A TRIP TO EUROPE: A DYNAMIC APPROACH TO PLANNING THE
BEST VACATION

21-393 OPERATIONS RESEARCH II

Katherine A. Yang Olivia G. Husak
Department of Mathematical Sciences Department of Mathematical Sciences
Carnegie Mellon University Carnegie Mellon University
Pittsburgh, PA 15213 Pittsburgh, PA 15213

katheriy@andrew.cmu.edu ogh@andrew.cmu.edu
Sophie C. Stoyer Thomas J. Pascucci
Department of Mathematical Sciences Department of Mathematical Sciences
Carnegie Mellon University Carnegie Mellon University
Pittsburgh, PA 15213 Pittsburgh, PA 15213
sstoyer@andrew.cmu.edu tjpascuc@andrew.cmu.edu

December 17, 2019

ABSTRACT

Planning a trip can be a daunting task if not done properly. Through research and thorough considera-
tion however, outlining a fun and exciting trip can be easy. The objective of this project was to create
a program that, when given user input regarding various European cities, would output a trip that
would give the most utility to the individual traveling. A dynamic programming model was used to
determine the trip with maximum utility for the individual given their preferences, budget, and time.
For each of the team members’ preferences, the designed program was able to output a feasible trip
that maximized the designed utility from the given preferences.

Introduction

You hear the question all the time: if you could travel anywhere in the world, where would it be?

Travel is fun, but it can be difficult to figure out where to go or how long to stay there. And since people have different
preferences, a trip that one person likes might not be good at all for someone else. As the number of choices increases,
it only gets harder to plan the optimal vacation: people have a limited rational capacity, which means that balancing
and optimizing all these options can be quite daunting. That’s where operations research comes in: supply a person’s
preferences along with the necessary logistical constraints, and let a program figure out what the best travel plan is.

In our problem, we consider trips to Europe taken individually by the four of us. Our possible destinations are
Amsterdam, Athens, Barcelona, Berlin, Budapest, Dublin, London, Paris, Rome, and Venice. We have T days and a
budget of B for our trip. Each of us provided utility functions to model our preferences.

1 Dynamic Program Solution

In our formulation of the problem, we must make a choice every day about whether or not to stay where we are and
where to go if we decide to leave. Staying in a city incurs a cost specific to that city that must be subtracted from
the budget. Traveling between cities also incurs a cost based on the origin and destination cities, and this cost too is
subtracted from the budget. And of course, every day that we are in any city must be added to the total number of
days spent on vacation, which cannot exceed the 7" days allotted. Additionally, each person derives a certain utility
from being in a certain city; however, this value is not constant even for a fixed person, as we derive different levels of

A PREPRINT - DECEMBER 17, 2019

satisfaction from being in a city depending on how long we’ve been there. In general, the additional satisfaction coming
from being in a city one more day decreases the longer we’ve been in that city. The utility functions model this, as we
see below, and we sum the utility values for all the days of the trip to get a total utility value. That total value is what
our dynamic program attempts to maximize.

1.1 Utility Functions

A utility function is a representation of individual preferences for certain activities beyond their monetary value. In our
traveling problem, our utility function weights the expense, travel time, and enjoyment between each city. The function
outputs "utils’, a measure of satisfaction with the decision, for our traveller.

Utility functions can take many different shapes and vary based on the preferences of each individual. For the sake of
illustration, consider an example in which a banker is receiving money. In their simplest form, utility functions are
linear, (i.e. the more money he receives, the corresponding amount greater his utility is). However, behavioral theories
have uncovered that we do not exhibit such ’rational’ proclivity for an increase in units. We make the three following
observations in light of our example:

1. The theory of Diminishing Marginal Utility explains that for each additional increase in money, we observe
a smaller corresponding increase in our utility. To illustrate, the improvement in happiness our banker
experiences when he moves from owning $10 to $1,010 would be quite large. In contrast, the improvement in
happiness he would experience in moving from $100,000,000 to $100,001,000 would be less significant. Based
on this experience, the utility function is concave; as we increase the inputs more and more, the corresponding
satisfaction improves by smaller margins.

2. We also observe a phenomenon known as loss aversion, or risk aversion in probabilistic utility, where an
observed loss "hurts" more than a gain of similar magnitude. Our banker would be quite happy if he received
$1,000! But he would experience an even greater loss of satisfaction if he lost $1,000.

3. Finally, there is a threshold where utility becomes discontinuous and an individual loses their satisfaction. For
example, if all of the resources are used up, we experience 0, or —oo, utility. For example, say our banker
receives $100 per hour that he works in a day. If a dynamic programming recommends that he work 25 hours
or more per day, he would lose all of his utility because he has exceed his use of resources.

In light of these observations, we are able to make the following connections to the travelling problem at hand. First, our
traveller will exhibit diminishing marginal utility per day spent in a location. The first day in Rome might be spectacular,
but after spending three days there, the traveller may experience a greater benefit from moving on. In the same light,
the traveller experiences loss aversion, i.e. the amount of time spent travelling would affect their utility by a greater
magnitude negatively than spending that same time touring a city would affect their utility positively. Furthermore, if a
traveller uses up their resources, that is if they run out of money or time, they will experience no more satisfaction in
travelling. Such an occurrence is factored into the dynamic program via constraints on the function.

Based on the parameters and the above behavioral observations, we craft the following utility functions that have been
researched to be representative of human preference. For an individual of moderate risk-aversion, (i.e. the middle
ground of concavity), a negative quadratic utility function will accurately reflect such preferences. Let ¢ > 10 be the
relative intercept that reflects an individual’s utility preferences for a given city, and 7 > 0 represent the number of days
already spent at the current location p. Then the utility gained on that day is:

u=a-— (i, —1)*

Every traveler will have their own utility functions for each city based on the time spent in that city, which will contribute
to the overall utility function. For simplicity, a linearly decreasing function with respect to time can be used to determine
the added utility of another day spent in a city. The total utility of the trip would be given by the summation of the daily

utilities from the trip length m, i.e:
m

Utotal = § Uk
k=0

1.2 Gathering Data

We gathered the following data regarding distances between any two cities in order to calculate the cost of different
trips. The numbers represent the absolute distance between the row and column cities in miles. This was a simpler
metric than actual flight distances as those would verify from airline to airline.

A PREPRINT - DECEMBER 17, 2019

Ams | Ath Bar Ber Bud | Dub | Lon Par | Rom | Ven
Amsterdam 0 3082 | 1639 | 649 714 471 358 267 806 | 586
Athens 3082 0 1169 | 1121 | 698 | 1777 | 1489 | 1305 | 655 | 781
Barcelona | 1639 | 1169 0 930 933 915 708 517 532 | 882
Berlin 649 | 1121 | 930 0 428 817 578 545 734 | 491
Budapest 714 698 933 428 0 1177 | 901 775 504 | 351
Dublin 471 | 1777 | 915 817 | 1177 0 287 483 | 1170 | 997
London 358 | 1489 | 708 578 901 287 0 212 889 | 708
Paris 267 | 1305 | 517 545 775 483 212 0 687 | 526
Rome 806 655 532 734 504 | 1170 | 889 687 0 245
Venice 586 781 882 491 351 997 708 526 245 0

1.3 Problem Formulation

We started by coming up with a dynamic programming solution to a simple version of the problem.
Let:

e p = current destination
e ¢ = number of days already spent at p
e b = remaining budget

e { = remaining time

D = set of destinations already visited

e z = §(p,d) = cost to travel from p to d

e y = ¢(d) = cost of staying at d

e uy(i) = utility of staying at d, having already been there ¢ days

We then define the overall utility function f as follows:

a; 0) + d,l,b— r — 7t_1
f(pi,b,t, D) = max max{uq(0) + f(v—yt—1)
up(i) + f(pi+1,0—y,t —1)

We let f(p,i,b,0,D) = f(p,i,0,t, D) = 0 as base cases. Note that the budget does not consider the cost of traveling
to the starting destination or traveling home from the final destination.

2 Code Implementation

2.1 Base Solution Code

After designing the dynamic programming objective function, the next step was to implement the program in code.
Python was chosen as the coding language due to its imperative nature, but also due to its ease of understanding for
those just looking at the code. The code needed to perform three main steps: testing each of the destinations (d ¢ D)
for the maximization step, gathering all the costs associated with either staying in a location or traveling, and then
calculating the objective function at that stage and the optimal future stages. The code we developed is shown below.

A PREPRINT - DECEMBER 17, 2019

def travel(p, days, b, t, dList, itin):
X, y=20,0
xitin, yitin = itin, itin
ifb>0and t > 0:
maxX = 0
maxItin = []
for i in range(len(dests)):
print(i, b, t)
if dests[i] not in dList and i != p:
ux = u[il(0)
newX, tryItin = travel(i, 1, b - 3 * planes[pl[i] - costs[il, t - 1, dList + [dests[i]], itin + [(dests[i], time - t)])
tryX = ux+newX
if tryX > maxX:
maxX = tryX
maxItin = tryItin
uy = ulpl(days)
newY, yitin = travel(p, days + 1, b - costs[p], t - 1, dList, itin + [(dests[p], time - t)])
y = uytnewY
X = maxX
xitin = maxItin
if max(x,y) == x: return (x, xitin)
else: return y, yitin

de

—h

europe():

final = travel(@, 1, budget, time, ["Amsterdam"], [])
print(final)

return final

2.2 Program Interface

To make the user experience as seamless as possible, we integrated a user interface into the program. The interface
of the application allows the user to easily enter information, especially the constraints, of their upcoming trip. This
includes:

1. The budget they have for the trip (in USD)
2. The length of their trip (in days)

3. The starting location of their trip

After this, the user can specify their preferences of cities to visit. They can distinguish preferences between all of
them or just the top few if they become indifferent after those. The user can always go back into the program and
change these preferences if the outputted trip isn’t to their liking, as perhaps they misrepresented their true preferences
originally.

Using the information given by the user, the program outputs the optimal trip. This includes two things, an itinerary and
a map, to best illustrate the trip to the user. The itinerary, found in the top right corner, displays the city the traveller
will be in on any given day of their trip. This overlays the map, which visually displays the trip for the user. Red nodes
represent each of the cities available as options, and black edges represent the travelling undertaken by the traveller.
Examples of this output are provided in the next section.

3 Finding Solutions

Once we had functioning code, we could experiment with different utility functions to generate different tours based on
different preferences.

3.1 Identical, Simple Utility Functions

A very simple version of the problem is a traveler having the same utility function for each city. In this situation, the
choices of where to go are based entirely on the costs of traveling, which comes down to distances. This version of the
problem is then essentially a typical Traveling Salesman problem.

We ran this through our algorithm with utility functions for each destination of 10 — (z — 1)? where 2 is the number of
days spent at that destination. For a tour of 10 days starting in Amsterdam with a budget of $5,000, we generated the
following tour:

A PREPRINT - DECEMBER 17, 2019

"E:Y.‘)f»flr"_"q; .j"f" VRS &
QA\AJ e Itinerary
g "? Day 1: Amsterdam
- 4 Day 2: Barcelona

M ;(d J’f Day 3: Barcelona
{

i Day 4: Dublin
‘f 1;;3 < Day 5: Dublin
\q‘!ﬂ[’-ﬂ . | Day 6: Venice
P Jff " | Day 7: Venice
TS § | Day 8: Rome N
4 ™| Day9: Rome
3 Day 10: London

@ T
} 7
/) # /Bgrcelona

_‘\' //\?Qq

3.2 Individual Tours

A more complex version of the problem involves changing the utility functions in order to match each of the authors’
preferences. For consistency, we used a budget of $5,000 and a 10-day trip starting in Paris for each person, so the only
differences were in the utility functions. As a additional measure to keep things consistent, we had each traveler have a
first, second, and third most preferred city and all other cities tied as fourth most preferred.

3.2.1 Katherine

Katherine gets the most utility (in order) from visiting Dublin, London, and Barcelona. To account for this, we assigned
these cities utility functions of 18 — (z — 1)2, 17 — (x — 1)?, and 15 — (z — 1)? respectively. This generated the
following tour:

v W o P i

3y - = .

\A,J Vol Itinerary
¥ {7 Day 1: Paris

/-f{: Day 2: Dublin

£ tﬁw ;’ﬂ Day 3: Dublin

:f‘f Day 4: London

J v+ Day 5: London

%'/J t{;d!ﬂ v:}}_ Day 6: London

ea jf’ ¢ | Day 7: London
% ‘é#_sn | Day 8: Barcelona
v R~ ™| Day 9: Barcelona
\ Day 10: Barcelona

§

. \{ /}\ 4 <o ;)? Rome",,_\
W At %
R
== S \?»\e S
J‘.‘ r ~f
{ .
o p
e (¢ €

A PREPRINT - DECEMBER 17, 2019

3.2.2 Olivia

Olivia gets the most utility (in order) from visiting Rome, Venice, and Barcelona. To account for this, we assigned these
cities utility functions of 20 — (z — 1)2, 18 — (z — 1)2, and 13 — (z — 1) respectively. This generated the following
tour:

PSS &

Itinerary

Day 1: Paris

Day 2: Venice
Day 3: Venice
Day 4: Venice
Day 5: Rome

Day 6: Rome

Day 7: Rome

Day 8: Rome

Day 9: Barcelona
Day 10: Barcelona

3.2.3 Sophie

Sophie gets the most utility (in order) from visiting Athens, London, and Paris. To account for this, we assigned these
cities utility functions of 20 — (z — 1), 15 — (z — 1)2, and 12 — (z — 1)? respectively. This generated the following

tour:
TR S AR vz
& g
- ﬂ’ﬁé 3 Itinerary
; 1? Day 1: Paris
r A Day 2: Venice
M’(f Day 3: Rome
Nd-f 0§ Day 4: Rome
;’.ﬂ“;? g ﬂ; @;;1" Day 5: Athens
% /J lwfﬂ/"% . | Day 6: Athens
q‘-‘s? 7 L? ¥
& Jf}f L il y g Day 7: Athens
. Sl i i LR | Day 8: Athens -
\n_‘; P iaaa 4 ™| Day 9: Athens
e Day 10: London
R~ s | I
2 A
20
p
L v 3
/7 ,; /Bé'rcelona
v_A_\\/“h) /\ 2 <=
U g
]
- /-"('\
324 TJ

TJ gets the most utility (in order) from visiting Rome, Paris, and London. To account for this, we assigned these cities
utility functions of 20 — (z — 1)2, 18 — (z — 1)?, and 13 — (x — 1)? respectively. This generated the following tour:

A PREPRINT - DECEMBER 17, 2019

S Vo P B
»giff Itinerary
Day 1: Paris
Day 2: London
Day 3: London
Day 4: Venice
Day 5: Venice
Day 6: Rome
Day 7: Rome
Day 8: Rome
Day 9: Rome
Day 10: Rome

4 Discussion

Based off of the recorded distances, the dynamic model used, the preferences of each author, and the code designed to
solve this problem, we were able to develop several tours to best match each author’s individual preferences. On a
whole, the program seemed successful. The program largely prioritized the cities that were ranked higher according to
an individual’s preferences while still ensuring that several cities were seen. For each of the generated tours, the top two
prioritized cities for that person were visited for at least six days combined. This showed that the program was successful.

These tours do, however, reveal some apparent flaws in our logic in programming it. First, only three preferences were
recorded and had their utility functions changed from those of the simplest example (3.1). This update to the utility
function was significant enough to cause a larger amount of time to be spent specifically in the most preferred city. If
utility functions were more evenly distributed along with preparing a trip of more days, more cities would have been
included in the tours. In addition, there is a concern about the travel costs used in this model. While the distances
between cities are accurate, the actual cost of travel may not be exactly proportional to the travel distance. The constant
factor applied to the travel distance could also be on the higher end, which would cause the program to favor solutions
that visit fewer cities. With this in mind, there are plenty of alterations that could be made to improve our model. We
discuss some of these next.

S Further Exploration

The problem we formulated was relatively simple. It makes several assumptions to simplify the problem, and it leaves
out several things that would make finding solutions more complicated but would also make those solutions more
optimal and the overall situation more realistic. In this section we discuss some of these areas in which our solution
could be improved.

5.1 More Cities

The problem we solve here uses only ten potential cities. The methods we used and the code we wrote do not rely
on there being ten cities, and in fact both the methods and the code work for an arbitrary number of cities. Thus in
theory, our solution can be applied to much larger lists of cities. However, the dynamic programming approach relies
on going through and testing each possible solution to find the best one; while this is not terribly time consuming or
computationally heavy with our simple model and ten cities, it would quickly become infeasible as more and more
cities were added. If we wanted to solve a problem with a significantly larger number of cities and do so in a reasonable
amount of time, we would have to consider other methods. Since it wouldn’t be possible to try every solution, we might
consider heuristics such as genetic algorithms, simulated annealing, or tabu search.

A PREPRINT - DECEMBER 17, 2019

5.2 Activities within Cities

When we originally thought about this project, we considered making choices not only about which city to be in when
and for how long but also about what to do in specific cities while we were there. For example, if we decide to stay in
Paris for a day, do we see the Eiffel Tower? The Louvre? Notre Dame? In making these decisions, we would have
to consider the satisfaction a person derives from each activity along with any associated costs (travel within the city,
admission fees, etc). It was eventually determined that we should focus on making the simpler model work first, as
these additional decisions would make the problem correspondingly more difficult. However, now that we have a base
solution method, it would be interesting to see how these additional choices could be incorporated.

5.3 Different Methods of Traveling

In our model, we considered one way to travel directly between two cities and did our calculations based on that. In
reality, there are multiple ways to travel between most destinations: plane, car, bus, train, ferry. A more complete
model would include some of these other travel options where they are feasible and allow the traveler to choose how
they want to get to each city. Different methods of travel of course cost different amounts, and each traveler would
derive different satisfaction from using different transportation methods. For example, someone who values speed of
travel greatly might prefer to fly from Berlin to Amsterdam, but someone else might prefer to drive between the cities
and see the scenery. A model allowing for different travel methods would have to use utility functions that take these
additional costs and preferences into account. This would make the model and its solution more complicated, but also
more accurate to the real world situation they represent.

5.4 Initial and Final Travel Costs

Our program formulates a solution starting with the traveler being in a European city and leaving them in the final
European city they visit. As such, it does not make any considerations for how the traveler gets to the starting city
(which is one of the vacation cities and not their home city) or for how the traveler leaves the final city. This simplifies
the problem, but isn’t a realistic representation of the situation, as the traveler must have a way to get to and from their
home. In a more complete solution, we would take those travels into account when calculating utility and optimal
routes, as there would of course be different costs for the trips to and from home depending on what the starting and
ending cities were.

References

[1] George Kour and Raid Saabne. Real-time segmentation of on-line handwritten arabic script. In Frontiers in
Handwriting Recognition (ICFHR), 2014 14th International Conference on, pages 417-422. IEEE, 2014.

[2] George Kour and Raid Saabne. Fast classification of handwritten on-line arabic characters. In Soft Computing and
Pattern Recognition (SoCPaR), 2014 6th International Conference of, pages 312-318. IEEE, 2014.

[3] Guy Hadash, Einat Kermany, Boaz Carmeli, Ofer Lavi, George Kour, and Alon Jacovi. Estimate and replace: A
novel approach to integrating deep neural networks with existing applications. arXiv preprint arXiv:1804.09028,
2018.

	Dynamic Program Solution
	Utility Functions
	Gathering Data
	Problem Formulation

	Code Implementation
	Base Solution Code
	Program Interface

	Finding Solutions
	Identical, Simple Utility Functions
	Individual Tours
	Katherine
	Olivia
	Sophie
	TJ

	Discussion
	Further Exploration
	More Cities
	Activities within Cities
	Different Methods of Traveling
	Initial and Final Travel Costs

