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1 Introduction

The goal of the dorm assignment project is to find an assignment to first year
Carnegie Mellon students such that the total distance that students travel to
their likely first class is minimized. This assignment must further abide by
constraints that ensure diverse allocation within dorms. Minimizing average
distance benefits students in having more time for daily activities and studying,
while the diversity constraints allow students to have a socially productive first
year, with an emphasis on distributing students to dorms in the most balanced
way, according to their traits.

We start by modeling a simple minimization problem that does not take diversity
constraints into account. Consequently, we try different algorithms that can
expand the constraints, until we can include all the constraints that represent
the real life scenario accurately.

2 Data Generation

Since we were not able to get data from the Housing Services for the 2019-
2020 year, we had to come up with our own randomized method for generating
accurate data. We got statistics for total number of students enrolled and the
total number of student in each college and capacities for each of the freshmen
dorms. There were a total of 1511 students from 6 different home colleges,
CFA, DC, CIT, MCS, SCS and TPR each with 230, 298, 417, 222, 205 and 139
students. There were a total of 9 different dorms students could be assigned,
BossHouse, Hamerschlag, Scobell, Donner, Morewood, Stever, Mudge, Rez and
Shirley, each with capacities 70, 160, 84, 224, 414, 244, 288, 122, and 51. We
set the gender equal to 55% male and 45 % female and randomly generated
the data by setting the probability parameters. Moreover, we appended interest
and preference columns which identify different constraints to the problem. The
preferences were randomly generated by making permutation of the dorms. For



instance, a student will have his or her gender, major, interest, and 9 columns
that shows the most preferred to the least preferred dorm choices.

Figure 1: Randomly Generated Data
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3 Brute Force

At first, we attempted to use backtracking to assign students while keeping
within the constraints. One by one, we attempted to assign students in a dorm
that would keep the solution withing the constraints. When an nth student did
not have any such dorms, we would backtrack to the last student and change
their assignment, with the hopes that n* student would now have a feasible
assignment. However, we quickly realized that this might require the exhaus-
tion of all options before terminating with an ”infeasible” result if we set the
constraints too tight. In other cases, it might still require the exploration of
a vast majority of options in order to find a feasible solution. Since we have
9 dorms, and 1511 students, the runtime is O(9'°!!), which is more than the
number of atoms in the universe [1]. Therefore, after a day, we abandon this
approach and move on with more efficient algorithmic considerations.

4 Python Linear Programming

We used a python package called PuLP to implement the linear programming
algorithm which involves minimising the total distances subject to a set of linear
inequality or equality constraints. We input a cost matrix which was defined in
section 6.1 and the number of students in each major. In this algorithm, the
students from the same major are treated identically, thus no individual traits
can be implemented by this algorithm. We were able to take into account the
capacity of each dorm, but when we added the constraint of filling at least 95%
of each dorm our results is no longer integer so we had to round the results.
The algorithm outputs a dorm-major matrix, Figure 2, that specifies how many
students from each major should go to each dorm. The final total cost is 510.51
miles and the average cost per student is 0.34 miles

5 Greedy Algorithm

The possible assignment of dorm was impossible to solve since the space of
all solution was about 9'°!!. Therefore, for greedy algorithm we only took the
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Figure 2: Linear Programming Algorithm Output Matrix

preference columns as objective function and capacity of dorms as the constraint
and found one possible solution to the problem. The cost for the preference was
their preference number divided by 20 so if a student gets their first preference
the cost for the objective function will be added by 2—10. The algorithm first
started giving students their first preference until the capacity constraint was
not violated and then started assigning the second preference when the dorms
were full. We achieved around 115.3 cost which indicates that we were able to
assign students with average 0.1 cost per student, which is on average they got
their second preference.

6 Hungarian Algorithm

The Hungarian algorithm offers a one to one match that minimizes the cost
while taking the capacity of each dorm into account. We used a python package
called munkres, which requires us to input a cost matrix, to implement the
algorithm.

6.1 Cost Matrix

The cost matrix is an n by n matrix where n represents the number of students as
well as the number of beds available (in this case the total capacity of dorms).
However, in our original dataset, the capacity is higher than the number of
students. To solve this problem, we reduced the capacity of Boss House is
reduced from 70 to 35 and the capacity of Morewood Gardens is decreased by
11 since these are the two dorms that are for not only freshmen but also upper-
class students to live in. Now the cost matrix is 1511 by 1511, and we filled in
the entries such that each entry is the sum of distance and preference score. In
this way, we make sure that we are minimizing distance and satisfying student
preferences at the same time. A part of the cost matrix looks as follows:



Figure 3: Hungarian Algorithm cost matrix

Student Boss_House Boss_House Boss_House Boss_House
1 0.35 0.35 0.35 0.35
2 0.5 0.5 0.5 0.5
3 0.25 0.25 0.25 0.25
4 0.5 0.5 0.5 0.5
5 0.45 0.45 0.45 0.45
6 0.4 0.4 0.4 0.4
7 0.45 0.45 0.45 0.45
8 0.4 0.4 0.4 0.4
9 0.45 0.45 0.45 0.45
10 0.6 0.6 0.6 0.6
11 0.65 0.65 0.65 0.65

6.2 Hungarian Output

The algorithm outputs which bed each student should be assigned to, and we
convert the output the number of students in each college that are assigned to
each dorm by looking at each student’s major and where each bed belongs to.
The final output is presented below.

Figure 4: Hungarian Algorithm Output

CFA DC CIT MCS SCS TPR

Boss_House 21 12 0 2 0 0
Hamerschlag 64 54 17 25 0 0
Scobell 32 40 5 7 0 0
Donner 60 75 58 30 1 0
Morewood 24 43 91 58 63 24
Stever 20 29 70 42 57 26
Mudge 9 41 81 52 63 42

Rez 0 4 56 6 13 43

Shiley 0 0 39 0 8 4

According to the solution, No CFA student lives in Residence on Fifth or
Shirley Apartments, which is reasonable since those are the two dorms that
locate farthest from the Purnell Center for the Arts. However, we do see 4
Tepper students are assigned to the faraway dorm Shirley, which demonstrates



how preference also plays a role in the decision making process.

7 LP Relaxation Using Simplex

In order to capture the full scope of our minimization problem and constraints,
we decide to model it as a linear program and use the Simplex Algorithm to
find non-integer solutions. Since we require solutions to be integers (we cannot
divide students in pieces), we employ a backtracking algorithm on the results of
the LP relaxation to find another solution within the feasible region. We then
analyze the optimality of this solution, which ends up being significantly close
to the theoretical optimum.

7.1 Variables

We first define our variables to be x1 ... £,,,, where m is the number of dorms
and n is the number of students. Each student therefore gets m many variables,
Zj ... Ti+m—1, each of which represents the probability that student ¢ is assigned
to dorm j.

7.2 Objective Function

We then define the cost function to be the expected distance of a student’s
assignment to their college building, which is where their first class likely will
be. This expected distance is given by

Z Pr[i is assigned to dorm j] * distance(i’s major, dorm j) (1)
je dorms

Therefore, we create the vector (Z of length 1 x mn, which represents the dis-
tance. We then take the dot product of d and x, which our objective is to
minimize. This can be represented as the summation

Z dkl‘k (2)
k=1

7.3 Constraints

The first two constraints will ensure that we can make a priority queue from
the probabilities and assign the student to the highest feasible probability. The
next two constraints are our initial diversity constraints.



1. Each student can get at most 1 assignment in probabilities.

i+m—1
Z rzp<lforalli=1,m+1,....mn—m+1 (3)
k=i

2. Each student can get at least 1 assignment in probabilities.

1+m—1
Z zp>1foralli=1,m+1,..., mn—m-+1 (4)
k=i

3. Each dorm can get at most 55% of any gender. Here G; is the gender of
student ¢ and C} is the capacity of dorm j.

ZI(Gi =G) - Tpy(i—1)+; < 0.55C; for all dorms j € [m] and genders G
i=1
(5)

4. Each dorm can get at most 30% of any major. Here M; is the major of
student ¢ and Cj is the capacity of dorm j.

ZI = M) -y (i—1)4; < 0.3C; for all dorms j € [m] and majors M

(6)

In this setting, the Simplex Algorithm terminates in less than 30 minutes, as it
pivots tens of thousands of times. However, this is still a significant improve-
ment over any of the other algorithms we tried, as it captures the entirety of
the problem, finds an almost optimal solution, and is able to terminate before
the universe comes to an end.

For 1511 students, optimum is 577.305
Average is 0.3821 per student
Dorm Name Num Lim Percent DC CIT MCS SCS TPR
Boss 70 70 (100.00% full) majors: , 18, 17, 1@, 1@, 5]
Hamerschlag 160 160 (100.00% full) majors: , 30, 19, 24, 27, 211
Scobell 85 84 (101.19% full) majors: , 12, 26, 10, 14, 8]
Donner 224 224 (100.00% full) majors: , 42, 67, 36, 36, 15]

Stever 244 244
Mudge 289 288
Rez 107 122
Shirley 18 51

100.00% full) majors: , 39, 74, 38, 26, 25]
100.35% full) majors: , , 87, 49, 33, 28]
7.70% full) majors: , 16, 36, 11, 71
5.29% full) majors: 2, , 0, 0]

(
(
(
(
Morewood 314 314 (100.00% full) majors: , 79, 76, 44, 42, 301
(
(
(O
(3




8 Extensions to LP Relaxation

8.1 Filling At Least 95% of Each Dorm

With the initial setup of the linear problem, we realized that the farther dorms
get the least assignment possible, as can be seen in the figure above. For in-
stance, Shirley has only 18 students assigned out of a capacity of 51, while 7
other dorms are full to the brink. This is not ideal for the Housing Services, as
they would like to distribute the load evenly so that none of the facilities are
strained to the max, if not need be. Therefore, we add an additional constraint
that ensures at least 95% of each dorm is filled, which results in a much more
evenly spread distribution of students.

Z:L'm(i_l)_,_j > 0.95C; for all dorms j € [m] (7)
i=1

For 1511 students, optimum is 592.41
Average is 0.3921 per student

Dorm Name Num Lim Percent DC CIT MCS SCS TPR
Boss 70 70 (100.00% full) majors: 11, 21, 21, 6, 6]
Hamerschlag 160 160 (100.00% full) majors: 29, 42, 27, 19, 9]
Scobell 83 84 ( 98.81% full) majors: 9, 10, 25, 7, 7]
Donner 224 224 (100.00% full) majors: 34, 67, 30, 27, 27]
Morewood 303 314 ( 96.50% majors: 67, 94, 35, 39, 23]
Stever 232 244 ( 95.08% majors: 52, 73, 29, 43, 18]
Mudge 274 288 ( 95.14% majors: 65, 58, 34, 41, 32]
Rez 116 122 ( 95.08% majors: 37, 5, 18, 12]
Shirley 49 51 (

96.08% majors: 5, 15, 16, 5, 5]

It can be seen that only 3 of the dorms are full now, and we do not even need
to run the integer solution conversion as none of the dorms have more students
than they have capacity for.

8.2 Student Preferences for Dorms

Each incoming Carnegie Mellon first-year submits a form indicating their pre-
ferred dormitory assignments. While it is not possible to accommodate all of
these preferences, the Housing Services has significant interest in ensuring that
students get the highest pick available to them. Therefore, we capture this
within our objective function, which is now to minimize the distance for each
student, as well as the cost incurred by assigning them their i¢th preference. We
set the cost to be 0.05 per preference, to closely align with the cost of distances
in miles, so that if a student gets their first preference, the cost would be 0, and
their 5th preference would be 0.25, and so on. Let p, of length 1 X mn, represent
these preference costs. Our new objective function is

mn

Z(dk + pr)T (8)

k=1



For 1511 students, optimum is 613.795
Average is 0.4062 per student
Dorm Name Num Lim Percent DC CIT MCS SCS TPR
Boss 71 70 (101.43% majors: 13, 14, 11, 9, 7]
Hamerschlag 160 160 (100.00% majors: 29, 35, 21, 24, 19]
Scobell 84 84 (100.00% majors: 17, 25, 7, 11, 111

Donner 223 224 ( 99.55% majors: 52, 67, 28, 34, 15]

Morewood 300 314 ( 95.54% majors: 64, 84, 49, 39, 25]
Stever 235 244 ( 96.31% majors: 39, 73, 36, 27, 23]
Mudge 273 288 ( 94.79% majors: 52, 74, 44, 37, 21]

Rez 116 122 ( 95.08% majors: 27, 30, 16, 15, 14]

Shirley 49 51 ( 96.08% majors: 5, 15, 10, 9, 4]

8.3 Interest Categories

First year is important in terms of incoming students making friends that will
last for the duration of their undergraduate studies. Therefore, we introduce
an extra feature to our algorithm: interest categories. We uniform randomly
pick an integer [0-9] for each student, indicating the types of their interests.
Examples to this can be arts, sports, outdoors, music and more. Due to the
uniform random distribution, each category is expected to have 10% of the
student body, so we add an extra constraint that each dorm must have at least
5% of each interest category. This means that regardless of the dorm that a
students ends up in, there will be at least a couple of other students in the same
interest category that they can potentially be friends with and get involved in
activities together. Let the quantity H; represent the interests (or hobbies) of
student 7. As before, C; is the capacity of dorm j. The constraint capturing
this idea is

n

ZI(Hi = H) - Tp(i—1)+; > 0.05C; for all dorms j € [m] and interests H (9)

i=1

We tried running the simplex algorithm by increasing the constraint to at least
7% of each category; however, the algorithm did not terminate in more than
12 hours. Therefore, we take into account the former constraint, which has a
negligible difference to the latter constraint in terms of number of students.

9 LP Relaxation to Integer Solution

After the Simplex Algorithm outputs a solution, we use backtracking to obtain
an integral solution. In order to complete in an acceptable run time, we do
not exhaust the entire search space, but we still find an almost solution that
also meets the constraints we introduced. We usually have 2-3 students that
breach the constraints, and we start by finding the maximum major distribu-
tion within the dorms that are over-filled, and the minimum major distributions
within the dorms that are least filled. We then smartly place students to the



least filled dorms, in order to stay within the feasible region. While this results
in a non-optimal solution, the cost increase of 2-3 students is usually less than
0.5, in comparison to the approximately 600 total cost. Therefore, we know that
our solution is within 1.001-opt, making it negligibly different. This is a valid
trade-off for run-time sake.

Before:

For 1511 students, optimum is|613.795
Average is 0.4062 per student
Dorm Name Num Lim Percent DC CIT MCS SCS TPR

Boss 71 70 (101.43% full) --> majors: 13, 14, 11, 9, 71
Hamerschlag 160 160 (100.00% full) -—> majors: 29, 35, 21, 24, 19]
Scobell 84 84 (100.00% full) ——> majors: 17, 25, 7, 11, 11]

Donner 223 224 ( 99.55% full) --> majors: 52, 67, 28, 34, 15]
Morewood 300 314 ( 95.54% full) ——> majors: 64, 84, 49, 39, 25]
Stever 235 244 ( 96.31% full) ——> majors: 39, 73, 36, 27, 23]
Mudge 273 288 (1 94.79% Full] ——> majors: 52, 74, 44, 37, 21]
Rez 116 122 ( 95.08% full) ——> majors: 27, 30, 16, 15, 14]
Shirley 49 51 ( 96.08% full) ——> majors: 5, 15, 9, 4]

After:

For 1511 students, optimum is 614.09
Average is 0.4064 per student

Dorm Name Num Lim Percent DC CIT MCS SCS
Boss 70 70 (100.00% majors: 13, 14, 11, 9,
Hamerschlag 160 160 (100.00% majors: 29, 35, 21, 24,
Scobell 84 84 (100.00% majors: 17, 25, 7, 11,
Donner 223 224 ( 99.55% majors: 52, 67, 28, 34,
Morewood 300 314 ( 95.54% majors: 64, 84, 49, 39,
Stever 235 244 ( 96.31% majors: 39, 73, 36, 27,
Mudge 274 288 [ 95.14% majors: 52, 74, 44, 37,
Rez 116 122 (
Shirley 49 51 (

95.08% majors: 27, 30, 16, 15,
96.08% i

It can be seen that the latter is within 0.002 of the theoretical optimum, which
is the solution to the LP Relaxation problem.

10 Conclusions and Limitations

After exploring many methods for solving our problem, the Simplex Algorithm
turned out to be the most powerful one. It allowed us to not only incorporate
all of the base constraints, but also consider extensions to the main problem.
The other methods we considered involved using in-built Python packages that
were simply not flexible enough to capture the scope of the problem. In re-
gards to further development, we would consider making our implementation
of the Simplex Algorithm slightly more efficient, so that we can include even



more constraints if necessary. Finally, if we can get in contact with the right
people in CMU Housing Services and learn about the data formats they use, we
can transform our algorithm to incorporate that data format, and provide the
Housing Services with a tool that they can use every year reliably.
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11 Code

11.1 Data Generation

import numpy as np
import pandas as pd
total = []

np.random. seed (393)

majors = np.array([225,275,411,232,211,157])
num_students = sum(majors)

num_majors = len(majors)

num_interests = 10

num_dorms = 9

f = lambda x: x / num_students
major_probabilities = f(majors)

df = pd.DataFrame([], columns=[’gender’, ’major’, ’interests’])

gender = np.random.choice(2, num_students, p=[0.55, 0.45])
df ["gender"] = gender

nums = [0] * num_majors
for i in range(num_majors):
nums [i] = majors[i] / num_students

major = np.random.choice(num_majors, num_students, p=major_probabilities)
df ["major"] = major

interests = np.random.choice(num_interests, num_students)
df ["interests"] = interests

all_preference = []
for i in range(num_students):
all_preference.append(np.random.permutation(num_dorms))
preference = pd.DataFrame(all_preference)
preference.columns = ["first","second","third","fourth","fifth","sixth","seventh", "eighth"

df = pd.concat([df,preference], axis=1)

df.to_csv("students.csv")

11



11.2 Brute Force
11.3 Python Linear Programming
11.4 Greedy Algorithm

def check_capacity(df):
a = df .groupby(["select"]) .groups
capacity = [70,160,224,414,288,122,84,51,244]
for elem in a:
if len(alelem]) > capacity[int(elem)]:
return False
return True

def main(df,weight):
n = df.shape[0]
for i in range(n):

df.loc[i,"select"] = df.loc[i,"first"]

df .loc[i,"preference"] = 1

if not check_capacity(df.loc[:(i+1),]1):
df.loc[i,"select"] = df.loc[i,"second"]
df.loc[i,"preference"] = 2

if not check_capacity(df.loc[:(i+1),]1):
df.loc[i,"select"] = df.loc[i,"third"]
df .loc[i,"preference"] = 3

if not check_capacity(df.loc[:(i+1),]):
df.loc[i,"select"] = df.loc[i,"fourth"]
df.loc[i,"preference"] = 4

if not check_capacity(df.loc[:(i+1),]):
df.loc[i,"select"] = df.loc[i,"fifth"]
df .loc[i,"preference"] = 5

if not check_capacity(df.loc[:(i+1),]):
df.loc[i,"select"] = df.loc[i,"sixth"]
df .loc[i,"preference"] = 6

if not check_capacity(df.loc[:(i+1),]):

df.loc[i,"select"] = df.loc[i,"seventh"]

df.loc[i,"preference"] = 7
if not check_capacity(df.loc[:(i+1),]):
df .loc[i,"select"] = df.loc[i,"eighth"]
df .loc[i,"preference"] = 8
if not check_capacity(df.loc[:(i+1),]):
df.loc[i,"select"] = df.loc[i,"ninth"]
df.loc[i,"preference"] = 9
if check_capacity(df):
num = sum(df ["preference"]) / 20
return df,num

12



11.5 Hungarian Algorithm

import pandas as pd
import numpy as np

cost = pd.read_csv("cost_matrix.csv")
my_cost = cost.iloc[:,2:1513]

matrix = np.array(my_cost).tolist()

from munkres import Munkres, print_matrix

m = Munkres()
indexes = m.compute (matrix)
total = 0
count = 0
solution = []
for row, column in indexes:
value = matrix[row] [column]
total += value
count += 1
solution.append((row, column))
print(f’total cost: {totall}’)

student_dorm = []

dorms = list(my_cost.columns)

for (student, bed) in solution:
dorm = dorms [bed]
my_dorm = dorm.split(".", maxsplit = 1) [0]
student_dorm.append((student, my_dorm))

majors = cost.iloc[:,1]
colleges = ["CFA", "DC", "CIT", "MCS", "SCS", "TPR"]
major_dorm = []
college_dorm = []
for (student, dorm) in student_dorm:
major = majors[student]
major_dorm.append((major, dorm))
my_college = colleges[major]
college_dorm.append((my_college, dorm))

unique_dorm = ["Boss_House", "Hamerschlag", "Scobell", "Donner", "Morewood", "Stever", "Mud;

output = []
for row in range(len(unique_dorm)):

13



output += [[0]*len(colleges)]

output

11.6 Linear Programming with PuLP

The following code is adopted from The Beer Distribution Problem for the PuLLP
Modeller, original authors: Antony Phillips, Dr Stuart Mitchell 2007.

from pulp import =
import numpy as np
import math

def my_round(i):
f = math. floor (i)
if i — f < 0.5:

return f
else:
return f+1
Dorms = [”BossHouse” , ”Hamerschlag” ,” Scobell” |
”Donner” ; ”Morewood” ; ” Stever” |

”Mudge” ,” Rez” ,” Shirley” ]

Dorm_Total = {?”BossHouse” :70, ”Hamerschlag”:160, ”Scobell”:84,
"Donner” :224 ; ”Morewood” :414, 7 Stever”:244, ”"Mudge” :288,
"Rez”:122, ”Shirley”:51}
Colleges — [77CF‘A7’ , 7’DC77 , ” CIT” , 77MCB)7 , b2 SCS77 7”TPR”:|
College_Total = {"CFA”:230,”DC”:298,”CIT” :417 ,”MCS” :222 ,7SCS” :205 ,”TPR” : 139}
Students_Total = sum(College_Total.values())
College_Proportions = {i: t / Students_Total for i, t in College_Total.items ()}
Dorm_Capacity = {}
for i,t in Dorm_Total.items ():

tmp =[]

for ¢ in Colleges:

tmp . append (math. ceil (College_Proportions [c]*t))
Dorm_Capacity [i] = tmp

costs = [#majors

14



[0.2, 0.3,0.4,0.3,0.4,0.4], #Boss Dorms
[0.2,0.3,0 4 O 3 O 4 O 4], #Hamerschleg
(0.2,0.3,0.4,0.3,0.4,0.4] ,#Scobell
[0.15,0.25,0. 35,0 25 ,0.35,0.35], #Donner
[0.35,0.4,0.4,0.3,0. 2,0 06] ,#Morewood
[0.4,0.45,0.45,0.35,0.25,0.1] ,#Setever
[0.5,0.5,0.5,0.4,0.3,0.1] , #AMudge
[0.7,0.7,0.6,0.6,0.5,0.2] ,#Rez
[0.9, 0.9, 0.7, 0.8,0.6,0.4] ,#Shirley
]

costs = makeDict ([Dorms, Colleges], costs ,0)

prob = LpProblem (”Dorm_Assignment_Problem” ,LpMinimize)
Routes = [(w,b) for w in Dorms for b in Colleges]

vars = LpVariable. dicts (”Route”, (Dorms, Colleges),0,None, LpInteger)
prob += IpSum ([vars|[w][b]*costs [w][b] for (w,b) in Routes]), ”"Sum_of_Transportin

for w in Dorms:
prob += IlpSum ([vars[w][b] for b in Colleges]) <= Dorm_Total[w], ”Sum_of_Proc
for w in Dorms:
for (i,b) in enumerate( Colleges):
prob += vars|[w][b] <= 0.3xDorm_Total [w], ”Major_%s_-Dorm _%s”%(b,w)
prob += lpSum ([vars[w][c] for ¢ in Colleges]) >= 0.95«xDorm_Total [w], ”Dorm%

College_Total_constraint = {}
for ¢ in Colleges:

constraint = lpSum ([vars[d][c] for d in Dorms]) = College_Total[c]
prob += constraint , "Sum_of_Products_into_College_%s”%c
College_Total_constraint [c] = constraint

prob . writeLP (" Dorm_Assignment_Problem.1p”)
final = np.zeros(54)
final_dict = {}
for d in Dorms:
final_dict [d] = {}
for college_total in range(0,College_Total [?CFA”] ,1):
College_Total_constraint [”CFA” |. constant = — college_total
prob.solve ()
for (i, v) in enumerate(prob.variables ()):
final [i] = my_round(v.varValue)
_,dorm, major = v.name.split(”.")

15



final_dict [dorm][major] = my._round(v.varValue)
print (” Total_Cost_.of_Transportation.=.”, value(prob.objective))
print (” Average._.Cost.per.Student.=." ; value(prob.objective)/Students_Total)

Colleges = [’CFA”, "CIT”, "DC”, "MCS”, "SCS”, "TPR” |
Dorms = [”BossHouse” ,” Donner” , ” Hamerschlag” ,” Morewood” ,
"Mudge” , "Rez” , " Scobell” |
”Shirley” ,” Stever” ]

final = final.reshape(9,6)
print (final)
major_sums = {}
for ¢ in Colleges:
major_sums[c] = 0
#print (final_dict)
for v in final_dict:
total = sum(final_dict[v]. values())
t = (total <= Dorm_Total[v])
print (”Dorm_%s . Total_.Constraint.Satisfied %r”%(v, t))
for m in final_dict [v]:
major_sums [m] += final_dict [v][m]
for i in major_sums:
t = (College_Total[i] >= major_sums|[i])
print (”Major %s._.Total_.Constraint.Satisfied %r”%(i, t))

[?CFA”, ”CIT”, ”DC”, "MCS”, 7SCS”, "TPR”]
[[ 21. 21. 21. 4. 0. 0.]BossHouse
67. 0. 67. 14. 0. 0.]Donner

48. 85. 48. 21. 0. 0.] Hamerschlag
0. 124. 124. 124. 21. 0.]Morewood
0. 86. 0. 42. 59. 86.]Mudge

T T T T T T T

0. 37. 0. 6. 87. 387.]Rez
25. 25. 25. 4. 0. 0.]Scobell
0. 15. 3. 0. 15. 15.]Shirley
68. 73. 10. 7. 73. 1.]]Stever

11.7 LP Relaxation - Simplex

#include <iostream>
#include <fstream>
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#include <vector>
#include <sstream>
#include <string>
#include <simplex.h>

using namespace std;

vector<vector<double>> read_record()

{

ifstream infile("students.csv");

vector<vector<double>> students;
vector<double> row;

string line;

while (infile >> line)
{

row.clear();

// used for breaking words
stringstream s(line);

string entry_str;

int i = 0;
while (getline(s, entry_str, ’,’))
{

if (i == 0)

{

it++;

)

continue;

}

row.push_back(stof (entry_str));
it+;

)

entry_str.clear();

3

students.push_back (row) ;
}

return students;

3
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vector<vector<double>> make_A(vector<vector<double>> students, int num_students,
vector<int> capacities, int num_dorms, int num_majors, int num_interests)

{
vector<vector<double>> A;
int cols = num_students * num_dorms;
vector<double> row;
int lower_bd, upper_bd;
for (int i = 0; i < num_students; i++) // all students get an assignment
{

row.clear();

lower_bd
upper_bd

i * num_dorms;
(i + 1) * num_dorms;

for (int j = 0; j < cols; j++)

{
if (j >= lower_bd && j < upper_bd)
{
row.push_back(1.0);
}
else
{
row.push_back(0.0);
}
}

A.push_back(row) ;

row.clear();
for (int j = 0; j < cols; j++)

{
if (j >= lower_bd && j < upper_bd)
{
row.push_back(-1.0);
}
else
{
row.push_back(0.0);
}
}
A.push_back(row) ;

}
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for (int 1 = 0; i < num_dorms; i++) // all dorms get less than capacity
{

row.clear();

for (int j = 0; j < cols; j++)

{
if (j % num_dorms == i)
{
row.push_back(1.0);
}
else
{
row.push_back(0.0);
}
}
A.push_back(row) ;
}
for (int i = 0; i < num_dorms; i++) // all dorms get more than 907 capacity
{

row.clear();
for (int j = 0; j < cols; j++)

{
if (j % num_dorms == i)
{
row.push_back(-1.0);
}
else
{
row.push_back(0.0);
}
}
A.push_back(row) ;

}

int gender;
for (int 1 = 0 ; i < num_dorms; i++) // gender distribution per dorm
{

row.clear();

for (int j = 0; j < cols; j++)

{
gender = students([j / num_dorms] [0]; // j/num_dorms’th student
if (j % num_dorms == i)
{
if (gender == 0.0)
{
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row.push_back(1.0);
}
else
{
row.push_back(0.0);
}
}
else
{
row.push_back(0.0);
}
}

A.push_back(row) ;

row.clear();
for (int j = 0; j < cols; j++)
{
gender = students[j / num_dorms] [0]; // j/num_dorms’th student
if (j % num_dorms == i)
{
if (gender == 1.0)
{
row.push_back(1.0);
}
else
{
row.push_back(0.0);
}
}
else
{
row.push_back(0.0);
}
}
A . push_back(row) ;
}

int major;
for (int i = 0 ; i < num_dorms; i++) // major distribution per dorm
{
for (int k = 0; k < num_majors; k++)
{
row.clear();
for (int j = 0; j < cols; j++)
{
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major = students[j / num_dorms] [1]; // j/num_dorms’th student
if (j % num_dorms == i && major == (double) k)

{
row.push_back(1.0);
}
else
{
row.push_back(0.0);
}
}
A.push_back(row) ;
}
}
int interest;
for (int i = 0 ; i < num_dorms; i++) // interest distribution per dorm
{

for (int k = 0; k < num_interests; k++)
{
row.clear();
for (int j = 0; j < cols; j++)
{
interest = students[j / num_interests][2]; // j/num_dorms’th student
if (j % num_dorms == i && interest == (double) k)
{
row.push_back(-1.0);
}
else
{
row.push_back(0.0);
}

}
A.push_back(row) ;
}
}

return A;

}

vector<double> make_B(vector<vector<double>> students, int num_students,
vector<int> capacities, int num_dorms, int num_majors, int num_interests)

{

vector<double> B;

for (int i = 0; i < num_students; i++)

{
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B.push_back(1.0);
B.push_back(-1.0);
}

for (int i = 0; i < num_dorms; i++)
{

B.push_back((double) capacities[i]);
}

double ratio, alpha;

alpha = -0.95;

for (int i = 0; i < num_dorms; i++)

{
ratio = (double) capacities[i] * alpha;
B.push_back(ratio);

¥

alpha = 0.55;

for (int i = 0; i < num_dorms; i++)

{
ratio = (double) capacities[i] * alpha;
B.push_back(ratio);
B.push_back(ratio);

}

alpha = 0.3;
for (int i = 0; i < num_dorms; i++)
{
for (int k = 0; k < num_majors; k++)
{
ratio = capacities[i] * alpha;
B.push_back(ratio) ;
}
}

alpha = -0.05;
for (int i = 0; i < num_dorms; i++)
{
for (int k = 0; k < num_interests; k++)
{
ratio = capacities[i] * alpha;
B.push_back(ratio);
}
}
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return B;

3

vector<double> make_C(vector<vector<double>> distances,
vector<vector<double>> students,
int num_students, int num_dorms, int mode)

vector<double> C;
int major;
double coefficient;

for (int i = 0; i < num_students; i++)
{

major = students[i] [0];

for (int dorm_id = 0; dorm_id < num_dorms; dorm_id++)

{
if (mode == 0)
{
coefficient = distances[dorm_id] [major];
}
else if (mode == 1)
{
coefficient = distances[dorm_id] [major] + students[i] [dorm_id + 3];
// distance + preference coeff
}
else if (mode == 2)
{
coefficient = students[i] [dorm_id + 3];
}
C.push_back(-1.0 * coefficient); // min cx = max -cx
}
}
return C;

}

int main(int argc, char** argv)

{
auto start = std::chrono::system_clock: :now();
vector<vector<double>> students = read_record();
vector<int> capacities = {

70, // Boss House
160, // Hamerschlag
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84, // Scobell

224, // Donner
314, // Morewood
244, // Stever
288, // Mudge
122, // Rez

51, // Shirley

};

vector<vector<double>> distances = {
// CFA DC CIT MCS SCS TPR

{0.2, 0.3, 0.4, 0.3, 0.4, 0.4 1}, // Boss House
{0.2, 0.3, 0.4, 0.3, 0.4, 0.4 1}, // Hamerschlag
{0.2, 0.3, 0.4, 0.3, 0.4, 0.4 1}, // Scobell
{0.15, 0.25, 0.35, 0.25, 0.35, 0.35 }, // Donner
{0.35, 0.4, 0.4, 0.3, 0.2, 0.06 }, // Morewood
{0.4, 0.45, 0.45, 0.35, 0.25, 0.1 1}, // Stever
{0.5, 0.5, 0.5, 0.4, 0.3, 0.1 3}, // Mudge

{0.7, 0.7, 0.6, 0.6, 0.5, 0.2 }, // Rez

{0.9, 0.9, 0.7, 0.8, 0.6, 0.4 } // Shirley

}; // distances in miles

int num_majors = distances[0].size();
int num_interests = 10;

int num_dorms = capacities.size();
int num_students, mode;

num_students = students.size();

mode = std::stoi(argv([1]);

printf ("for num_students: %d\n", num_students);

vector<vector<double> > A = make_A(students, num_students, capacities,
num_dorms, num_majors, num_interests);

vector<double> B

make_B(students, num_students, capacities,
num_dorms, num_majors, num_interests);

vector<double> C make_C(distances, students, num_students, num_dorms, mode);

printf("sizes --> A: %lu x %lu, B: %lu, C: %lu\n",
A.size(), A[O].size(), B.size(), C.size());

Simplex 1p(A.size(), A[0].size(), A, B, C);

// std::cout << pivots << std::endl;
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if (1p.lp_type == 1lp.UNBOUNDED) {
std::cout << "unbounded" << std::endl;
} else if (1p.lp_type == lp.INFEASIBLE) {
std::cout << "infeasible" << std::endl;
} else if (1p.lp_type == 1p.FEASIBLE) {
std::cout << "The optimum is " << (-1 * 1lp.z) << std::endl;
for (int i = 0; i<A[0].size(); i++) {
std::cout << lp.soln[i] << std::endl;
}
} else {
std::cout << "Should not have happened" << std::endl;
}

auto end = std::chrono::system_clock: :now();
std::chrono: :duration<double> elapsed_seconds = end-start;
std::cout << "elapsed time: " << elapsed_seconds.count() << "s\n";

return O;

11.8 LP Relaxation to Integer Solution

import numpy as np
import sys

if __name__ == "__main__":

path = sys.argv[1]

capacities = [
70,
160,
84,
224,
314,
244,
288,
122,
51

distances = [
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[0.2,
[0.2,
[0.2,
[0.15,
[0.35,
[0.4
[0.5,
[0.7
[0.9
1;

O OO OO OO OoOOo

fd = open(path, mode = "r")

lines = fd.readlines(

)

O O O O O OO oo

O O O OO OO oo

.3, 0.4, 0.4 1], # Boss Dorms
.3, 0.4, 0.4 1, # Hamerschlag
.3, 0.4, 0.4 1, # Scobell

25, 0.35, 0.35 1], # Donner

3, 0.2, 0.061, # Morewood
35, 0.25, 0.1 1, # Stever

.4, 0.3, 0.1 1, # Mudge

.6, 0.5, 0.2 1, # Rez

.8, 0.6, 0.4 1 # Shirley

num_students = int(lines[0].split(":")[-1][1:])

def find_opt():

opt_str = "The optimum is"

for i in range(len(lines)):

line = lines[

i]

if (line[:len(opt_str)] == opt_str):

opt_index

optimum = float(lines[opt_index].split(" ")[-1]1)

return optimum
optimum = find_opt()

num_dorms = 9
num_majors = 6

majors = []

fd2 = open("students.csv", mode
for row in fd2.readlines():

= "I‘")

majors.append(int (row.split(",") [2]))

picks = []
lines = lines[3:]
dorms =

for i in range(num_students):
student_range = lines[i * num_dorms : (i+1) * num_dorms]

[[0] * num_majors for i in range(num_dorms)]
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pick = student_range.index(max(student_range))
dorms [pick] [majors[i]] += 1

# optimum += distances[pick] [majors[i]]

# print("Student", i, "dorm:", pick)

picks.append(pick)

for i in range(len(dorms)):
num_assigned = sum(dorms[i])

while (num_assigned > capacities[i]):

least_index
least_ratio

_1;
2;

for j in range(len(dorms)):
if (1 == j):
continue

ratio = sum(dorms[j]) / capacities[j]
if (ratio < least_ratio):
least_index = j

least_ratio = ratio

max_index = dorms[i].index(max(dorms[i]))
# min_index = dorms[least_index].index(min(dorms[least_index]))

dorms[i] [max_index] -= 1
dorms[least_index] [max_index] += 1
num_assigned -= 1

optimum -= distances[i] [max_index]

optimum += distances[least_index] [max_index]

# print(distances[i] [max_index], distances[j] [min_index])

names = ["Boss", "Hamerschlag", "Scobell", "Donner", "Morewood",
"Stever", "Mudge", "Rez", "Shirley"]
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print ("For", num_students, "students, optimum is %.2f" % optimum)
print("Average is %.4f per student" J (optimum / num_students))

print ("%11s %03s %03s %1ls %3s %3s %3s %3s %3s %3s" %
("Dorm Name", "Num", "Lim", "Percent", "CFA", "DC", "CIT", "MCS", "SCS", "TPR"):
for i in range(len(dorms)):
print("%11s %03s %03s (%6.2f%% full) --> majors: [}02s, %02s, %02s, %02s, %02s, %02s]" |
(names[i], sum(dorms[i]), capacities[i], 100 * sum(dorms[i]) / capacities[i],
dorms[i] [0], dorms[i][1], dorms[i][2], dorms[i][3], dorms([i] [4], dorms([i][5]))
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