
Dance Dance Solution: An IP Approach to
Scheduling Dance Rehearsals at CMU

Ayush Mediratta, Judy Li, Rick Sun, Feliks Ma
December 9, 2024

1 Abstract

Scheduling rehearsals for dance groups at CMU with differing room constraints, practice
requirements, member availability, and fast-approaching performance deadlines is a com-
plex logistical problem. This paper presents an integer programming model to optimize
rehearsal schedules by balancing dancer and room availability, eliminating overbooking,
and meeting rehearsal frequency requirements for each group. Key constraints ensure that
dancers are only scheduled when available, room capacity is not exceeded, and dancers are
given breaks between rehearsals. Our model allows for the designation of subgroups that
must meet custom rehearsal goals and ensures that all rehearsals are assigned to plausible
rooms and time slots. Applied to real data from an active CMU dance group, the model
produces an optimal rehearsal schedule that minimizes conflicts, maximizes efficiency, and
demonstrates a flexible framework for complex scheduling needs.

2 Assumptions

We will make a few key assumptions that will allow us to precisely formulate the scheduling
problem.

1. There are choreographers and lead dancers whose attendance is important for pro-
ductive rehearsals.

2. Each dancer can be limited to a certain number of rehearsals per day, and only at
times that match their availability. This prevents scheduling conflicts and allows
dancers to have sufficient rest between rehearsals.

3. Rehearsals are scheduled based on the availability and capacity of rooms. If the
room capacity is sufficient, multiple groups can rehearse in the same room at the
same time.

4. There may be subsets of dancers that are required to rehearse together. This assump-
tion acknowledges that some groups within the dance production need to coordinate
their choreography by attending the same rehearsals.

1

3 IP Formulation

To optimize the rehearsal scheduling process, a Linear Integer Programming (LIP) model
is used, which considers the availability of the dancers, the room capacities, the rehearsal
times and the coordination requirements of the subgroups.

3.1 Variables

Let N be the set of all dancers {1, 2, . . . , N}, with N = |N |. There are exactly M
rehearsals that must be scheduled and T time slots which rehearsals can be scheduled at.
For brevity, let M = {1, 2, . . . ,M} and T = {1, 2, . . . , T}. Let R be the number of dance
rooms available for use, and let R = {1, 2, . . . , R}.

The binary IP variables:

• xijkr: Indicates if person i attends rehearsal j at time slot k in room r.

• yjl: Indicates if everyone in group Sl attends rehearsal j, where Sl is defined below.

• zjkr: indicates if rehearsal j takes place at time slot k in room r.

The data variables:

• aik: A binary indicator of whether dancer i is available to attend a rehearsal at time
slot k.

• D: A fixed period of time slots representing a day of possible rehearsal times(ex: if
rehearsals are one hour each and there are three hours in each day when rehearsals
can be scheduled, then D = 3).

• F : The maximum number of rehearsals a dancer may attend in D time slots.

• S1, S2, . . . , Sn ⊆ N : n groups of dancers (possibly overlapping), and let S = {1, 2, . . . , n}.

• pl: The number of practices everyone in group Sl must attend together.

• cij: A measure of how important dancer i is at rehearsal j (ex: if dancer i is a chore-
ographer or lead dancer, they will have a higher importance at certain rehearsals).

• frk: A binary indicator of whether room r is available for use at time slot k.

• gr: The number of dancers that can fit in room r at once.

2

3.2 Constraints

∑
r∈R

xijkr ≤ aik ∀i ∈ N , j ∈ M, k ∈ T (1)∑
j∈M
r∈R

xijkr ≤ 1 ∀i ∈ N , k ∈ T (2)

pl ≤
∑
j∈M

yjl ∀l ∈ S (3)

yjl ≤
∑
k∈T
r∈R

xijkr ∀l ∈ S, i ∈ Sl, j ∈ M (4)

∑
i∈Sl
k∈T
r∈R

xijkr

− |Sl|+ 1 ≤ yjl ∀l ∈ S, j ∈ M (5)

k′+D∑
k=k′
j∈M
r∈R

xijkr ≤ F ∀i ∈ N , k′ ∈ {1, 2, . . . , T −D} (6)

xijkr ≤ zjkr ∀i ∈ N , j ∈ M, k ∈ T , r ∈ R (7)∑
r∈R
k∈T

zjkr = 1 ∀j ∈ M (8)

zjkr ≤ frk ∀j ∈ M, r ∈ R, k ∈ T (9)∑
i∈N
j∈M

xijkr ≤ gr ∀k ∈ T , r ∈ R (10)

xijkr, yjl, zjkr ∈ {0, 1}

Here is a contextual interpretation of each constraint:

• Constraint (1): Ensures that dancers are only scheduled when they are available.

• Constraint (2): Ensures the dancer cannot be assigned to overlapping rehearsals.

• Constraint (3): Ensures that each group Sl meets its required number of rehearsals.

• Constraints (4) and (5): Ensures consistency between group attendance yjl and indi-
vidual dancer attendance xijkr. Specifically, yjl is set to 1 only if all dancers in group
Sl are present for rehearsal j.

3

• Constraint (6): Ensures that the number of rehearsals a dancer can attend in a fixed
period D is F .

• Constraint (7): Ensures that xijkr (dancer room time assignment) is consistent with
zjkr (room time assignment).

• Constraint (8): Ensures each rehearsal has a unique room and time slot.

• Constraint (9): Ensures that rehearsals are only assigned to rooms available during
the scheduled time slot.

• Constraint (10): Ensures that the number of dancers assigned to a room does not
exceed its capacity gr.

3.3 Objective Function

The objective is to maximize the weighted attendance of the dancers at all rehearsals,
where the weights reflect the importance of specific dancers, such as choreographers or
lead performers. The objective function is given as:

maximize
∑
i∈N

∑
j∈M

∑
k∈T

∑
r∈R

cijxijkr

4 Data Collection

We interviewed an anonymous dance group at CMU to obtain data for the current semester
that we could use to test our model. We found that there were 30 dancers (N) who needed
to schedule 20 rehearsals (M) across 10 weeks with each day having 3 available time slots
(D). We asked dancers in the group to provide us with the time slots and rooms they were
able to use throughout the semester (T = 210, R = 3).

We also requested each dancer’s expected availability at every time slot (aik). We requested
information on subgroups of their piece to find out which dancers needed to practice with
each other to work on combined choreography (Sl; n = 3) and asked the choreographers to
determine how many practices subgroups needed together (pl) as well as an upper limit for
the number of practices a dancer can attend in a day (F = 1). We also asked choreographers
to identify the lead dancers in their pieces. Using this info, the choreographers and lead
dancers were given different weights from the other dancers in each piece (cij). Specifically,
choreographers were given an importance of 5 for rehearsals they choreograph, while lead
dancers were given an importance of 3 for rehearsals they are leads in. All dancers that

4

were not a choreographer or lead for a certain rehearsal were assigned an importance of 1
for that rehearsal.

Room availability and occupancy data was obtained from CMU’s 25Live room reservation
website (frk, gr).

After obtaining this initial dataset, we used it to synthetically create a larger dataset
with 100 dancers, 70 rehearsals to schedule, and 6 rooms in order to test the model for
performance in larger cases.

5 Finding an Optimal Schedule

To solve our integer program, we encoded it in gurobipy, a Python wrapper for the Gurobi
optimization program. Gurobi uses a variety of methods to solve integer programs, in-
cluding but not limited to LP relaxations, applying Branch and Bound, cutting planes,
and heuristics. It starts by solving a relaxed version of the problem to provide bounds,
then systematically explores feasible solutions using Branch and Bound, pruning branches
based on infeasibility or suboptimality. Cutting planes tighten the relaxation to speed up
convergence, while heuristics generate quick feasible solutions. These techniques are sup-
ported by presolve routines that simplify the problem, reducing complexity and improving
performance.

After entering our collected data, the number of variables the program was required to
optimize over was

#xijkr +#yjl +#zjkr = (30× 20× 210× 3) + (20× 3) + (20× 210× 3) = 390660

Gurobi was able to find an optimal assignment. From the variable assignment, we extracted
the total schedule, including the location and the dancers assigned to each rehearsal. We
also extracted each dancer’s individual schedule, sorted by timeslot. Examples of both are
shown here:

5

Examining the optimal solution yields some notable details. One significant fact is that
only the largest room (with capacity 23) is used for all rehearsals, despite its lack of
availability during some time slots, in order to maximize attendance. This optimization
of attendance is also demonstrated by the fact that each rehearsal is filled with nearly the
maximum number of dancers possible.

Also, the assigned choreographers and lead dancers are present in nearly all rehearsals
they are important in, while many of the other dancers present are chosen to satisfy the
subgroup constraints. In the example above, dancer 0 is a choreographer for rehearsals 0-9
and is assigned to attend 9 of these 10.

After obtaining this solution, we attempted to optimize a schedule of 70 rehearsals for our
synthetic dataset of 100 dancers, with 6 available rooms and 7 subgroups. However, this
scaled the problem to an intractable degree, as the number of variables to be optimized
became

#xijkr +#yjl +#zjkr = 8908690

Gurobi was not able to make significant progress toward a solution for this larger dataset.

6

6 Conclusion and Future Improvements

6.1 Summary of Results

We have successfully developed and implemented an Integer Programming model to op-
timize rehearsal schedules for dance groups. The model effectively balances dancer avail-
ability, room constraints, and subgroup requirements to produce conflict-free schedules
while prioritizing key performers, such as choreographers and lead dancers. By applying
the model to real-world data, we demonstrated its capability to optimize attendance and
resource utilization, achieving an efficient and practical schedule for small dance groups.

Despite its success, the model has notable limitations. First, its reliance on the exact
optimization technique of integer programming makes it computationally intensive for
large datasets with numerous dancers, rehearsals, and time slots. Second, the current
formulation assumes static dancer and room availability, which may not fully reflect the
dynamic nature of real-world scheduling, where last-minute changes are common. Lastly,
the rigidity of predefined subgroups limits flexibility in cases where dancer assignments
evolve over time due to changing choreography or production needs.

6.2 Future Improvements

To address these limitations and improve the model’s practicality, several avenues for future
work are proposed:

1. Development of Heuristic-Based Methods: Designing heuristic approaches,
such as genetic algorithms or simulated annealing, could approximate optimal solu-
tions more efficiently, making the model scalable to larger datasets.

2. Dynamic Scheduling Capabilities: Extending the model to account for dynamic
changes in dancer and room availability would enhance its adaptability. Incorporat-
ing real-time updates could allow for re-optimization when unexpected conflicts or
cancellations arise.

3. Incorporating Flexible Deadlines: Allowing for multiple deadlines for groups or
subgroups would better reflect staggered performance needs and rehearsal timelines,
making the model more realistic for diverse production schedules.

4. Alternative Problem Formulations: Exploring alternative formulations, such
as network flow models or constraint satisfaction frameworks, might uncover new
optimization techniques that simplify or accelerate the scheduling process.

7

5. Flexible Subgroup Assignments: Enhancing the model to support dynamic sub-
group changes would accommodate evolving choreography needs and improve work-
load distribution across dancers.

8

