14, 18)1],
"Wednesday": [range(0, 6), range(7, 10)1],
Fe
3: { # Student 3’s availability
"Monday": [range(8, 14), range(14, 18)1],
"Tuesday": [range(0, 4), range (20, 24)],
"Wednesday": [range(4, 6), range(16, 24)],

(-}

4: { # Student 4’s availability
"Monday": [range(4, 10), range (14, 24)1],
"Tuesday": [range(6, 8), range(14, 18)1],
} s
5: { # Student 5’s availability
"Monday": [range (12, 20)1],

66
67
68
69

70

~
—

o o A @ n

© =

I B TN BEES B R

0

90

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

128

"Tuesday": [range(O0, 4), range(10, 18)1],

6: { # Student 5’s availability

"Tuesday": [range(4, 6), range(16, 24)],
"Wednesday": [range(2, 4), range(12, 16), range (20, 24)1],

7: { # Student 7’s availability

"Monday": [range(4, 14), range(18, 22)1],

"Tuesday": [range(12, 24)],

8: { # Student 8’s availability

"Wednesday": [range(6, 8), range(12, 14), range (16, 24)1],
"Thursday": [range(0, 8), range (12, 24)],
10) , range (16, 24)]

"Friday": [range(0, 3), range(6,

“w

9: { # Student 9’s availability
"Monday": [range(0, 2), range(6,

9), range (12,

24)1,

"Tuesday": [range(0, 4), range(6, 15), range (18, 24)],
"Wednesday": [range(0, 2), range(6, 8), range (15, 24)]

10: { # Student 10’s availability

"Thursday": [range(0, 6), range(8, 15), range (18, 24)],

"Friday": [range(0, 2), range(6,

11: { # Student 11’s availability

10)1,

"Monday": [range(3, 15), range (18, 24)1],
"Tuesday": [range(0, 9), range(12, 15), range(18, 24)],
"Wednesday": [range(3, 6), range(8, 24)],
"Thursday": [range(0, 9), range(12, 15), range(18, 24)1],
"Friday": [range(3, 8), range(10, 12), range (16, 24)]

12: { # Student 12’s availability
"Monday": [range(0, 4), range(8,

9), range (15,

"Tuesday": [range(3, 9), range(15,24)1],
"Wednesday": [range(0, 4), range(8, 9), range(15, 24)],
"Thursday": [range(3, 9), range(15,24)],

"Friday": [range(0, 2), range(8,

13: { # Student 13’s availability

24)]

24)1,

"Monday": [range(0, 4), range(12, 15), range (18, 22)1],
"Tuesday": [range(0, 9), range(12,24)],
"Wednesday": [range(O, 4), range(12, 15), range (18, 22)1],
"Thursday": [range(0, 9), range(12,24)],

"Friday": [range(0, 2), range(4,

14: { # Student 14’s availability

6), range(9,

"Monday": [range (0, 9), range(18, 22)1],
"Tuesday": [range(0, 3), range(9,24)],
"Wednesday": [range(0, 9), range(18, 22)1,
"Thursday": [range(0, 3), range(9,24)],

"Friday": [range(0, 4), range(6,

16: { # Student 15’s availability
"Monday": [range(0, 3), range(6,

"Tuesday": [range(0, 6), range(9,12),

9), range (12,

8), range (10,
range (15, 24)1],

12) , range (14,

24)1]

12) , range (18,

24)]

24)17,

"Wednesday": [range(0, 3), range(6, 8), range(10, 12), range (18,

"Thursday": [range(0, 6), range(9,12),

"Friday": [range(0, 14), range (16, 24)]

},
}

room_availability = assign_rooms(rooms,

print_schedule (room_availability)

days_of_week,

range (15, 24)],

availability)

Non-Optimal Results

Student | Monday Tuesday Wednesday Thursday Friday
0 Room 1: 0-2, 16-18 |Room 1: 8-10
1 Room 1: 2-4, Room|Room 1: 0-2, 20-22
2: 16-18
2 Room 1: 4-6 Room 1: 0-2, 14-16
3 Room 3: 16-18 Room 2: 0-2 Room 1: 8-10
4 Room 1: 8-10 Room 1: 12-14
5 Room 3: 0-2, Room
2: 2022
6 Room 2: 8-10 Room 1: 4-6
7 Room 2: 8-10
8 Room 1: 12-14 Room 1: 0-2 Room 1: 0-2, 12-14
9 Room 2: 0-2, Room|Room 4: 0-2, Room|Room 2: 0-2, 12-14
1: 12-14 2: 12-14
10 Room 2: 0-2, Room|Room 2: 0-2, 12-14
1: 16-18
11 Room 1: 6-8 Room 5: 0-2 Room 1: 6-8, 16-18 |Room 3: 0-2 Room 1: 6-8, 2022
12 Room 3: 0-2, Room|Room 1: 6-8 Room 3: 0-2, Room|Room 1: 6-8 Room 3: 0-2, Room
4: 16-18 2: 16-18 1: 16-18
13 Room 4: 0-2 Room 6: 02 Room 4: 0-2 Room 4: 0-2 Room 4: 0-2, Room
1: 8-10, 16-18
14 Room 5: 0-2 Room 7: 0-2, Room|Room 5: 0-2 Room 5: 0-2, Room|Room 5: 0-2, Room
1: 16-18 1: 16-18 3: 12-14
15 Room 6: 0-2, Room|Room 8: 0-2, Room|Room 6: 0-2; Room|Room 6: 0-2, Room|Room 6: 0-2

2: 12-14, Room 1:
2022

2: 16-18

3: 12-14, Room 1:
20-22

2: 16-18

Optimal Program

This program uses integer linear programming and Gurobi to find the optimal solution. It translates the schedul-
ing problem into a mathematical model with an objective functions and multiple constraints.

from gurobipy import Model, GRB, quicksum

1
3 n = 16 # number of students
42 m = 10 # number of rooms

5 T = 24 # number of half-hour slots in a day (0 to 23 for 8 am to 8 pm)

¢ days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday"] # Days of the week

s # Define availability for each student for each day
o availability = {

10 0: { # Student 0’s availability

11 "Monday": [range (0, 6), range(8, 10), range (15, 16), range(20, 21)],
12 "Tuesday": [range(4, 9), range(19, 20)],

13 3,

14 1: { # Student 1’s availability

15 "Monday": [range(l, 3), range(8, 9)],

16 "Tuesday": [range(0, 5), range(10, 12)1],

17 },

18 2: { # Student 2’s availability

19 "Monday": [range(2, 5), range(14, 18)],

20 "Wednesday": [range(0, 6), range(7, 10)1],

21 },

22 3: { # Student 3’s availability

23 "Monday": [range(8, 14), range(14, 18)1],

24 "Tuesday": [range(0, 4), range (20, 24)1],

25 "Wednesday": [range(4, 6), range(16, 24)1],

26 },

27 4: { # Student 4’s availability

28 "Monday": [range(4, 10), range (14, 24)1],

29 "Tuesday": [range(6, 8), range(14, 18)1],

30 },

31 5: { # Student 5’s availability

32 "Monday": [range(12, 20)1],

33 "Tuesday": [range(0, 4), range(10, 18)1],

34 },

35 6: { # Student 5’s availability

36 "Tuesday": [range(4, 6), range(16, 24)1],

37 "Wednesday": [range(2, 4), range(12, 16), range (20, 24)],
38 },

39 7: { # Student 7’s availability

40 "Monday": [range(4, 14), range(18, 22)1],

41 "Tuesday": [range(12, 24)1],

42 },

43 8: { # Student 8’s availability

44 "Wednesday": [range(6, 8), range(12, 14), range (16, 24)],
45 "Thursday": [range(0, 8), range(12, 24)],

46 "Friday": [range(0, 3), range(6, 10), range (16, 24)]

47 3,

48 9: { # Student 9’s availability

49 "Monday": [range(0, 2), range(6, 9), range(12, 24)],

50 "Tuesday": [range(O0, 4), range(6, 15), range(18, 24)1],
51 "Wednesday": [range(0, 2), range(6, 8), range(15, 24)]
52 },

53 10: { # Student 10’s availability

54 "Thursday": [range(0, 6), range(8, 15), range (18, 24)],
55 "Friday": [range(0, 2), range(6, 10)],

56 },

57 11: { # Student 11’s availability

58 "Monday": [range(3, 15), range (18, 24)1],

59 "Tuesday": [range(0, 9), range(12, 15), range (18, 24)],
60 "Wednesday": [range(3, 6), range(8, 24)],

61 "Thursday": [range(0, 9), range(12, 15), range (18, 24)],
62 "Friday": [range(3, 8), range(10, 12), range (16, 24)]
63 },

64 12: { # Student 12’s availability

65 "Monday": [range(0, 4), range(8, 9), range(15, 24)],

66 "Tuesday": [range(3, 9), range(15,24)],

67 "Wednesday": [range(0O, 4), range(8, 9), range(15, 24)],
68 "Thursday": [range(3, 9), range(15,24)],

69 "Friday": [range(0, 2), range(8, 24)]

8

[}

13: { # Student 13’s availability
"Monday": [range(0, 4), range(12, 15), range (18, 22)1],
"Tuesday": [range(0, 9), range(12,24)],
"Wednesday": [range(O, 4), range(12, 15), range (18, 22)1],
"Thursday": [range(0, 9), range(12,24)],
"Friday": [range(0, 2), range(4, 6), range(9, 12), range(14, 24)]

SN

S S R B TN B T B B |

7 To

8 14: { # Student 14’s availability

9 "Monday": [range(0, 9), range (18, 22)1],

80 "Tuesday": [range(0, 3), range(9,24)],

81 "Wednesday": [range(0, 9), range(18, 22)1],

82 "Thursday": [range(0, 3), range(9,24)],

83 "Friday": [range(0, 4), range(6, 9), range (12, 24)]

84 },

85 16: { # Student 15’s availability

86 "Monday": [range(0, 3), range(6, 8), range(10, 12), range (18, 24)],
87 "Tuesday": [range(0, 6), range(9,12), range (15, 24)],

88 "Wednesday": [range(0, 3), range(6, 8), range(10, 12), range(18, 24)],
89 "Thursday": [range(0, 6), range(9,12), range (15, 24)],

20 "Friday": [range(0, 14), range (16, 24)]

91 3,

92 }

93
94 # Create a model
95 model = Model("Piano Practice Room Assignment")

o7 # Define decision variables: x[i, j, t, d] -> 1 if student i is assigned to room j at
time t on day d

98 x = model.addVars (

99 n, m, T, len(days), vtype=GRB.BINARY, name="x"

100)

101

102 # Set objective: Maximize total assignment hours for all students

103 model.setObjective (

104 quicksum(x[i, j, t, d] for i in range(n) for j in range(m) for t in range(T) for d
in range(len(days))),

105 GRB.MAXIMIZE,

106)

107

108 # Constraints

109

110 # Each room j has a maximum of 12 half-hour slots available per day

111 for j in range(m):

112 for d in range(len(days)):

113 model.addConstr (

114 quicksum(x[i, j, t, d] for i in range(mn) for t in range(T)) <= 24,
115 f"RoomCapacity_{j}_Day{dl}",

116)

117

118 # Each student i needs at least 1 hour (2 consecutive half-hour slots) across all days
they are available
110 for i in range(n):

120 model.addConstr (

121 quicksum (

122 x[i, j, t, dl

123 for j in range (m)

124 for d in range(len(days))

125 for day_range in availability.get(i, {}).get(days([dl, [])
126 for t in day_range

127) >= 2,

128 f"MinPractice_{il}",

129)

130

131 # Room capacity constraint: only one student per room at each time t on each day
132 for j in range(m):

133 for t in range(T):

134 for d in range(len(days)):

135 model.addConstr (

136 quicksum(x[i, j, t, d] for i in range(mn)) <= 1,
137 f"RoomLimit_{j}_Time{t}_Day{d}",

138)

139

140 # Assignments outside a student’s available time are not allowed
141 for i in range(n):

142 for j in range(m):

143 for d in range(len(days)):

144 for t in range(T):

145 # Check if time t is not in any of the availability ranges for student i

on day d

146 if not any(t in day_range for day_range in availability.get(i, {}).get(
days[dl, [1)):

147 model.addConstr(x[i, j, t, d] == 0, f"Availability_{i}_Room{j}_Time{
t}_Day{d}")

149 # Define new binary variables: y[i, j, d] -> 1 if student i is assigned to room j on day
d
150 y = model.addVars(n, m, len(days), vtype=GRB.BINARY, name="y")

152 # Link x[i, j, t, d] with y[i, j, d]: If student i is assigned to room j at any time, yl[
i, j, d] must be 1
153 for i in range(mn):

154 for j in range(m):

155 for d in range(len(days)):

156 model.addConstr (

157 quicksum(x[i, j, t, d] for t in range(T)) <= T * y[i, j, d],
158 f'"Link_x_y_{i}_{j}_Day{d}",

161 # Ensure each student is assigned to at most one room per day
162 for i in range(n):

163 for d in range(len(days)):

164 model.addConstr (

165 quicksum(y[i, j, d] for j in range(m)) <= 1,
166 f"OneRoomPerDay_{i}_Day{d}",

167)

168

170 # Solve the model
171 model.optimize ()

173 # Function to find intervals of consecutive time slots
174 def get_intervals(assignments):

175 intervals = []

176 start = assignments [0]

177 for i in range(l, len(assignments)):

178 if assignments[i] != assignments[i - 1] + 1:

179 intervals.append ((start, assignments[i - 1]))
180 start = assignments[i]

181 intervals.append ((start, assignments[-1]))

182 return intervals

184 # Output the solution with intervals

185 |RngI A Selutien —sosososssssoosssoos ")

186 for i in range(n):

187 for j in range(m):

188 for d in range(len(days)):

189 assigned_times = [

190 t for t in range(T) if x[i, j, t, dl.x > 0.5

191]

192 if assigned_times:

193 intervals = get_intervals (assigned_times)

194 # Filter out intervals where start == end

195 intervals = [interval for interval in intervals if interval[0] !=
interval [1]]

196 for interval in intervals:

197 print (£"Student {i} assigned to Room {j} from {interval[0]} to {

interval [1]} on {days[dl}")

108 print (f"Optimal total assigned hours: {model.ObjVall}")

©

10

Optimal Results

Student | Monday Tuesday Wednesday Thursday Friday
0 Room 4: 0-5, 89 Room 2: 4-8
1 Room 2: 1-2 Room 3: 04, 10-11
2 Room 9: 3-4, 14-17 Room 0: 0-5, 7-9
3 Room 6: 8-17 Room 7: 0-3, 2023 |Room 1: 4-5, 16—23
4 Room 8: 4-9, 14-23 |Room 7: 6-7, 14-17
5 Room 2: 12-19 Room 2: 0-3, 10-17
6 Room 1: 4-5, 16-23 |Room 7: 2-3, 12-15,
2023
7 Room 7: 4-13, 18-21|Room 3: 12-23
8 Room 2: 6-7, 12-13,|Room 3: 0-7, 12-23 |Room 5: 0-2, 6-9,
16-23 16-23
9 Room 5: 0-1, 6-8,|Room 6: 0-3, 6-14,|Room 4: 0-1, 6-7,
12-23 18-23 15-23
10 Room 1: 0-5, 8-14,|Room 4: 0-1, 6-9
18-23
11 Room 0: 3-14, 18-23|Room 9: 0-8, 12-14,|Room 5: 3-5, 823 |Room 7: 0-8, 12-14,|Room 1: 3-7, 10-11,
18-23 18-23 16-23
12 Room 3: 0-3, 15-23 |Room 8: 3-8, 15-23 |Room 3: 0-3, 15-23 |Room 8: 3-8, 15-23 |Room 8: 0-1, 823
13 Room 1: 0-3, 12-14,|Room 4: 0-8, 12-23 |Room &8: 0-3, 12-14,|Room 9: 0-8, 12-23 |Room 6: 0-1, 4-5, 9—
18-21 18-21 11, 14-23
14 Room 6: 0-7, 18-21 [Room 5: 0-2, 923 |Room 9: 0-8, 1821 |Room 4: 0-2, 9-23 |Room 7: 0-3, 6-8,
12-23
15 Room 9: 0-2, 6-7,|Room 0: 0-5, 9-11,|Room 6: 0-2, 6-7,|Room 0: 0-5, 9-11,|Room 0: 0-13, 16-23
10-11, 18-23 15-23 10-11, 18-23 15-23

11

Discussion of Results
As we can see from the two tables, there are some major differences between the two schedules.

e The non-optimal program has uneven assignment patterns; some students have very light schedules,
while others are more heavily assigned. Meanwhile, the optimal program seems to provide a more
balanced schedule, with most students having assignments on multiple days.

e The non-optimal program has significantly more blank cells, meaning students often go multiple
days without assignments, whereas the optimal program reduces empty days by spreading assign-
ments more evenly.

e The non-optimal program has more gaps (empty cells) in the schedule, suggesting fewer total hours
assigned overall. The optimal solution appears more densely populated, indicating a higher total
number of assigned hours for students.

The results of this project showed that both methods can effectively handle the diverse availability
and requirements of students, ensuring equitable access to practice resources. The models minimized idle
time slots and maximized resource utilization, proving their utility in addressing real-world scheduling
problems.

Conclusion

This study addressed the piano room scheduling problem by formulating and implementing both math-
ematical optimization and heuristic methods. The proposed models aimed to allocate limited piano
rooms to piano majors efficiently and equitably, addressing constraints such as individual availability,
room capacity, and daily minimum practice requirements.

Through the use of integer programming, we achieved optimal solutions that maximize room utilization
and student satisfaction. This approach demonstrated the effectiveness of mathematical optimization in
resolving resource allocation challenges. However, it also highlighted limitations in scalability, as solving
larger instances of the problem required significant computational resources.

To address these limitations, we developed a complementary greedy algorithm. While this heuristic
method did not guarantee optimal solutions, it provided a practical and computationally efficient alter-
native, especially for larger datasets. The algorithm successfully assigned students to rooms in a way
that respected key constraints and maintained fairness.

12

Limitations and Future Improvements

Since this research was conducted over a short period of time, there are improvements that could be
made to this project, such as:

1.

Allowing students to specify their preferred rooms (e.g., based on proximity, equipment quality, or
personal comfort). This might be because a student prefers a specific piano room because it has a
better instrument.

Allowing students to specify their preferred time slots (e.g., some students may prefer mornings or
evenings). This might be because a student prefers to practice in the morning for better focus.

Ensuring fairness by evenly distributing room time across students, especially if room availability
is limited. This would prevent a few students from monopolizing the most desirable slots or rooms.

. Allowing rooms to have different capacities (e.g., one room can host 2 students at once for group

practice). This is desirable because certain practice rooms can accommodate duets or group ses-
sions.

. Not splitting a student’s practice time across non-consecutive slots or multiple rooms on the same

day. This would encourage more efficient practice schedules.

Give priority to certain students (e.g., those preparing for an upcoming recital or competition).
This would ensure that students with urgent needs are prioritized.

13

