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1 Abstract

This study attempts to create an optimized schedule for a day trip to Disney’s California
Adventure. To do so, we aim to turn general preferences for a trip to the Disney Adventure
Park into an integer programming problem similar to the traveling salesmen problem with
considerations towards walking speed, wait times, lightning lane availability, budget, and
user preferences. Since the data for the problem is relatively small in scale, we decided
to utilize Gurobi’s Optimization Software to solve the program. Ultimately, our program
produced day schedules that offer a variety of popular activities in the park, though they do
tend to include many cross-over paths.

2 Introduction

When planning any trip, some of the main stressors are budgeting, time management, and
event planning. With a place like Adventure Park, with over 25,000 visitors per day, it
becomes important to optimize your ability to spend as much time on rides and in attractions
and as little time in lines as possible. Disney parks should be full of magic and fun for both
children and adults alike, but it becomes harder to appreciate this when most of the day
is spent glued to a phone checking for the shortest wait times or nearest rides. Of course,
Disney offers packages to supplement these issues; however, for those unwilling to spend
additional money on alternative scheduling tools, the only potential guidance for planning are
online lists of rides and attractions, nothing personally tailored. That is how, “Your Perfect
Adventure at California Adventure” was born. This program considers activity preferences,
budget, wait times, and walking distances to provide an optimized schedule through the park.

Figure 1: Map of Disney California Adventure Park
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3 Formulating the Problem

3.1 Overall Integer Program

We have the following general formulation of the integer program based on the subsequent
constraints and descriptions,

min ∑
i∈V

∑
j ̸=i∈V

cost(i, j)xi, j

subject to

∑
i∈T

xi, j = y j for all j ̸= i ∈ T

∑
j∈T

xi, j = yi for all i ̸= j ∈ T

∑
j∈T

xstart_node, j = 1

∑
i∈T

xi,end_node = 1

∑
i∈R

yi ≤ 20

∑
i∈F

yi ≤ 2

∑
i∈A

yi ≤ 36

∑
i∈R

yi ≥ 4

∑
i∈A

yi ≥ 3

ui −u j +1 ≤ (|T |−1)(1− xi, j) for i, j ∈ T, i ̸= j

xi, j ≤ y j for all i, j ̸= i ∈V

ui ∈ Z

xi, j,yi ∈ {0,1}

3.2 Splitting the Integer Programs

The integer program was initially developed to model a traveling salesmen problem. However,
certain customizations are needed to better fit it to navigate the Disney parks. In order to
incorporate a lunch location into the problem, we decided to split the program into two
sub-problems, a morning and afternoon integer program. This was done in an attempt to
accurately model valid eating times and overcome the scheduling issue of inaccurate eating
periods. At the end of the first time interval, we greedily choose the next node in the schedule
to be a food location, taking into account any user preference for food and budget. This
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location will then be considered the new starting location for the afternoon integer program.
The second integer program includes the additional constraint that the schedule must end at
the entrance to the park. Any other food locations desired by the user will be incorporated
into the overall integer program.

3.3 Map

We let R denote the set of rides in the schedule, F denote the set of food locations, and A
denote the set of attractions where R∩F ∩A =∅ and T = R∪F ∪A ⊂V where V is the set
of all vertices in the graph mentioned above.

3.4 Variables

The decision variable indicates the edge between activity i and activity j in the graph created
by making edges between every possible activity in the park. This was done to allow us to
utilize the traveling salesmen formulation while also creating links between each location to
then extrapolate into a schedule.

xi, j =

1 if the edge i, j is included in the schedule

0 otherwise
(1)

We further introduced two "dummy" variables into the problem, accounting for the "dummy"
nodes in our graph. Specifically, we will let start_node represent the first node in the graph -
the start of the schedule - and end_node represent the last node in the graph - the end of the
schedule - and so created the two decision variables,

xstart_node, j =

1 if the edge start_node, j is included in the schedule

0 otherwise
(2)

xi,end_node =

1 if the edge i,end_node is included in the schedule

0 otherwise
(3)

We also introduced the variables ui for each i ∈ [T ] where

ui = the number of edges in the schedule until the ith node is included (4)

This allows us to check for subtours using the Miller-Tucker-Zenlin Formulation of the TSP
problem (Miller et al.). Since our integer program is attempting to create continuous tours,
this is a necessary constraint.
Finally, we included the variable yi,
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yi =

1 if there exists an edge into node i in the schedule

0 if there does not exist an edge into node i in the schedule
(5)

This variable was included to allow us to limit the inclusion of activities to a subset of the
park activities rather than all possible activities.

3.5 Objective Function

For this problem, we sought to minimize the cost of the schedule according to a personalized
cost function. Thus, we created the following general objective function

min ∑
i∈V

∑
j ̸=i∈V

cost(i, j)xi, j (6)

3.6 Constraints

For this problem, we require two types of constraints: assignment constraints and subroutine
constraints. The following assignment constraints ensure that every node in the schedule has
an in edge and an out edge. Since yi ∈ {0,1}, this constraint also ensures uniqueness of the
edges, and so the issue of repeats or multiple routes through one location does not occur
when solving the problem.

∑
i∈T

xi, j = y j for all j ̸= i ∈ T (7)

∑
j∈T

xi, j = yi for all i ̸= j ∈ T (8)

Since we constrain the inclusion of the edges by the variable yi rather than 1, we needed to
add an additional constraint to ensure that yi changes when an edge is included in the graph.
So we added the following constraint.

xi, j ≤ y j for all i, j ̸= i ∈V (9)

We also needed to require that the first and last node in the schedule only had one edge out
and one edge in. This was done using the following constraints:
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∑
j∈T

xstart_node, j = 1 (10)

∑
i∈T

xi,end_node = 1 (11)

The following subroutine constraint from the Miller-Tucker-Zenlin Formulation of the TSP
problem ensures that no distinct sub routes will occur in the schedule (Miller et al.).

ui −u j +1 ≤ (|T |−1)(1− xi, j) for i, j ∈ [T ], i ̸= j (12)

We also required that the variables are only assigned the integer values {0,1}, as is standard,

xi, j ∈ {0,1} (13)

Beyond the constraints for ensuring a complete and feasible schedule, we added additional
specifications according to the problem’s use cases. Specifically, in order to ensure that the
user visited a reasonable number of rides, attractions, and food locations, we included the
following assumptions in our model,

1. You can ride at most 20 rides per half day

2. You stop at at most 2 food stations per half day

3. You can complete at most 36 attractions per half day

4. You must ride at least 4 rides per half day

5. You must visit at least 3 attractions per half day

These assumptions were reflected with the following constraints,
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∑
i∈R

yi ≤ 20 (14)

∑
i∈F

yi ≤ 2 (15)

∑
i∈A

yi ≤ 36 (16)

∑
i∈R

yi ≥ 4 (17)

∑
i∈A

yi ≥ 3 (18)

3.7 Cost Function Definitions

For the cost function, we chose to penalize spending more time on any given activity. We also
chose to prioritize ‘happiness’, which is a value given to the program by the user when they
first enter their itinerary activities. By penalizing time, we attempt to increase the potential
chances for further engagement at the park. We further attempt to differentiate the nodes by
including the happiness constraint, adding priority to activities that will be most enjoyable
for the user. It is also assumed that the user would generally prefer to save money on the
trip. Thus, we included a cost constraint for the additional price of completing any of the
activities in the park. The happiness multiplier for the happiness value was included in order
to make the value competitive with the time and price constraints.

cost(i, j) = time_to(i, j)+µ ∗ time_at( j)+φ ∗ price( j)−α ∗happiness( j)

where

time_to(i, j) = the time taken to walk from activity i to activity j

time_at( j) = time spent at activity j

happiness( j) = happiness value assigned to completing activity j

price( j) = the price of completing activity j

µ = 0.5 if Lightning Lanes used, else 1

φ = 1 if Food Location and cost ≤ budget,

infinity if Food Location and cost > budget, else 0

α = happiness multiplier
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4 Sourcing Data

4.1 User Preferences

We sourced user preferences in two different ways. For initial testing of the model, we
randomly chose the user’s favorite activities throughout the park. The second sourcing of
user preferences was done through finding existing itineraries online. All activities where
assigned happiness ratings between 1 and 300 where the highest ratings where given to the
user’s most preferred activities. All users were additionally given a base budget of $2000 for
the trip.

4.2 Food Prices

We decided to estimate food prices using averages derived from their online price ratings.
To do this, we looked up the different food locations and categorized them based on their
evaluation of $, $$, $$$, and $$$$. After categorizing them, we created a simple mapping
where $ meant the lowest cost and $$$$ meant the highest cost per person.

4.3 Walking Distance and Times

We also needed to estimate the walking distance in minutes between all rides, attractions,
and restaurants within the park. Since manually computing the distance between all locations
in the park was computationally improbable, we utilized prompt engineering to estimate
the distances. Chat GPT references Disney Adventure Land maps and credible sources to
estimate walking time in minutes with the assumption that all park goers walk at the rate of
3 miles per hour.
The prompt(s) used were: Given the following rides, attractions , and restaurants in Disney-
land please estimate walking distance between all possible combinations. Use approximations
based on google images of the Disneyland parks to give me a solid estimate of the walking
distance in minutes. While using generative AI to obtain data has its risks, all calculations
were looked over manually and verified through use of the Disneyland app and prior research.

4.4 Wait Times

To determine the appropriate wait times for rides and attractions, we created a program that
would allow us to extract this information from an active queue times website (Parks). We
sent a GET request to fetch the HTML content of the page and then parsed the HTML content
using the Beautiful Soup library. Finally, we extracted the titles and created a dictionary to
map specific rides to their wait times (code in Appendix 11.3.1).
Additionally, for food locations, we decided to include the time spent eating or in line at that
location as its Wait Time. In order to determine the time spent at any given food location,
we created a simple mapping from average money spent at the location to approximate time
likely spent at that location. As an example, if a single individual were to, on average, spend
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$50 at a food spot, this food location is likely a sit down restaurant and thus the time spent at
that location is likely around 1.5 hours.

5 Solving with Gurobi

5.1 Overview

We used the Gurobi Optimization Software to solve the program. Since Gurobi requires a
license, we obtained free academic licenses using our Andrew emails. We then coded the
problem using Python and the Gurobi software (code in Appendix 11.1). We chose to use
Gurobi because it utilizes methods for solving integer programs that generally provide the
most accurate solutions. When solving with Gurobi, we augmented the model and problem
in some significant ways. Since we split the problem into two smaller integer programs, we
decided to remove any already visited activities from the activity graph to avoid repeated
visits. We also changed the minimization function to promote visiting more nodes. To do
so, we subtracted a multiplier times the sum of all yi in the model. Additionally, we greedily
chose the lunch location in between the two programs based on the cost of traveling to that
location from the last activity for the morning schedule.
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5.2 Results

5.2.1 Single Rider with Significant Budget

This version allows for the use of Single Rider lines - lines that are often shorter and faster.
Model Preferences
In this model, we had the user greatly prefer to visit the rides - ’Toy Story Midway Mania!’,
’Pixar Pal-A-Round’, "Jessie’s Critter Carousel", ’Inside Out Emotional Whirlwind’, "The
Little Mermaid: Ariel’s Undersea Adventure", "Goofy’s Sky School", "Jumpin’ Jellyfish",
"Golden Zephyr", "Grizzly River Run", "Soarin’ Around the World", "Web Slingers: A
Spider-Man Adventure" - food locations - ’Fiddler, Fifer & Practical Cafe’, "Award Wieners",
"Schmoozies!", "Fairfax Market", "Pym Test Kitchen" - and attractions - ’Red Car Trolley’,
’Animation Academy’, "Mickey’s PhilharMagic".
Schedule

Figure 2: Single Rider Lightning Lane Schedule
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5.2.2 Family Trip with Lightning Lane Use

We additionally ran the model while removing the user’s ability to access single rider lanes.
This model also uses a portion of its budget on Lightning Lanes. For this run of the model,
we did not limit the user’s preferences to the most significant activities, in doing so, we
allowed a slightly greater exploration of the park.
Schedule

Figure 3: Family Trip with Lightning Lane Use Schedule
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5.2.3 Family Trip No Lightning Lane

We additionally generated a schedule for a Family Trip without Lightning Lane use. In this
particular park, lightning lanes are limited, thus, these passes are less likely to be purchased.
Furthermore, we wanted to account for situations where budgets might not allow for said
purchases.
Schedule

Figure 4: Family Trip without Lightning Lane Use Schedule

12



5.3 Analysis

There are differences between all schedules. The singles schedule prefers rides with single
rider lanes. This is likely due to their shortened wait time. Comparatively, the family schedules
do not visit the Avenger’s campus or Cars Land but do prefer slightly different routes likely
due to the changed wait times according to lightning lane use. Overall, all of our schedules
have a lot of crossover in the center of the park. The likely reason behind this is the influence
of the happiness rankings and the minimal influence of walking times and wait times at many
of the locations around the park. Thus, some of the far away locations are more preferred
before others in similar areas due to a combination of the user’s greater preference for those
activities and the time spent walking to and completing the activities.

6 Comparison to Online Schedules

In order to further test our model, we compared our schedules with those recommended from
reasonable online sources. To do so, we sourced two different schedules from two different
sites and ran our model preferring the recommended activities in the sourced itineraries.
These itineraries also recommend using the Single Rider lines and Lightning Lanes though
they were not necessary.
The first schedule from a Disney Tourist Blog (Bricker, T.) and the second schedule from
Wandering Disney Blog (andrewlong7) had a similar structure with both starting in Cars
Land, going to Pixar Pier for lunch and then visiting Hollywood Lane. They also both
recommended the Cars Land Sh-Boom lighting moment and ending the day with World of
Color. For the schedule for the Wandering Disney Blog, after the sixth ride, rides were only
recommended if they were under 30 minutes.

Figure 5: (Left) Disney Tourist Blog Schedule (Right) Our Schedule
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As can be seen in Figure 5, compared to the blog schedule, our schedule does not include Toy
Story Midway Mania, Radiator Springs Racers, and Web Slingers but it does add multiple
other attractions and food spots. This is likely due to our algorithm guaranteeing 4 rides per
half day & 3 attractions per half day which created a more balanced trip.

Figure 6: (Left) Wandering Disney Schedule (Right) Our Schedule

As can be seen in Figure 6, compared to the blog schedule, our schedule does not include
Toy Story Midway Mania, Radiator Springs Racers, Guardians, Soarin’, Mater’s Junkyard,
Goofy’s and Web Slingers but does include multiple additional attractions and food spots
since the model forces a certain amount of each activity.
Our schedule focuses less on rides and more on holistic enjoyment of activities in the park,
meaning that most of the day will not be spent in lines but will be spent partaking in other
activities. Our schedule does, however, put more emphasis on the user preference towards
activities and far less emphasis on the walking distance between activities. As a result, our
model tends to output schedules that send the user around the park more compared to the
blog’s schedule which has some attempts to keep activity completion within a small number
of visits to any given area. Regardless, both the blog schedule and our schedule have a
significant number of crossovers in the paths through the park.

7 Conclusion

Overall, our model offers a large range of options, though remains comparable to the online
schedules. Both the online schedule and our schedule have a tendency to direct the user on
crossing paths around the park, likely due to the parks relatively small size and competing
cost constraints preferring farther locations that either cost less or are rated more highly by
the user over closer locations. Since our schedule also prioritizes popular activities in the
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park and generates what is considered a full-day itinerary with the ability to customize, the
model sufficiently answers the problem we were trying to solve.

8 Future Steps

8.1 Improved Data Gathering

Currently, much of the data used in the models are estimates of the true data. The model
could be expanded to different time periods as well as locations, allowing the inclusion of
more varied wait times. Additionally, the current model estimates walk times and food costs
using averages and best guesses through ChatGPT. A more informed collection of data could
result in an improved model. Another significant improvement to our current form of data
gathering is using existing ratings for each ride to determine a baseline for the user happiness
level. This would both limit the happiness ranking to a standardized scale, 1-10 or 1-5, and
give a more informed path through the park to popular areas.

8.2 Solving Model with Heuristics

Rather than using an optimizer such as Gurobi, the model could be solved using common
popular heuristics. The Nearest-Neighbor Method, a greedy heuristic for the traveling sales-
man problem, could be useful since it emphasizes choosing the lowest cost action at every
node, which would in turn make for a faster trip through Adventureland. Another important
expansion would be to incorporate a heuristic like the Lin-Kernighan algorithm with the
existing model. The Lin-Kernighan algorithm takes a model and further improves it by
exchanging edges that would result in a reduced tour length (Singh, R.). This has great
potential for our current implementation since many of the paths through the parks include
crossed edges.

8.3 Expanding Model to Different Parks

Currently, the model only looks at one of Disney’s smaller and relatively less visited parks.
As a result, the wait times for rides are significantly smaller and the use of Lightning Lanes
is limited when compared to some of Disney’s larger parks. An expansion of this problem
could be to source data from Disneyland or Disney World. That being said, the current
problem already has over 300,000 variables when the entire park is considered, so adding
more variables has the potential to significantly increase the running time of the Gurobi
implementation.
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10 Appendix

10.1 Code for Gurobi Solver

1 from gurobipy import *
2 import california_adventure_info
3 # contains all the california adventure specific information that is

not user’s preferences
4

5

6 ’’’ FUNCTION create_tsp_model
7

8 creates modified tsp model
9

10 ARGs
11 cost - Cost matrix
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12 num_nodes - Includes Start (0) and End (\in [n])
13 ride_indices - list of indicies for rides
14 attraction_indices - list of indicies for attractions
15 food_indices - list of indicies for food
16 alpha - determines how much to value visiting additional nodes
17 name - name for model
18

19 RETURNs
20 model
21 x - binary decision variable if edge (i,j) selected
22 y - selection variable if node i selected
23 ’’’
24 def create_tsp_model(cost , num_nodes , start_node , end_node ,
25 ride_indices , attraction_indices , food_indices ,
26 alpha =0.5, name="TSP"):
27

28 model = Model(name)
29 x = model.addVars(num_nodes , num_nodes , vtype=GRB.BINARY , name="x"

)
30 y = model.addVars(num_nodes , vtype=GRB.BINARY , name="y") #

selection variable
31

32 # objective function : minimize cost & visit nodes
33 model.setObjective(
34 quicksum(cost[i][j] * x[i, j] for i in range(num_nodes) for j in

range(num_nodes) if i != j)
35 - alpha * quicksum(y[j] for j in range(num_nodes)), # encourages

visiting more nodes
36 GRB.MINIMIZE)
37

38 # link x and y variables: if node j is visited , y[j] must be 1
39 for i in range(num_nodes):
40 for j in range(num_nodes):
41 if i != j:
42 model.addConstr(x[i, j] <= y[j], name=f"link_{i}_{j}")
43

44 # start node constraints
45 model.addConstr(quicksum(x[start_node , j] for j in range(num_nodes

) if j != start_node) == 1,
46 name="start_node_outgoing")
47 model.addConstr(quicksum(x[i, start_node] for i in range(num_nodes

) if i != start_node) == 0,
48 name="start_node_no_incoming")
49

50 # end node constraints
51 model.addConstr(quicksum(x[i, end_node] for i in range(num_nodes)

if i != end_node) == 1,
52 name="end_node_incoming")
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53 model.addConstr(quicksum(x[end_node , j] for j in range(num_nodes)
if j != end_node) == 0,

54 name="end_node_no_outgoing")
55

56 # incoming and outgoing constraints for y
57 for j in range(num_nodes):
58 if j != start_node and j != end_node:
59 model.addConstr(
60 quicksum(x[i, j] for i in range(num_nodes) if i != j)

== y[j],
61 name=f"incoming_{j}")
62

63 for i in range(num_nodes):
64 if i != start_node and i != end_node:
65 model.addConstr(
66 quicksum(x[i, j] for j in range(num_nodes) if i != j)

== y[i],
67 name=f"outgoing_{i}")
68

69 # subtour elimination constraints (MTZ) for intermediate nodes
70 u = model.addVars(num_nodes , lb=1, ub=num_nodes , vtype=GRB.

CONTINUOUS , name="u")
71 for i in range(num_nodes):
72 for j in range(num_nodes):
73 if i != j:
74 model.addConstr(
75 u[i] - u[j] + num_nodes * x[i, j] <= num_nodes -

1,
76 name=f"subtour_{i}_{j}")
77

78

79 # maximum limits (assumptions)
80 model.addConstr(quicksum(y[j] for j in ride_indices) <= 20, name="

max_rides")
81 model.addConstr(quicksum(y[j] for j in attraction_indices) <= 36,

name="max_attractions")
82 model.addConstr(quicksum(y[j] for j in food_indices) <= 2, name="

max_food_stops") # max 2 because lunch is forced
83

84

85 # minimum limits
86 model.addConstr(quicksum(y[j] for j in ride_indices) >= 4, name="

min_rides")
87 model.addConstr(quicksum(y[j] for j in attraction_indices) >= 3,

name="min_attractions")
88 return model , x, y
89

90

91 ’’’FUNCTION write_schedule
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92

93 Helper function that writes the created schedule to given file
94

95 ARGs
96 model - model
97 x - binary decision variables for the model
98 nodes - list names of nodes that correspond to the model ’s node

index
99 file - file to write the schedule to

100 schedule_name - name of the schedule
101 start_node - node where the model started (used for traversal

purposes)
102

103 RETURNs
104 None
105 ’’’
106 def write_schedule(model , x, nodes , file , schedule_name , start_node):
107 file.write(f"{schedule_name }:\n")
108

109 if model.SolCount > 0:
110 visited = set()
111 current_node = start_node
112 tour = []
113

114 while len(visited) < len(nodes):
115 visited.add(current_node)
116 tour.append(current_node)
117

118 # find the next node in the tour
119 next_node = None
120 for j in range(len(nodes)):
121 if x[current_node , j].X > 0.5 and j not in visited:
122 next_node = j
123 break
124

125 if next_node is None:
126 break # end of tour
127 current_node = next_node
128

129 for node in tour:
130 file.write(f"{nodes[node]} is included in the schedule .\n"

)
131 else:
132 file.write("No valid solution for this schedule .\n")
133

134

135

136 ’’’FUNCTION main
137
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138 function that
139 - sets user preferences
140 - gets all ridess , foods , attractions & establishes indicies
141 - creates happiness dictionary
142 - creates cost matrix
143 - creates and runs morning model (using create_tsp_model)
144 - creates and runs afternoon model (using create_tsp_model)
145 - writes schedules to files
146

147 ARGs
148 None
149 RETURNs
150 None
151 ’’’
152 def main():
153 # user preferences and budget
154 user_budget = 2000
155 user_min_happiness = 50 #currently filters nothing out (everyone

has a base score of 50)
156 fast_pass_cost = 350
157 has_fast_pass = False
158 is_single = False
159 remaining_budget = user_budget - (fast_pass_cost if has_fast_pass

else 0)
160

161

162 users_favorites_rides = [’Toy Story Midway Mania!’, ’Pixar Pal -A-
Round’,

163 "Jessie ’s Critter Carousel", ’Inside Out Emotional Whirlwind ’,
164 "The Little Mermaid: Ariel ’s Undersea Adventure", "Goofy’s Sky

School",
165 "Jumpin ’ Jellyfish", "Golden Zephyr",
166 "Grizzly River Run", "Soarin ’ Around the World",
167 "Web Slingers: A Spider -Man Adventure"
168 ]
169 users_favorites_foods = [
170 ’Fiddler , Fifer & Practical Caf[U+FFFD]’, "Award Wieners",
171 "Schmoozies!", "Fairfax Market",
172 "Pym Test Kitchen"
173 ]
174 users_favorites_attractions = [
175 ’Red Car Trolley ’, ’Animation Academy ’, "Mickey ’s PhilharMagic

"
176 ]
177

178

179 ALL_RIDES , ALL_ATTRACTIONS , ALL_FOODS = california_adventure_info.
get_all_names(is_single)

180
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181 # filter food options by budget
182 valid_foods = [food for food in ALL_FOODS if

california_adventure_info.get_price(food) <= remaining_budget]
183

184 all_nodes = ALL_RIDES + ALL_ATTRACTIONS + valid_foods
185

186

187 happiness_dict = california_adventure_info.
create_happiness_dictionary(

188 users_favorites_rides , users_favorites_foods ,
users_favorites_attractions ,

189 all_nodes)
190

191 # only include nodes above some baseline threshold (allows for
anti -reqs & stringent schedules)

192 min_happiness_threshold = user_min_happiness
193 all_nodes = [node for node in all_nodes if happiness_dict.get(node

, 0) >= min_happiness_threshold]
194 happy_foods = [node for node in valid_foods if happiness_dict.get(

node , 0) >= min_happiness_threshold]
195 entrance_node = "Park Entrance"
196 all_nodes = [entrance_node] + all_nodes
197

198 num_nodes = len(all_nodes)
199

200 # define weights per specification in documentation
201 happiness_weight = -1.0
202 travel_time_weight = 1.0
203 wait_time_weight = 0.5
204 price_weight = 0.1
205

206 # create cost matrix
207 cost = [[0] * num_nodes for _ in range(num_nodes)]
208 for i in range(num_nodes):
209 for j in range(num_nodes):
210 if i != j:
211 travel_time = california_adventure_info.

get_travel_time(all_nodes[i], all_nodes[j])
212 wait_time = california_adventure_info.get_wait_time(

all_nodes[j])
213 price = california_adventure_info.get_price(all_nodes[

j])
214 happiness = california_adventure_info.get_happiness(

all_nodes[j], happiness_dict)
215 stay_time = california_adventure_info.get_stay_time(

all_nodes[j])
216

217 # determine mu based on fast pass availability
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218 mu = 0.5 if (has_fast_pass and
california_adventure_info.has_fast_pass(all_nodes[j])) else 1.0

219

220 # determine phi based on budget constraints
221 if all_nodes[j] in happy_foods:
222 phi = 1.0
223 elif all_nodes[j] in ALL_FOODS:
224 phi = float(’inf’) # exclude food items exceeding

budget
225 else:
226 phi = 0.0
227

228 cost[i][j] = (
229 travel_time_weight * travel_time
230 + mu * (wait_time_weight + stay_time) * wait_time
231 + phi * price_weight * price
232 + happiness_weight * happiness)
233

234 # create ride , attraction , and food indices
235 ride_indices = [i for i, node in enumerate(all_nodes) if node in

ALL_RIDES]
236 attraction_indices = [i for i, node in enumerate(all_nodes) if

node in ALL_ATTRACTIONS]
237 food_indices = [i for i, node in enumerate(all_nodes) if node in

happy_foods]
238

239 # morning TSP
240 start_node = 0 # Park Entrance node index
241

242 if happy_foods != []:
243 best_food = happy_foods [0]
244 else: best_food = start_node
245 best_food_score = -float(’inf’)
246

247 for food in happy_foods:
248 current_food_score = happiness_dict[food]
249 if current_food_score > best_food_score:
250 best_food_score = current_food_score
251 best_food = food
252

253 selected_food = best_food
254 food_node = all_nodes.index(selected_food) if selected_food else

start_node
255

256 morning_model , morning_x , morning_y = create_tsp_model(
257 cost , num_nodes , start_node , food_node ,
258 ride_indices , attraction_indices , food_indices , name="

Morning_TSP")
259
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260 morning_model.optimize ()
261

262 # check feasibility for morning schedule
263 if morning_model.status == GRB.INFEASIBLE: # chat wrote this
264 print("morning model is infeasible (nuts)")
265 morning_model.computeIIS ()
266 morning_model.write("morning_model.ilp")
267 return
268

269 remaining_budget -= california_adventure_info.get_price(
selected_food)

270 valid_foods = [food for food in ALL_FOODS if
california_adventure_info.get_price(food) <= remaining_budget]

271 happy_foods = [node for node in valid_foods if happiness_dict.get(
node , 0) >= min_happiness_threshold]

272 food_indices = [i for i, node in enumerate(all_nodes) if node in
happy_foods]

273

274 # afternoon TSP
275 afternoon_model , afternoon_x , afternoon_y = create_tsp_model(
276 cost , num_nodes , food_node , start_node ,
277 ride_indices , attraction_indices , food_indices , name="

Afternoon_TSP")
278

279 morning_visited_nodes = [i for i in range(num_nodes) if morning_y[
i].X > 0.5]

280 afternoon_model.addConstr(
281 quicksum(afternoon_x[food_node , j] for j in range(num_nodes)

if j != food_node) == 1,
282 name="start_node_afternoon")
283

284 # ensure no node visited in the morning is revisited in the
afternoon

285 for node in morning_visited_nodes:
286 if node == 0 or node == food_node: # allow revists for park

entrance & lunch location (ensures feasibility)
287 continue
288 afternoon_model.addConstr(afternoon_y[node] == 0, name=f"

no_revisit_{node}")
289

290 afternoon_model.optimize ()
291

292

293 # check feasibility for afternoon schedule
294 if afternoon_model.status == GRB.INFEASIBLE: # chat wrote this
295 print("afternoon model is infeasible (nuts)")
296 afternoon_model.computeIIS ()
297 afternoon_model.write("afternoon_model.ilp")
298 return
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299

300 with open("morning.txt", "w") as morning_file:
301 write_schedule(morning_model , morning_x , all_nodes ,

morning_file , "Morning Schedule", 0)
302

303 with open("afternoon.txt", "w") as afternoon_file:
304 write_schedule(afternoon_model , afternoon_x , all_nodes ,

afternoon_file , "Afternoon Schedule", food_node)
305

306

307 if __name__ == "__main__":
308 main()

10.2 Code for Data Retrieval

10.2.1 Code for Pulling Wait Times

1 import requests
2 from bs4 import BeautifulSoup
3 import unicodedata
4 import pickle
5

6 def clean_ride_name(ride_name):
7 # remove notes such as "( anonymous user said it was closed , 18

minutes ago)"
8 if ’(’ in ride_name:
9 ride_name = ride_name.split(’(’)[0]. strip()

10 return ride_name
11

12 def clean_wait_time(wait_time):
13 # convert "x mins" to integer x
14 if wait_time.endswith("mins"):
15 return int(wait_time.replace(" mins", ""))
16 elif wait_time == "0 mins":
17 return 0
18 elif wait_time == " -1 mins":
19 return -1
20 else:
21 return -1 # default to -1 for unknown or invalid formats (

possible additional filtering here)
22

23 def get_rides_and_waits ():
24 url = ’https ://queue -times.com/en-US/parks /17/ queue_times ’
25 all_rides = {}
26 response = requests.get(url)
27

28 if response.status_code == 200:
29 soup = BeautifulSoup(response.content , ’html.parser ’)
30
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31 for ride in soup.select(’.panel -block’):
32 ride_name = ride.find(’span’, class_=’has -text -weight -

normal ’)
33 ride_name = ride_name.get_text(strip=True) if ride_name

else "Unknown Ride"
34 ride_name = unicodedata.normalize("NFKD", ride_name).

encode("ascii", "ignore").decode("utf -8")
35 ride_name = clean_ride_name(ride_name)
36

37 wait_time = ride.find(’span’, class_=’has -text -weight -bold
’)

38 wait_time = wait_time.get_text(strip=True) if wait_time
else "Unknown Time"

39

40 if wait_time == "Open":
41 wait_time = "0 mins"
42 elif wait_time == "Closed":
43 wait_time = " -1 mins"
44

45 if "reservation" not in ride_name.lower ():
46 all_rides[ride_name] = clean_wait_time(wait_time)
47 else:
48 print(f"Failed to retrieve the page. Status code: {response.

status_code}")
49

50 return all_rides
51

52

53 # additional filtering for -1 flags
54 def extract_missing_rides(all_rides):
55 url = ’https ://queue -times.com/en-US/parks /17/ stats /2024’
56 response = requests.get(url)
57

58 missing_rides = {ride_name for ride_name , wait_time in all_rides.
items() if wait_time == -1}

59

60 if response.status_code == 200:
61 soup = BeautifulSoup(response.content , ’html.parser ’)
62

63 ride_table = soup.find_all("table", class_="table is-fullwidth
")[0]

64 for row in ride_table.find("tbody").find_all("tr"):
65 ride_name = row.find("a").text.strip ()
66 wait_time = row.find("span").text.strip()
67

68 ride_name = clean_ride_name(ride_name)
69 wait_time = clean_wait_time(wait_time + " mins")
70

71 if ride_name in missing_rides:
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72 all_rides[ride_name] = wait_time
73 #print(f"{ ride_name}, {wait_time }")
74

75 return all_rides
76

77 def main():
78 all_rides = get_rides_and_waits ()
79 all_rides = extract_missing_rides(all_rides)
80 # for ride_name , wait_time in all_rides.items ():
81 # print(f"{ ride_name}, {wait_time }")
82 with open("all_rides.pkl", "wb") as file:
83 pickle.dump(all_rides , file)
84

85 if __name__ == ’__main__ ’:
86 main()
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