
 1

CMU Final Exam Scheduling
Operation Research II Project

By Zeheng Xu, Yige Zhang, Zhehe Qiao, Samuel Jia

 2

Table of Content

Abstract……………………………………………………………………………..3

Introduction ………………………………………………………………………..4

Assumptions………………………………………………………………………..6

Formulation……………………………………………..………………………….9

Algorithm……………………………………………..…………………………...16

Implementation ……………………………………………..…………………….19

Conclusion……………………………………………..………………………….21

Reference……………………………………………..…………………………...22

Appendix……………………………………………..……………………………………..23

 3

Abstract

This report investigates the optimal final exam schedule for Carnegie Mellon University (CMU)

Fall 2017. We seek to minimize the total number of conflicts CMU undergraduate students

faced. The conflicts are defined by having two exams at the same time slot and having three

exams in 24 hours. This problem will be beneficial to the whole community if appropriately

solved. Given the large number of inputs and uncertainties, we categorized it as an NP-hard

problem and have made several assumptions for building integer problem. After applying the

mathematical reasoning we’ve learned in Operational Research class, we use programming to

help implement our theory to final results.

 4

Introduction

Exam scheduling is a challenging task that universities and colleges face several times every

year. There is a moderate possibility that students will deal with final exam conflicts at some

points in their college life. In this project, we aim to explore the final exam scheduling at CMU

for 2017 Fall by generating a possible optimal exam schedule that minimizes the conflicts.

Given a large amount of information(students, classroom availability, etc.) in a short period,

exam scheduling problem can be an NP-hard problem. The integer program we built is based on

several assumptions on inputs to construct the linear integer programming. We constructed

reasonable constraints to this problem that allow us to solve this problem with mathematical

tools we learned in class.

Without loss of generality and be as realistic as possible, the model is built on information of

Carnegie Mellon University. We generate data on exams each student should take, size of

classrooms, exams and corresponding classrooms. With the adoption of python programming,

we are able to implement different methods of scheduling final exams. After trying various

algorithms and methods of implementation, we are able to reduce the percentage of conflicts

from 11.16% to 6.67%.

 5

We also recognized some potential field that could be further improved if given more time. First

of all, we should spread out students’ exams to provide students with more review time for each

exam. Secondly, if we take into consideration the fact that Students within each department tend

to take similar courses, conflicts can be further reduced. Finally, the capacity of each classroom

could be more precise comparing to having three big categories we had for integer programming.

 6

Assumptions

First of all, based on reality, we assume that all exams should be completed in a week, with

Wednesday being reading day and no exams. This leaves us with six days for scheduling final

exams. Secondly, each day consists of 3 sessions: morning, afternoon and evening, which leads

us to total 18 time slots. In addition, to build our first implementation, we assume all the students

want to finish their exams as early as possible. We then make adjustments based on the

assumption.

1. Time

First of all, based on reality, we assume that all exams should be completed in a week,

with Wednesday being reading day and now exams. This leaves us with 6 days for

scheduling final exams. Secondly, each day consists of 3 sessions: morning, afternoon

and evening, which leads us to total 18 time slots. In addition, to build our first

implementation, we assume all the students want to finish their exams as early as

possible. We then make adjustment based on the assumption.

 7

2. Students

From basic statistics of CMU, we set the number of undergraduate students to be 6100

students. We assume that no one will overload and thus each student will take less than 5

exams. Furthermore, we are not dividing students into different departments. Since we

are unable to retrieve the real data on what classes each student is taking, we randomly

assign no more than 5 classes for each student to take.

3. Exams

From CMU 2017 Fall final exam information we found online, we set the number of

exams to be 465 exams for the semester. Since the exams are randomly taken by

students, we expect the number of conflicts will arise from this assumption. In addition,

we use real data of max enrollment on those 465 exams as our bar for maximum number

of students that can be enrolled for each exam.

 8

4. Classrooms

From public published data and resources we’ve found on past final exam classrooms, we

decide there will be 93 classrooms available during the final exam period. Since each

exam has difference enrollment, we also divide the classrooms into three categories based

on capacity:

○ < 50 people: 70

○ 50 - 100 people: 10

○ > 100 people: 13

Exams taken by a large amount of students (e.g. more than 100 students) will only be

taken in large classrooms. So one exam will not be broken into several smaller

classrooms.

 9

Formulation

We start our process of formulating a linear integer programming by determining the objective

function and then explore the constraints. As discussed above, our main goal is to minimize the

total number of conflicts that students face during final week. This part falls into two conflicts:

students who are taking exams at the same time slots and students who are taking three exams

within 24 hours. For constraints, we have developed 5 basic constraints to guide our integer

program. Firstly, at the same time slot, the total number of exams should not exceed total number

of classrooms. Secondly, at the same time slot, in classroom k, there’s at most one exam.

Thirdly, capacity of classrooms for an exam should be able to accommodate all students taking

the exam. Fourthly, each student can take less than 5 exams. Lastly, for each exam, the number

of students is less than the maximum course capacity.

 10

Objective Function

1. Variables

k: classroom 0 < k ≤ 93

i: student 0 < i ≤ 6100

j: course number 0 < j ≤ 465

t: time slots 0 < t ≤ 18

Ej: capacity of course j

Ck: max capacity of classroom k

Ai,j = 1, if student i takes exam j

 0, otherwise

Pj,k,t = 1, if exam j takes place in classroom k at time t

 0, otherwise

Xi,j,k,t = 1, if student i takes exam j in classroom k at time t

 0, otherwise

We aim to define the most important variables: index of classrooms, index of students,

index of course number and index of time slots. We also listed the capacity of course j

and max capacity of classroom k for the ease of future expression.

In addition, we define 3 conditional variables. Ai,j stands for the possibility that student i

takes exam j. Pj,k,t stands for the possibility that exam j takes place in classroom k at time

 11

t. Xi,j,k,t stands for the possibility of student i takes exam j in classroom k at time t.

With all the variables we have defined, we will move into constructing objective

function.

2. Objective function -- Conflict #1

As mentioned previously, the first conflict is that one student takes multiple exams at the

same time slot, which is the most common conflict. Xi,j,k,t undertakes students, exams,

classrooms and times, while 0 < i ≤ 6100, 0 < j ≤ 465, 0 < k ≤ 93, 0 < t ≤ 18 being the

individual bounds of variables. We sum Xi,j,k,t over j (course) and k (classroom) to get

the number of exams each student has for at each time slot, noted by Yi,t. We further

define a maximum relationship between Yi,t - 1 and 0 by adopting another variable,

namely Zi,t. Zi,t takes the larger of 0 and (Yi,t - 1). Given the conflict of each student at

each time slot, we them sum up Zi,t over i (students) and t (times slots) to get the total

number of conflicts of students having multiple exams at the same time slot.

 Conflict #1:

 12

3. Objective function -- Conflict #2

The second conflict is defined as students taking 3 exams within 24 hours time frame.

This conflict is more complex than the conflict since we need to trace back to three

consecutive exams for implementation, comparing to looking at single exam for

conflict #1. To start off, we introduced another variable Ui,t which takes the

following values:

Ui,t = 1, if student i has 3 exams in 24 hours

 0, otherwise

Then we define a new variable related to Ui,t

Similar to Yi,t, Wi,t is the number of exams one students would take in three consecutive

time slots. Ui,t is introduced to compute the maximum number of Wi,t - 2 and 0, while

Wi,t - 2 stands for the number of conflicts and 0 stands for no conflict.

Next step, we introduced another variable Vi , which measures the number of 3 exams

taken by student i in 24 hours.

 13

Ri, on the contrary, is introduced to compute the minimum between 1 and Vi. If Ri takes

the value 1, it means student i does have conflict #2.

Finally, we sum Ri over i to get the total number of conflicts of students having multiple

exams within 24 hours.

Conflict #2:

In all, we have the objective function:

 14

Constraints

Constraint #1

We define the first constraint to be at time t, the total number of exams should not exceed total

number of classrooms. Pj,k,t , as defined before, takes the value 1 if exam j takes place in

classroom k at time t. We sum Pj,k,t over j and k to get the total number of exams happened at

time t. The sum should never exceed the maximum number of classrooms, 93.

Constraint #2

We define the second constraint to be at time t, in classroom k, there’s at most one exam. In this

way, for all k, t, we sum over j (taking the value 1 to 465) will get the number of exams

happened at time t and classroom 1. The sum should never exceed 1, which means we could only

have a classroom with one exam or no exam.

 15

Constraint #3

The third constraint is defined as the capacity of classrooms for an exam should be able to

accommodate all students taking the course. We take the sum of Xi,j,k,t over i and j to get the

total number of students taking one exam in classroom k at time t. The sum should never exceed

Ck, the capacity of each classroom.

Constraint #4

Our last constraint is based on capacity of each courses. We need to make sure that for each

class, the number of students is less than the maximum course capacity. We sum Ai, j over i to

get the total number of students taking each courses. The sum should be less or equal to Ej,

namely the capacity of each course j.

Now, we have constructed our complete linear integer problem. Next step is to implement our

algorithms and hopefully obtain the best solution.

 16

Algorithms

Initial schedule 1:

In this schedule, we assume that largest-size courses will most likely cause conflicts. The idea is

that we first assign time slots to largest classes to avoid conflicts, then fit smaller classes in the

rest of time slots and classrooms. The specific steps are as following:

Fit all courses with over 100 students in classrooms that can accommodate over 100 students

first. Then we fit courses of size 50-100 students, then courses with less than 50 students.

It turns out that we only used 17 time-slots. The total number of conflicts is 3349.

Improvement 1:

Since we only used first 17 time-slots, we can fit classes with most conflicts to the last slot

without causing further conflicts. On average, each day should have 26 classes. So we choose the

26 classes that create the most conflicts and then put them to time slot 18. The result is 2933

conflicts in total.

Improvement 2:

The problem with this algorithm is that if we choose two classes in the same time slot, their

conflicts will remain if we put those two classes together to time slot 18. On the second try, for

each time slot, we pick up the class with most conflicts and put them to the 18th time slot. And

this leads us to a more optimal result. Consequently, we end up with 2729 conflicts in total.

Initial Schedule 2:

 17

For the trials on initial schedule 1, we found that for schedules with classes arranged more

evenly, there are fewer conflicts. Then our 2nd initial schedule is to assign classes to time slots

randomly and uniformly. To our surprise, we only have 2504 conflicts for this schedule.

Improvement 1(Swap):

Since classes should always be put evenly over the 18 time slots, we choose to swap classes that

causes the most schedules. The algorithm is to swap classes that cause the most conflicts and the

second most conflicts. After getting an improved schedule, we apply this algorithm again till

cannot proceed. The final result is 2349, which is a much better result than the previous trials.

Improvement 2:

We checked the deadlock causing this issue. The problem is that in the last result schedule that

causes the deadlock, after swapping classes, we will have a resulting schedule with the same two

classes that are causing the most and the second most conflicts. Then we are trapped in an

infinite loop. To get out of this infinite loop, we choose the class that causes the most number of

conflicts to swap with the max-conflict class. With this algorithm, we get 2051 conflicts and go

to some infinite loop again.

Improvement 3:

The problem is almost the same. Although we are guaranteed that we would not have two same

swap courses over and over again, we would face a problem of having the same three schedules

going to infinite loop. Our solution is to keep a checker out of the loop, and every time we found

infinite loop on three schedules, we swap the second and the third classes that are causing the

 18

most conflicts. This algorithm is very robust since we have three checkers. If we fail the first

one, we will swap the course that leads to most conflicts and the course that leads to the third

most conflicts. The checker will fail only if we continuously get the same schedule for three

possible solutions. Note that each time we get out of the loop, the checkers are reset. We

minimize the total number of conflicts to 1789, then after running our program for a while, the

number of conflicts jumps up back to over 2000.

Improvement 4:

The problem with the previous improvement is simply that around 1800, the number of conflicts

gets pretty close to optimal so that switching courses with the most conflicts are very likely to

cause the number of conflicts increase. We add another checker in the loop to choose the

schedule only if the schedule would increase less than 15 conflicts (define reducing conflicts as

negative). The final result is that we have minimized the number of conflicts to 1668. The final

result is decent since the problem involves over 30000 person-times. And we successfully

reduced the number of conflicts from 3349 to 1668, which is over 50 percent.

 19

Implementation

Given the large amount of variables and inputs involved in our linear programming problem, we

could not fully execute it as a math problem. We seek the help of python for sample scheduling.

For the sake of clearness, we will use the same convention for variables to represent number of

students, number of classrooms, etc., as discussed in Objective Function section.

1. Data Structure

We represent each student as a list of Boolean values. Then, we store all the lists that

represent students in a higher level list. For each list S[i], S[i] = [id, C, b1, b2, b3…,

b465]. Id is student’s index in the table. C = total number of classes that the student is

taking. For b1, b2...b465, each bi = True if student is taking class i, and false otherwise.

The total length of 2D list is 6100, as the number of students.

For schedules, we have another 2D list G. Class i’s information is stored in G[i],

respectively. G[i] = [class ID, number of students, time slot, i]. Time slot is a number

from 0 to 18. Class ID is the class number, such as 21393 for OR2.

2. Data Generation

Since students’ information is not accessible, we used functions to randomly assign

classes to each student according to available information about courses. The algorithm is

to go through each class and in list G. In each iteration i, randomly choose b students

 20

with classes less than 5, where b is the total number of students taking class G[i]. Then

mark S[d][i] with false. Notice S[d] is student’s b class information. As a result, we have

a quite randomly distributed data set for students’ class information. As for late use in

computation, the student’s information is stored in another list S’, where S’[d] represent

dth student. The first 2 entries are kept the same. For class taken, instead of Booleans, we

replace them with class indexes in C. For example, if student 4 is taking 5th class, 10th

class, 13th class, 56th class, his list in S’ will be [4, 4, 5, 10, 13, 56].

3. Find conflicts and Change Schedule

This data structure makes it relatively simple to find the total number of conflicts for

given schedule. To compute total conflicts, we simply go through the list S’ for each

student. On ith iteration, we will access class by class information stored in S’[i].

Referring back to example of student 4: the time slots of his classes are:

H = G[S’[4][3]][2], G[S’[4][4]][2], G[S’[4][5]][2], G[S’[4][6]][2]

Note that G[S’[4][3]] is 5, which is class index in G. and G[5][2] is its time slot. Then

sort the list H by time slot. We increment total number of conflicts by 1 if there is a

equal time slot in class j, class j+1 in sorted student’s classes, since conflicts can only

happen between continuous classes after sorting. As for the use of algorithms, it is

usually need to keep track of how many conflicts each class is causing. Then we just have

a separate list of length 465 and adding conflicts respectively to each index of each class.

In order to change schedule, we will just change time slot numbering on schedule list G.

If the size need to be changed, we assign new classroom as well.

 21

Conclusions

Our project successfully reduced over one-half of the total conflicts in the initial schedule and

our algorithm still shows the potential to do better. Attached in appendix E is the optimal

schedule we were able to obtain. The greatest challenge we confronted during the project was

due to the large amount of data size. As a result, we were not able to apply linear programming

directly to this problem. We should also bear in mind that our optimization is based on some

simplification and assumption. In practice, the problem is more complicated with additional

possibility and combinations to consider. In order to obtain a more practical and insightful

solution, here are some of the improvements we shall consider: data-wise, students’ class

schedule would be more complicated in real-life scenario, and classroom capacity shall be

updated with accurate numbers. As for algorithm, we hit a bottleneck that for every fifty rounds

of computations we end up in an infinite loop that gave us repeated solutions. Thus, our result

would be further improved if we could find a solution to breaking infinite loop of larger size.

 22

Reference

-Kweon Woo Jung, Min Jung Kim, Jisu Kwak, KangHa Lim, CMU Fall 2010 Final Exam

Schedule, https://www.math.cmu.edu/~af1p/Teaching/OR2/Projects/P14/21393_G7.pdf

-Batenburg K. and Palenstijn W., “A New Exam Timetabling Algorithm,” Leiden Institute of

Advanced Computer Science (LIACS), http://visielab.ua.ac.be/staff/batenburg/papers/ba

pa_bnaic_2003.pdf.

-Mohammad Malkawi1 , Mohammad Al-Haj Hassan , and Osama Al-Haj Hassan,A New Exam

Scheduling Algorithm Using Graph Coloring

-Professor Alan Frieze

-CMU Registration Office

 23

Appendix

A. Initial Class Schedule

Course Size Slot Room#

48250 020 01 01
48315 020 01 02

48324 020 01 03

48357 020 01 04

48524 020 01 05

48558 020 01 06

48568 020 01 07
48635 020 01 08

48729 020 01 09

48734 020 01 10
48740 020 01 11

48771 020 01 12

60157 020 01 13
60220 020 01 14

60424 020 01 15

03121 020 01 16
03124 020 01 17

03125 020 01 18

03133 020 01 19
03151 020 01 20

03201 020 01 21

30220 020 01 22

30301 020 01 23

03320 020 01 24

03327 020 01 25
03362 020 01 26

03401 020 01 27

03439 020 01 28
03511 020 01 29

03534 020 01 30

03709 020 01 31
03711 020 01 32

03727 020 01 33

42101 020 01 34
42202 020 01 35

42302 020 01 36

42341 020 01 37
42401 020 01 38

42620 020 01 39

42671 020 01 40
42674 020 01 41

42773 020 01 42

70122 020 01 43
70208 020 01 44

70311 020 01 45

70318 020 01 46
70341 020 01 47

70365 020 01 48

70391 020 01 49
70398 020 01 50

70451 020 01 51
70460 020 01 52

70477 020 01 53

 24

70497 020 01 54

52400 020 01 55

52401 020 01 56

62110 020 01 57
62150 020 01 58

62633 020 01 59

06100 020 01 60
06221 020 01 61

06321 020 01 62

06323 020 01 63
06423 020 01 64

06614 020 01 65

06623 020 01 66
06703 020 01 67

06705 020 01 68

06815 020 01 69
09105 020 01 70

09106 020 02 01

09107 020 02 02
09207 020 02 03

09214 020 02 04

09217 020 02 05
09219 020 02 06

09221 020 02 07

09231 020 02 08
09344 020 02 09

09347 020 02 10
09536 020 02 11

09721 020 02 12

09736 020 02 13
39402 020 02 14

39613 020 02 15

12100 020 02 16
12335 020 02 17

12355 020 02 18

12411 020 02 19
12620 020 02 20

12629 020 02 21

12635 020 02 22

12651 020 02 23

12702 050 01 71

12704 050 01 72
12709 050 01 73

12712 050 01 74

12720 050 01 75
12729 050 01 76

12741 050 01 77

12751 050 01 78
12752 050 01 79

02261 050 01 80

02601 050 02 71
02613 050 02 72

02711 050 02 73

15110 050 02 74
15112 050 02 75

15121 050 02 76

15122 050 02 77
15150 050 02 78

15151 050 02 79

15210 050 02 80
15214 050 03 71

15251 050 03 72

15313 050 03 73
15317 050 03 74

15322 050 03 75

15351 050 03 76
15381 050 03 77

15410 050 03 78

15414 050 03 79
15421 050 03 80

 25

15437 050 04 71

15440 050 04 72

15441 050 04 73

15445 050 04 74
15451 050 04 75

15456 050 04 76

15458 050 04 77
15462 050 04 78

15463 050 04 79

15487 050 04 80
15605 050 05 71

15614 050 05 72

15622 050 05 73
15637 050 05 74

15640 050 05 75

15641 050 05 76
15645 050 05 77

15650 050 05 78

15651 050 05 79
15657 050 05 80

15662 050 06 71

15663 050 06 72
15681 050 06 73

15852 050 06 74

15858 050 06 75
15862 050 06 76

15883 050 06 77
66161 050 06 78

66221 050 06 79

67240 050 06 80
67262 050 07 71

67328 050 07 72

67329 050 07 73
73102 050 07 74

73230 050 07 75

73240 050 07 76
73328 050 07 77

73347 050 07 78

73366 050 07 79

73374 050 07 80

73421 050 08 71

18090 050 08 72
18202 050 08 73

18220 050 08 74

18240 050 08 75
18290 050 08 76

18300 050 08 77

18340 050 08 78
18349 050 08 79

18370 050 08 80

18372 050 09 71
18422 050 09 72

18492 050 09 73

18618 050 09 74
18622 050 09 75

18631 050 09 76

18639 050 09 77
18643 050 09 78

18644 050 09 79

18648 050 09 80
18650 050 10 71

18715 050 10 72

18730 050 10 73
18749 050 10 74

18751 050 10 75

18755 050 10 76
18765 050 10 77

18771 050 10 78

18781 050 10 79
18785 050 10 80

 26

18792 050 11 71

18793 050 11 72

18794 050 11 73

18847 050 11 74
19101 050 11 75

19301 050 11 76

19403 050 11 77
19424 050 11 78

19440 050 11 79

19462 050 11 80
19472 050 11 89

19638 050 11 90

19639 050 11 91
19691 050 11 92

19713 050 11 93

19717 050 12 71
19740 050 12 72

19751 050 12 73

76205 050 12 74
76223 050 12 75

76239 050 12 76

76315 050 12 77
76337 050 12 78

76366 050 12 79

76375 050 12 80
76389 050 12 81

76396 050 12 82
76441 050 12 83

76450 050 12 84

76457 050 12 85
76481 050 12 86

76766 050 12 87

76775 050 12 88
76789 050 12 89

76791 050 12 90

76796 050 12 91
76841 050 12 92

76850 050 12 93

76857 050 13 71

76881 050 13 72

53353 050 13 73

53451 050 13 74
53740 050 13 75

53751 050 13 76

79212 050 13 77
79229 050 13 78

79236 050 13 79

79259 050 13 80
79261 050 13 81

79265 050 13 82

79277 050 13 83
79299 050 13 84

79310 050 13 85

79327 050 13 86
79352 050 13 87

05341 050 13 88

05391 050 13 89
05410 050 13 90

05430 050 13 91

05431 050 13 92
05499 050 13 93

05610 050 14 71

05630 050 14 72
05631 050 14 73

05814 050 14 74

05823 050 14 75
05891 050 14 76

05899 050 14 77

14642 050 14 78
14741 050 14 79

 27

14848 050 14 80

84326 050 14 81

84369 050 14 82

84669 050 14 83
08631 050 14 84

08672 050 14 85

08722 050 14 86
08736 050 14 87

11291 050 14 88

11411 050 14 89
11492 050 14 90

11611 050 14 91

11676 050 14 92
11692 050 14 93

11711 050 15 71

11751 050 15 72
11777 050 15 73

11785 050 15 74

11792 050 15 75
11927 050 15 76

10601 050 15 77

10701 050 15 78
27100 050 15 79

27201 050 15 80

27215 050 15 81
27301 050 15 82

27324 050 15 83
27432 050 15 84

27502 050 15 85

27766 050 15 86
27797 050 15 87

27799 050 15 88

21111 050 15 89
21112 050 15 90

21120 050 15 91

21122 050 15 92
21127 050 15 93

21128 050 16 71

21228 050 16 72

21235 050 16 73

21240 050 16 74

21241 050 16 75
21242 050 16 76

21256 050 16 77

21257 050 16 78
21259 050 16 79

21260 050 16 80

21268 050 16 81
21300 050 16 82

21301 050 16 83

21325 050 16 84
21341 050 16 85

21355 050 16 86

21356 050 16 87
21369 050 16 88

21370 050 16 89

21371 050 16 90
21373 050 16 91

21378 050 16 92

21441 050 16 93
21602 050 17 71

21603 050 17 72

21632 100 01 81
21651 100 01 82

21720 100 01 83

24101 100 01 84
24202 100 01 85

24221 100 01 86

24322 100 01 87
24334 100 01 88

 28

24351 100 01 89

24370 100 01 90

24424 100 01 91

24425 100 01 92
24451 100 01 93

24626 100 02 81

24652 100 02 82
24683 100 02 83

24688 100 02 84

24691 100 02 85
24704 100 02 86

24711 100 02 87

24718 100 02 88
24722 100 02 89

24740 100 02 90

24771 100 02 91
24774 100 02 92

82101 100 02 93

82102 100 03 81
82103 100 03 82

82104 100 03 83

82111 100 03 84
82121 100 03 85

82122 100 03 86

82141 100 03 87
82142 100 03 88

82143 100 03 89
82171 100 03 90

82172 100 03 91

82173 100 03 92
82174 100 03 93

82201 100 04 81

82208 100 04 82
82211 100 04 83

82241 100 04 84

82242 100 04 85
82271 100 04 86

82281 100 04 87

82283 100 04 88

82291 100 04 89

82311 100 04 90

82342 100 04 91
82343 100 04 92

82345 100 04 93

82373 100 05 81
82411 100 05 82

82425 100 05 83

82444 100 05 84
82455 100 05 85

57149 100 05 86

57151 100 05 87
57152 100 05 88

57173 100 05 89

57284 100 05 90
57480 100 05 91

57780 100 05 92

80180 100 05 93
80211 100 06 81

80212 100 06 82

80223 100 06 83
80282 100 06 84

80327 100 06 85

80381 100 06 86
80627 100 06 87

80681 100 06 88

33115 100 06 89
33121 100 06 90

33122 100 06 91

33124 100 06 92
33141 100 06 93

 29

33142 100 07 81

33151 100 07 82

33211 100 07 83

33231 100 07 84
33331 100 07 85

33338 100 07 86

33341 100 07 87
33441 100 07 88

33445 100 07 89

33650 100 07 90
33755 100 07 91

33759 100 07 92

33761 100 07 93
33778 100 08 81

33779 100 08 82

33783 100 08 83
85102 100 08 84

85211 100 08 85

85213 100 08 86
85219 100 08 87

85241 100 08 88

85320 100 08 89
85340 100 08 90

85341 100 08 91

85370 100 08 92
85390 100 08 93

85408 100 09 81
85414 100 09 82

85484 100 09 83

85738 100 09 84
85744 100 18 85

85765 100 09 86

85770 100 09 87
16161 100 09 88

16384 100 09 89

16456 100 09 90
16722 100 09 91

16811 100 09 92

16822 100 09 93

88150 100 10 81

88230 100 10 82

88251 100 10 83
88302 100 10 84

88341 100 10 85

88411 100 10 86
17651 100 10 87

36200 100 10 88

36201 100 10 89
36202 100 10 90

36208 100 10 91

36217 100 10 92
36220 100 10 93

36225 100 11 81

36309 100 11 82
36461 100 11 83

36661 100 11 84

36700 100 11 85
36705 100 11 86

36707 100 11 87

36749 100 11 88

 30

B. Student ID and Their Final Schedule

[0, [325, 355, 367, 424, 442]], [1, [330, 331, 394, 421, 454]], [2, [4, 34,

236, 254, 265]], [3, [137, 240, 284, 296, 307]], [4, [30, 261, 295, 355,

438]], [5, [228, 316, 370, 386]], [6, [116, 228, 408, 454]], [7, [181, 374,

395, 399, 429]], [8, [183, 242, 333, 374, 380]], [9, [137, 139, 164, 282,

298]], [10, [121, 124, 143, 239, 342]], [11, [170, 297, 317, 353, 357]],

[12, [135, 171, 459]], [13, [154, 352, 360, 368, 378]], [14, [168, 302,

336, 435, 446]], [15, [126, 209, 391, 427, 447]], [16, [215, 232, 392, 405,

431]], [17, [168, 307, 312, 347]], [18, [72, 311, 361, 427, 460]], [19,

[19, 135, 165, 241, 275]], [20, [158, 382, 393, 401, 433]], [21, [267, 353,

365, 387, 402]], [22, [87, 199, 241, 355, 418]], [23, [108, 382]], [24,

[162, 327, 363, 380, 391]], [25, [123, 299, 408, 436]], [26, [82, 294, 416,

456]], [27, [164, 226, 249, 342, 392]], [28, [110, 140, 416, 431, 434]],

[29, [240, 375, 407, 415, 458]], [30, [354, 383, 389, 395, 440]], [31,

[327, 396, 462]], [32, [62, 83, 152, 157, 246]], [33, [119, 171, 287, 393,

443]], [34, [98, 116, 277, 372, 400]], [35, [171, 208, 397, 420, 451]],

[36, [203, 260, 343, 356, 363]], [37, [207, 288, 369, 386, 387]], [38,

[168, 245, 334, 415, 446]], [39, [7, 40, 99, 239, 263]], [40, [218, 334,

381, 398, 414]], [41, [115, 131, 339, 371, 399]], [42, [115, 124, 282, 325,

348]], [43, [131, 268, 414, 443]], [44, [116]], [45, [96, 126, 323, 369,

389]], [46, [97, 341, 409, 434, 443]], [47, [182, 399, 414, 423, 440]],

[48, [387, 396, 417]], [49, [136, 347, 425, 435, 437]], [50, [221, 245,

338, 389, 451]], [51, [69, 223, 327, 428, 431]], [52, [37, 204, 225, 304,

418]], [53, [42, 114, 129, 406]], [54, [119, 322, 394]], [55, [313, 332,

349, 419, 446]], [56, [58, 95, 409, 417, 449]], [57, [30, 99, 403, 435,

457]], [58, [287, 422, 435, 447]], [59, [135, 242, 334, 346, 406]], [60,

[119, 134, 230, 327, 374]], [61, [14, 129, 229, 274, 328]], [62, [321, 368,

444]], [63, [235, 368, 455]], [64, [57, 264, 409, 430, 454]], [65, [402,

458]], [66, [10, 314, 386, 399]], [67, [43, 50, 356, 388, 435]], [68, [33,

94, 326, 381]], [69, [198, 332, 441]], [70, [197, 260, 352, 419, 422]],

[71, [13, 300, 313, 442]], [72, [424, 448]], [73, [84, 146, 255, 312,

335]], [74, [29, 439, 454]], [75, [196, 208, 322, 412, 446]], [76, [224,

330, 348, 388, 435]], [77, [65, 117, 213, 297, 368]], [78, [93, 360, 381,

417, 457]], [79, [3, 92, 137, 204, 225]], [80, [1, 217, 237, 320, 410]],

[81, [120, 197, 199, 332, 424]], [82, [314, 327, 382, 403, 417]], [83,

[404, 438]], [84, [266, 345, 346, 403, 456]], [85, [212, 289, 325, 343,

395]], [86, [93, 245, 387, 432, 451]], [87, [93, 168, 339, 360, 363]], [88,

[11, 313, 384, 403]], [89, [272, 351, 364, 450, 462]], [90, [139, 168, 175,

287, 293]], [91, [138, 168, 170, 254, 387]], [92, [181, 332, 336, 389,

397]], [93, [331, 386, 417]], [94, [313, 361, 384, 423, 457]], [95, [176,

383, 450]], [96, [174, 305, 340, 395, 439]], [97, [220, 397, 429, 443]],

[98, [198, 250, 328, 368, 391]], [99, [328, 408, 418, 435, 447]], [100,

[155, 172, 274, 410, 442]], [101, [201, 393, 397]], [102, [13, 62, 102,

104, 163]], [103, [92, 214, 290, 340, 410]], [104, [264, 373, 406, 437]],

[105, [243, 366, 427, 451, 457]], [106, [109, 227, 286, 330, 358]], [107,

[258, 337, 346, 420, 432]], [108, [148, 299, 346, 372, 427]], [109, [111,

166, 187, 333, 353]], [110, [232, 326, 337, 379, 404]], [111, [346, 359,

456]], [112, [413, 451, 453]], [113, [205, 364, 391, 452, 456]], [114,

[229, 407, 416, 441]], [115, [236]], [116, [41, 230, 251, 291, 326]], [117,

[55, 208, 249, 278, 399]], [118, [141, 271, 371, 379]], [119, [55, 393]],

 31

[120, [305, 311, 354, 361, 410]], [121, [6, 208, 211, 295, 362]], [122,

[238, 279, 333, 377, 394]], [123, [157, 325, 363, 413, 443]], [124, [29,

92, 220, 330, 406]], [125, [114, 136, 345, 356, 406]], [126, [95, 141, 252,

331, 428]], [127, [158, 209, 313, 350, 359]], [128, [245, 315, 428, 454]],

[129, [121, 195, 278, 351, 361]], [130, [325, 365]], [131, [309, 355,

376]], [132, [115, 122, 125, 270, 326]], [133, [94, 99, 124, 128, 140]],

[134, [321, 357, 406, 417, 418]], [135, [109, 161, 233, 403, 419]], [136,

[238, 414, 455, 459]], [137, [140, 384, 417, 440]], [138, [57, 329, 390,

438]], [139, [272, 329, 345, 370, 373]], [140, [399, 414]], [141, [307,

367, 403, 420, 457]], [142, [97, 341, 457]], [143, [183, 207, 318, 338,

380]], [144, [20, 45, 153, 254, 375]], [145, [134, 223, 228, 262, 299]],

[146, [189, 220, 260, 331, 356]], [147, [69, 324, 341, 350]], [148, [119,

237, 287, 307, 351]], [149, [144, 172, 179, 185, 320]], [150, [101, 143,

212, 361, 408]], [151, [21, 130, 222, 380, 384]], [152, [40, 313, 383, 414,

418]], [153, [265, 327, 357, 376, 426]], [154, [71, 274, 342, 357, 360]],

[155, [135, 225, 365, 398, 415]], [156, [177, 338, 359, 427, 462]], [157,

[285, 341, 410, 419, 461]], [158, [150, 406, 435, 445, 446]], [159, [346,

446, 459]], [160, [231, 314, 338, 342, 365]], [161, [40, 219, 273, 284,

336]], [162, [157, 189, 332, 429, 460]], [163, [132, 328, 417, 458]], [164,

[15, 183, 238, 347, 350]], [165, [106, 160, 255, 256, 379]], [166, [415]],

[167, [365, 400, 424, 447, 453]], [168, [128, 359]], [169, [26, 279, 412,

432, 433]], [170, [180, 286, 312, 376, 378]], [171, [207, 233, 307, 376,

428]],………

The other 5930 students’ schedules are omitted due to the length of data.

C. Classroom Information

ROOM SEATS

Baker Hall

Classroom by size

A51 (Giant Eagl 144

<50 70

A53 (Steinberg) 73

50-100 10

A54 (Osher) 15

>100 13

136A (Adamson) 111

Total 93

140 C 20

140 D 10

140 E 30

140 F 30

154A 12

235A 35

 32

235B 35

237B 35

255A 35

College of Fine Arts

102 35

317 20

318 20

323 10

321 2

Doherty Hall

A302 132

1112 98

1117 35

1209 30

1211 35

1212 107

1217 35

2105 35

2122 35

2210 289

2302 113

2315 266

Gates Hillman Center

4101 26

4102 40

4211 42

4215 58

4301 28

4307 73

4401 244

5222 38

Hamerschlag Hall

 33

B103 101

B131 98

Hunt Library

Near 25

Far 25

Near & Far 50

Margaret Morrison

A14 108

103 112

Mellon Institute

348 60

355 25

448 25

Porter Hall

A18A 50

A18B 50

A18C 50

A19A 20

A19B 20

A19C 18

A19D 18

A20A 21

A21 21

A21A 21

A22 30

100 217

125B 28

125C 70

126A 28

225B 28

226A 28

226B 28

 34

226C 28

Scaife Hall

125 96

208 30

212 20

214 45

219 45

220 35

222 35

Wean Hall

4623 45

4709 35

5201 30

5202 30

5207 20

5302 40

5304 20

5310 30

5312 30

5316 20

5320 30

5328 24

5403 65

5409 55

5415 45

5421 45

6423 30

7500 152

8427 30

 35

D. Code

Data format for each student: [id, numberOfClass, boolForClass]

import random

import copy

def initiate_ref(num):

 rst = []

 for i in xrange(num):

 rst += [[i, 0]]

 return rst

def initiate_student(num):

 rst = []

 for i in xrange(num):

 rst += [[i, []]]

 return rst

def initiateClass(studentList, takerNum, seed, rstList, classLable):

 random.seed(seed)

 availableList = []

 for student in studentList:

 student += [False]

 if student[1] != 5:

 availableList += [student[0]]

 if len(availableList) >= takerNum:

 takers = random.sample(availableList, takerNum)

 for taker in takers:

 studentList[taker][-1] = True

 studentList[taker][1] += 1

 rstList[taker][1]+=[classLable]

 return True

 else:

 for taker in availableList:

 studentList[taker][-1] = True

 studentList[taker][1] += 1

 rstList[taker][1] += [classLable]

 return False

def getList(num_studnet, classList, seed):

 studentList = initiate_ref(num_studnet)

 rst_list = initiate_student(num_studnet)

 # print len(classList)

 for index in xrange(len(classList)):

 num_takers = classList[index]

 seed += 1

 initiateClass(studentList, num_takers[1], seed, rst_list,

index)

 return rst_list

def printList(studnetList):

 for student in studentList:

 print str(studnet[0]) + " " + str(student[1])

 36

def readClassList(filename):

 file = open(filename, "r")

 rst = []

 for line in file:

 crt_class_str = int(line[0:5])

 crt_class_num = int(crt_class_str)

 crt_student_num = int(line[6:10])

 rst += [(crt_class_num, crt_student_num)]

 return rst

def readSchedule(filename):

 file = open(filename, "r")

 rst = []

 for line in file:

 crt_class_str = int(line[0:5])

 crt_class_num = int(crt_class_str)

 crt_student_num = int(line[6:10])

 crt_time = int(line[10:13])

 crt_room = int(line[13:])

 rst += [(crt_class_num, crt_student_num, crt_time, crt_room)]

 return rst

print schedule

print studentList

#(list: classlable, # students, time slot, classroom index)

1 - 70 are small classrooms, 71-80 are mid size classrooms, 81 - 93 are big

classrooms

student bool list: [studentLable, number of class taking, bools...]

def findSame(timeList, countList):

 num_conflict = 0

 count = []

 for i in xrange(len(timeList)):

 count += [False]

 if len(timeList) < 2:

 return 0

 for i in xrange(len(timeList)-1):

 if timeList[i][0] == timeList[i+1][0]:

 if count[i] == False:

 countList[timeList[i][1]] += 1

 countList[timeList[i+1][1]] += 1

 count[i] = True

 num_conflict += 1

 return num_conflict

def findContinuous(timeList, countList):

 num_conflict = 0

 # print len(timeList)

 37

 if len(timeList) < 3:

 return 0

 for i in xrange(len(timeList)-2):

 if timeList[i][0] == timeList[i+1][0]-1 and timeList[i][0] ==

timeList[i+2][0]-2:

 countList[timeList[i][1]] += 1

 countList[timeList[i+1][1]] += 1

 countList[timeList[i+2][1]] += 1

 num_conflict += 1

 return num_conflict

def findConflict(timeList):

 cont_3 = findContinuous(timeList)

 same_time = findSame(timeList)

 return (cont_3 + same_time)

print studentList

def compare(a, b):

 return a[0] - b[0]

def sortCountList(countList, inputSchedule):

 returnedList = []

 for i in xrange(countList):

 returnedList += [(countList[i], i, inputSchedule[i])]

 list.sort(returnedList, cmp = compare)

 returnedSchedule = []

 for i in xrange(returnedList):

 returnedSchedule += [(returnedList[i][2][0],

returnedList[i][2][1], returnedList[i][2][0], i%18)]

 return returnedList

def calculateConflicts_maxtwo(scheduleList, studentList):

 cont = 0

 same = 0

 sameCountList = []

 studentConflictList = []

 changeList = []

 for i in xrange(len(scheduleList)):

 sameCountList += [0]

 contCountList = copy.deepcopy(sameCountList)

 for student in studentList:

 classList = student[1]

 # print classList

 timeList = []

 time_class_list = []

 for each_class_index in classList:

 timeList += [scheduleList[each_class_index][2]]

 time_class_list += [[scheduleList[each_class_index][2],

each_class_index]]

 list.sort(time_class_list, cmp = compare)

 list.sort(timeList)

 38

 crt_same = findSame(time_class_list, sameCountList)

 same += crt_same

 cont += findContinuous(time_class_list, contCountList)

 studentConflictList += [crt_same]

 maxIndex = sameCountList.index(max(sameCountList))

 maxTime = scheduleList[maxIndex][2]

 sameCountList[maxIndex] = -1

 secondIndex = sameCountList.index(max(sameCountList))

 secondTime = scheduleList[secondIndex][2]

 sameCountList[secondIndex] = -1

 # loot for the biggest 2 conflicts and switch

 while (secondTime == maxTime):

 secondIndex = sameCountList.index(max(sameCountList))

 secondTime = scheduleList[secondIndex][2]

 sameCountList[secondIndex] = -1

 changeList += [(maxIndex, secondTime), (secondIndex, maxTime)]

 return changeList

def calculateConflicts_maxone(scheduleList, studentList):

 cont = 0

 same = 0

 sameCountList = []

 studentConflictList = []

 changeList = []

 for i in xrange(len(scheduleList)):

 sameCountList += [0]

 contCountList = copy.deepcopy(sameCountList)

 for student in studentList:

 classList = student[1]

 # print classList

 timeList = []

 time_class_list = []

 for each_class_index in classList:

 timeList += [scheduleList[each_class_index][2]]

 time_class_list += [[scheduleList[each_class_index][2],

each_class_index]]

 list.sort(time_class_list, cmp = compare)

 list.sort(timeList)

 crt_same = findSame(time_class_list, sameCountList)

 same += crt_same

 cont += findContinuous(time_class_list, contCountList)

 studentConflictList += [crt_same]

 maxIndex = sameCountList.index(max(sameCountList))

 39

 maxTime = scheduleList[maxIndex][2]

 sameCountList[maxIndex] = -1

 secondIndex = sameCountList.index(max(sameCountList))

 secondTime = scheduleList[secondIndex][2]

 sameCountList[secondIndex] = -1

 # loot for the biggest 2 conflicts and switch

 while (secondTime == maxTime):

 secondIndex = sameCountList.index(max(sameCountList))

 secondTime = scheduleList[secondIndex][2]

 sameCountList[secondIndex] = -1

 changeList += [(maxIndex, secondTime), (secondIndex, maxTime)]

 return changeList

def changeSchedule(changeList, schedule):

 newschedule = copy.deepcopy(schedule)

 for i in xrange(len(changeList)):

 classIndex = changeList[i][0]

 time = changeList[i][1]

 newschedule[classIndex] = (schedule[classIndex][0],

schedule[classIndex][1], time, schedule[classIndex][3])

 return newschedule

def loopForLargest(inputSchedule, studentList, loop_num):

 crt_schedule = inputSchedule

 for i in xrange(loop_num):

 changeList = calculateConflicts_maxtwo(crt_schedule,

studentList)

 crt_schedule = changeSchedule(changeList, crt_schedule)

 return crt_schedule

def calculateConflicts_maxinf(scheduleList, studentList, swapOffSet):

 cont = 0

 same = 0

 sameCountList = []

 studentConflictList = []

 changeList = []

 for i in xrange(len(scheduleList)):

 sameCountList += [0]

 contCountList = copy.deepcopy(sameCountList)

 for student in studentList:

 classList = student[1]

 # print classList

 timeList = []

 time_class_list = []

 40

 for each_class_index in classList:

 timeList += [scheduleList[each_class_index][2]]

 time_class_list += [[scheduleList[each_class_index][2],

each_class_index]]

 list.sort(time_class_list, cmp = compare)

 list.sort(timeList)

 crt_same = findSame(time_class_list, sameCountList)

 same += crt_same

 cont += findContinuous(time_class_list, contCountList)

 studentConflictList += [crt_same]

 # print "max"

 print max(sameCountList)

 maxIndex = sameCountList.index(max(sameCountList))

 maxTime = scheduleList[maxIndex][2]

 sameCountList[maxIndex] = -1

 secondIndex = sameCountList.index(max(sameCountList))

 secondTime = scheduleList[secondIndex][2]

 sameCountList[secondIndex] = -1

 thirdTime = secondTime

 # loot for the biggest 2 conflicts and switch

 while (secondTime == maxTime):

 secondIndex = sameCountList.index(max(sameCountList))

 secondTime = scheduleList[secondIndex][2]

 sameCountList[secondIndex] = -1

 for i in xrange(swapOffSet):

 thirdIndex = sameCountList.index(max(sameCountList))

 thirdTime = scheduleList[thirdIndex][2]

 sameCountList[secondIndex] = -1

 while (thirdTime == maxTime):

 thirdIndex = sameCountList.index(max(sameCountList))

 thirdTime = scheduleList[thirdIndex][2]

 sameCountList[thirdIndex] = -1

 if swapOffSet != 0:

 changeList += [(thirdIndex, maxTime), (maxIndex, thirdTime)]

 else:

 changeList += [(maxIndex, secondTime), (secondIndex, maxTime)]

 print same

 return [same, changeList]

def calculateConflicts_maxinf_breakTwo(scheduleList, studentList, swapOffSet,

BreakTwo):

 cont = 0

 same = 0

 sameCountList = []

 41

 studentConflictList = []

 changeList = []

 for i in xrange(len(scheduleList)):

 sameCountList += [0]

 contCountList = copy.deepcopy(sameCountList)

 for student in studentList:

 classList = student[1]

 timeList = []

 time_class_list = []

 for each_class_index in classList:

 timeList += [scheduleList[each_class_index][2]]

 time_class_list += [[scheduleList[each_class_index][2],

each_class_index]]

 list.sort(time_class_list, cmp = compare)

 list.sort(timeList)

 crt_same = findSame(time_class_list, sameCountList)

 same += crt_same

 cont += findContinuous(time_class_list, contCountList)

 studentConflictList += [crt_same]

 maxIndex = sameCountList.index(max(sameCountList))

 maxTime = scheduleList[maxIndex][2]

 sameCountList[maxIndex] = -1

 secondIndex = sameCountList.index(max(sameCountList))

 secondTime = scheduleList[secondIndex][2]

 sameCountList[secondIndex] = -1

 thirdTime = secondTime

 # loot for the biggest 2 conflicts and switch

 while (secondTime == maxTime):

 secondIndex = sameCountList.index(max(sameCountList))

 secondTime = scheduleList[secondIndex][2]

 sameCountList[secondIndex] = -1

 for i in xrange(swapOffSet):

 thirdIndex = sameCountList.index(max(sameCountList))

 thirdTime = scheduleList[thirdIndex][2]

 sameCountList[thirdIndex] = -1

 while (thirdTime == maxTime):

 thirdIndex = sameCountList.index(max(sameCountList))

 thirdTime = scheduleList[thirdIndex][2]

 sameCountList[thirdIndex] = -1

 if swapOffSet != 0:

 if BreakTwo:

 changeList += [(secondIndex, thirdTime), (thirdIndex,

secondTime)]

 else:

 changeList += [(thirdIndex, maxTime), (maxIndex,

thirdTime)]

 else:

 changeList += [(maxIndex, secondTime), (secondIndex, maxTime)]

 print same

 return [same, changeList]

 42

def loopForLargest_inf(inputSchedule, studentList, loop_num):

 crt_schedule = inputSchedule

 crt_conflict = 1000000

 for i in xrange(loop_num):

 offset = 1

 temp = calculateConflicts_maxinf(crt_schedule, studentList, 0)

 conflict = temp[0]

 changeList = temp[1]

 if conflict < crt_conflict or conflict > crt_conflict:

 crt_schedule = changeSchedule(changeList, crt_schedule)

 elif conflict == crt_conflict:

 while conflict >= crt_conflict:

 temp = calculateConflicts_maxinf(crt_schedule,

studentList, offset)

 offset = offset + 1

 conflict = temp[0]

 changeList = temp[1]

 crt_schedule = changeSchedule(changeList,

crt_schedule)

 crt_conflict = conflict

 return crt_schedule

def comp_changeList(x, y):

 a, b = x[0], x[1]

 c, d = y[0], y[1]

 if (a == c and b == d) or (b == c and a == d):

 return True

 else:

 return False

def loopForLargest_inf_breakTwo(inputSchedule, studentList, loop_num):

 crt_schedule = inputSchedule

 crt_conflict = 1000000

 conflictList = []

 for i in xrange(loop_num):

 offset = 1

 temp = calculateConflicts_maxinf_breakTwo(crt_schedule,

studentList, 0, False)

 conflict = temp[0]

 changeList = temp[1]

 old_change_1 = [changeList[0][0], changeList[1][0]]

 old_change_2 = old_change_1

 if conflict < crt_conflict:

 crt_schedule = changeSchedule(changeList, crt_schedule)

 elif conflict >= crt_conflict:

 while abs(conflict - crt_conflict) <=15 or

comp_changeList([changeList[0][0], changeList[1][0]], old_change_2):

 temp =

calculateConflicts_maxinf_breakTwo(crt_schedule, studentList, offset, False)

 offset = offset + 1

 conflict = temp[0]

 changeList = temp[1]

 43

 if comp_changeList([changeList[0][0],

changeList[1][0]], old_change_2):

 temp =

calculateConflicts_maxinf_breakTwo(crt_schedule, studentList, offset, True)

 conflict = temp[0]

 changeList = temp[1]

 old_change_2 = old_change_1

 old_change_1 = [changeList[0][0],

changeList[1][0]]

 crt_schedule = changeSchedule(changeList,

crt_schedule)

 conflictList += [conflict]

 crt_conflict = conflict

 return (conflictList, crt_schedule)

class_num = 465

classStudent_num = readClassList("new.txt")

studentList = getList(6100, classStudent_num, 1)

schedule = readSchedule("new.txt")

result = loopForLargest_inf_breakTwo(schedule, studentList, 1000)

conflictdata = result[0]

scheduleData = result[1]

E. Optimal Schedule

Course Max Enroll Date Time

48250 20 Monday, December 11, 2017 8:30-11:30 a.m.

48315 20 Monday, December 11, 2017 1:00-4:00 p.m.

48324 20 Monday, December 11, 2017 5:30-8:30 p.m.

48357 20 Tuesday, December 12, 2017 8:30-11:30 a.m.

48524 20 Tuesday, December 12, 2017 1:00-4:00 p.m.

48558 20 Tuesday, December 12, 2017 5:30-8:30 p.m.

48568 20 Thursday, December 14, 2017 8:30-11:30 a.m.

48635 20 Thursday, December 14, 2017 1:00-4:00 p.m.

48729 20 Thursday, December 14, 2017 5:30-8:30 p.m.

48734 20 Friday, December 15, 2017 8:30-11:30 a.m.

48740 20 Friday, December 15, 2017 1:00-4:00 p.m.

48771 20 Friday, December 15, 2017 5:30-8:30 p.m.

60157 20 Sunday, December 17, 2017 8:30-11:30 a.m.

60220 20 Sunday, December 17, 2017 1:00-4:00 p.m.

60424 20 Sunday, December 17, 2017 5:30-8:30 p.m.

3121 20 Monday, December 18, 2017 8:30-11:30 a.m.

 44

3124 20 Monday, December 18, 2017 1:00-4:00 p.m.

3125 20 Monday, December 18, 2017 5:30-8:30 p.m.

3133 20 Monday, December 11, 2017 8:30-11:30 a.m.

3151 20 Monday, December 11, 2017 1:00-4:00 p.m.

3201 20 Monday, December 11, 2017 5:30-8:30 p.m.

30220 20 Tuesday, December 12, 2017 8:30-11:30 a.m.

30301 20 Tuesday, December 12, 2017 1:00-4:00 p.m.

3320 20 Tuesday, December 12, 2017 5:30-8:30 p.m.

3327 20 Thursday, December 14, 2017 8:30-11:30 a.m.

3362 20 Thursday, December 14, 2017 1:00-4:00 p.m.

3401 20 Thursday, December 14, 2017 5:30-8:30 p.m.

3439 20 Friday, December 15, 2017 8:30-11:30 a.m.

3511 20 Friday, December 15, 2017 1:00-4:00 p.m.

3534 20 Friday, December 15, 2017 5:30-8:30 p.m.

3709 20 Sunday, December 17, 2017 8:30-11:30 a.m.

3711 20 Sunday, December 17, 2017 1:00-4:00 p.m.

3727 20 Sunday, December 17, 2017 5:30-8:30 p.m.

42101 20 Monday, December 18, 2017 8:30-11:30 a.m.

42202 20 Monday, December 18, 2017 1:00-4:00 p.m.

42302 20 Monday, December 18, 2017 5:30-8:30 p.m.

42341 20 Monday, December 11, 2017 8:30-11:30 a.m.

42401 20 Monday, December 11, 2017 1:00-4:00 p.m.

42620 20 Monday, December 11, 2017 5:30-8:30 p.m.

42671 20 Tuesday, December 12, 2017 8:30-11:30 a.m.

42674 20 Tuesday, December 12, 2017 1:00-4:00 p.m.

42773 20 Tuesday, December 12, 2017 5:30-8:30 p.m.

70122 20 Thursday, December 14, 2017 8:30-11:30 a.m.

70208 20 Thursday, December 14, 2017 1:00-4:00 p.m.

70311 20 Thursday, December 14, 2017 5:30-8:30 p.m.

70318 20 Friday, December 15, 2017 8:30-11:30 a.m.

70341 20 Friday, December 15, 2017 1:00-4:00 p.m.

70365 20 Friday, December 15, 2017 5:30-8:30 p.m.

70391 20 Sunday, December 17, 2017 8:30-11:30 a.m.

70398 20 Sunday, December 17, 2017 1:00-4:00 p.m.

70451 20 Sunday, December 17, 2017 5:30-8:30 p.m.

70460 20 Monday, December 18, 2017 8:30-11:30 a.m.

70477 20 Monday, December 18, 2017 1:00-4:00 p.m.

70497 20 Monday, December 18, 2017 5:30-8:30 p.m.

52400 20 Monday, December 11, 2017 8:30-11:30 a.m.

 45

52401 20 Monday, December 11, 2017 1:00-4:00 p.m.

62110 20 Monday, December 11, 2017 5:30-8:30 p.m.

62150 20 Tuesday, December 12, 2017 8:30-11:30 a.m.

62633 20 Tuesday, December 12, 2017 1:00-4:00 p.m.

6100 20 Tuesday, December 12, 2017 5:30-8:30 p.m.

6221 20 Thursday, December 14, 2017 8:30-11:30 a.m.

6321 20 Thursday, December 14, 2017 1:00-4:00 p.m.

6323 20 Thursday, December 14, 2017 5:30-8:30 p.m.

6423 20 Friday, December 15, 2017 8:30-11:30 a.m.

6614 20 Friday, December 15, 2017 1:00-4:00 p.m.

6623 20 Friday, December 15, 2017 5:30-8:30 p.m.

6703 20 Sunday, December 17, 2017 8:30-11:30 a.m.

6705 20 Sunday, December 17, 2017 1:00-4:00 p.m.

6815 20 Sunday, December 17, 2017 5:30-8:30 p.m.

9105 20 Monday, December 18, 2017 8:30-11:30 a.m.

9106 20 Monday, December 18, 2017 1:00-4:00 p.m.

9107 20 Monday, December 18, 2017 5:30-8:30 p.m.

9207 20 Monday, December 11, 2017 8:30-11:30 a.m.

9214 20 Monday, December 11, 2017 1:00-4:00 p.m.

9217 20 Monday, December 11, 2017 5:30-8:30 p.m.

9219 20 Tuesday, December 12, 2017 8:30-11:30 a.m.

9221 20 Tuesday, December 12, 2017 1:00-4:00 p.m.

9231 20 Tuesday, December 12, 2017 5:30-8:30 p.m.

9344 20 Thursday, December 14, 2017 8:30-11:30 a.m.

9347 20 Thursday, December 14, 2017 1:00-4:00 p.m.

9536 20 Thursday, December 14, 2017 5:30-8:30 p.m.

9721 20 Friday, December 15, 2017 8:30-11:30 a.m.

9736 20 Friday, December 15, 2017 1:00-4:00 p.m.

39402 20 Friday, December 15, 2017 5:30-8:30 p.m.

39613 20 Sunday, December 17, 2017 8:30-11:30 a.m.

12100 20 Sunday, December 17, 2017 1:00-4:00 p.m.

12335 20 Sunday, December 17, 2017 5:30-8:30 p.m.

12355 20 Monday, December 18, 2017 8:30-11:30 a.m.

12411 20 Monday, December 18, 2017 1:00-4:00 p.m.

12620 20 Monday, December 18, 2017 5:30-8:30 p.m.

12629 20 Monday, December 11, 2017 8:30-11:30 a.m.

12635 20 Monday, December 11, 2017 1:00-4:00 p.m.

12651 20 Monday, December 11, 2017 5:30-8:30 p.m.

12702 50 Sunday, December 17, 2017 5:30-8:30 p.m.

 46

12704 50 Tuesday, December 12, 2017 1:00-4:00 p.m.

12709 50 Tuesday, December 12, 2017 5:30-8:30 p.m.

12712 50 Thursday, December 14, 2017 8:30-11:30 a.m.

12720 50 Thursday, December 14, 2017 1:00-4:00 p.m.

12729 50 Monday, December 11, 2017 5:30-8:30 p.m.

12741 50 Friday, December 15, 2017 8:30-11:30 a.m.

12751 50 Friday, December 15, 2017 1:00-4:00 p.m.

12752 50 Friday, December 15, 2017 8:30-11:30 a.m.

2261 50 Sunday, December 17, 2017 8:30-11:30 a.m.

2601 50 Sunday, December 17, 2017 1:00-4:00 p.m.

2613 50 Tuesday, December 12, 2017 1:00-4:00 p.m.

2711 50 Monday, December 18, 2017 8:30-11:30 a.m.

15110 50 Monday, December 18, 2017 1:00-4:00 p.m.

15112 50 Monday, December 18, 2017 5:30-8:30 p.m.

15121 50 Monday, December 11, 2017 8:30-11:30 a.m.

15122 50 Monday, December 11, 2017 1:00-4:00 p.m.

15150 50 Monday, December 11, 2017 5:30-8:30 p.m.

15151 50 Tuesday, December 12, 2017 8:30-11:30 a.m.

15210 50 Tuesday, December 12, 2017 8:30-11:30 a.m.

15214 50 Tuesday, December 12, 2017 5:30-8:30 p.m.

15251 50 Thursday, December 14, 2017 8:30-11:30 a.m.

15313 50 Thursday, December 14, 2017 1:00-4:00 p.m.

15317 50 Thursday, December 14, 2017 5:30-8:30 p.m.

15322 50 Friday, December 15, 2017 8:30-11:30 a.m.

15351 50 Friday, December 15, 2017 1:00-4:00 p.m.

15381 50 Friday, December 15, 2017 5:30-8:30 p.m.

15410 50 Sunday, December 17, 2017 8:30-11:30 a.m.

15414 50 Sunday, December 17, 2017 1:00-4:00 p.m.

15421 50 Sunday, December 17, 2017 5:30-8:30 p.m.

15437 50 Monday, December 18, 2017 8:30-11:30 a.m.

15440 50 Monday, December 18, 2017 1:00-4:00 p.m.

15441 50 Monday, December 18, 2017 5:30-8:30 p.m.

15445 50 Monday, December 11, 2017 8:30-11:30 a.m.

15451 50 Monday, December 11, 2017 1:00-4:00 p.m.

15456 50 Monday, December 11, 2017 5:30-8:30 p.m.

15458 50 Monday, December 11, 2017 8:30-11:30 a.m.

15462 50 Tuesday, December 12, 2017 1:00-4:00 p.m.

15463 50 Tuesday, December 12, 2017 5:30-8:30 p.m.

15487 50 Thursday, December 14, 2017 8:30-11:30 a.m.

 47

15605 50 Thursday, December 14, 2017 1:00-4:00 p.m.

15614 50 Monday, December 11, 2017 8:30-11:30 a.m.

15622 50 Friday, December 15, 2017 8:30-11:30 a.m.

15637 50 Friday, December 15, 2017 1:00-4:00 p.m.

15640 50 Friday, December 15, 2017 5:30-8:30 p.m.

15641 50 Friday, December 15, 2017 1:00-4:00 p.m.

15645 50 Sunday, December 17, 2017 1:00-4:00 p.m.

15650 50 Sunday, December 17, 2017 5:30-8:30 p.m.

15651 50 Monday, December 18, 2017 8:30-11:30 a.m.

15657 50 Monday, December 18, 2017 1:00-4:00 p.m.

15662 50 Monday, December 18, 2017 5:30-8:30 p.m.

15663 50 Monday, December 11, 2017 8:30-11:30 a.m.

15681 50 Monday, December 11, 2017 1:00-4:00 p.m.

15852 50 Friday, December 15, 2017 8:30-11:30 a.m.

15858 50 Tuesday, December 12, 2017 8:30-11:30 a.m.

15862 50 Monday, December 11, 2017 1:00-4:00 p.m.

15883 50 Thursday, December 14, 2017 1:00-4:00 p.m.

66161 50 Thursday, December 14, 2017 8:30-11:30 a.m.

66221 50 Thursday, December 14, 2017 1:00-4:00 p.m.

67240 50 Tuesday, December 12, 2017 8:30-11:30 a.m.

67262 50 Tuesday, December 12, 2017 8:30-11:30 a.m.

67328 50 Friday, December 15, 2017 1:00-4:00 p.m.

67329 50 Thursday, December 14, 2017 1:00-4:00 p.m.

73102 50 Tuesday, December 12, 2017 8:30-11:30 a.m.

73230 50 Sunday, December 17, 2017 1:00-4:00 p.m.

73240 50 Thursday, December 14, 2017 1:00-4:00 p.m.

73328 50 Monday, December 18, 2017 8:30-11:30 a.m.

73347 50 Thursday, December 14, 2017 8:30-11:30 a.m.

73366 50 Monday, December 18, 2017 5:30-8:30 p.m.

73374 50 Monday, December 11, 2017 8:30-11:30 a.m.

73421 50 Monday, December 11, 2017 1:00-4:00 p.m.

18090 50 Monday, December 11, 2017 5:30-8:30 p.m.

18202 50 Thursday, December 14, 2017 5:30-8:30 p.m.

18220 50 Tuesday, December 12, 2017 5:30-8:30 p.m.

18240 50 Friday, December 15, 2017 5:30-8:30 p.m.

18290 50 Thursday, December 14, 2017 8:30-11:30 a.m.

18300 50 Thursday, December 14, 2017 1:00-4:00 p.m.

18340 50 Thursday, December 14, 2017 5:30-8:30 p.m.

18349 50 Friday, December 15, 2017 8:30-11:30 a.m.

 48

18370 50 Friday, December 15, 2017 1:00-4:00 p.m.

18372 50 Thursday, December 14, 2017 5:30-8:30 p.m.

18422 50 Monday, December 18, 2017 5:30-8:30 p.m.

18492 50 Sunday, December 17, 2017 1:00-4:00 p.m.

18618 50 Sunday, December 17, 2017 5:30-8:30 p.m.

18622 50 Monday, December 11, 2017 5:30-8:30 p.m.

18631 50 Monday, December 18, 2017 1:00-4:00 p.m.

18639 50 Monday, December 18, 2017 5:30-8:30 p.m.

18643 50 Monday, December 11, 2017 8:30-11:30 a.m.

18644 50 Monday, December 11, 2017 1:00-4:00 p.m.

18648 50 Monday, December 11, 2017 5:30-8:30 p.m.

18650 50 Tuesday, December 12, 2017 8:30-11:30 a.m.

18715 50 Tuesday, December 12, 2017 1:00-4:00 p.m.

18730 50 Tuesday, December 12, 2017 5:30-8:30 p.m.

18749 50 Thursday, December 14, 2017 8:30-11:30 a.m.

18751 50 Thursday, December 14, 2017 5:30-8:30 p.m.

18755 50 Sunday, December 17, 2017 8:30-11:30 a.m.

18765 50 Friday, December 15, 2017 8:30-11:30 a.m.

18771 50 Friday, December 15, 2017 1:00-4:00 p.m.

18781 50 Monday, December 18, 2017 1:00-4:00 p.m.

18785 50 Sunday, December 17, 2017 8:30-11:30 a.m.

18792 50 Sunday, December 17, 2017 1:00-4:00 p.m.

18793 50 Sunday, December 17, 2017 5:30-8:30 p.m.

18794 50 Monday, December 18, 2017 8:30-11:30 a.m.

18847 50 Monday, December 18, 2017 1:00-4:00 p.m.

19101 50 Sunday, December 17, 2017 5:30-8:30 p.m.

19301 50 Monday, December 11, 2017 8:30-11:30 a.m.

19403 50 Monday, December 11, 2017 1:00-4:00 p.m.

19424 50 Monday, December 11, 2017 5:30-8:30 p.m.

19440 50 Tuesday, December 12, 2017 8:30-11:30 a.m.

19462 50 Tuesday, December 12, 2017 1:00-4:00 p.m.

19472 50 Tuesday, December 12, 2017 5:30-8:30 p.m.

19638 50 Thursday, December 14, 2017 8:30-11:30 a.m.

19639 50 Thursday, December 14, 2017 1:00-4:00 p.m.

19691 50 Thursday, December 14, 2017 5:30-8:30 p.m.

19713 50 Tuesday, December 12, 2017 8:30-11:30 a.m.

19717 50 Friday, December 15, 2017 1:00-4:00 p.m.

19740 50 Thursday, December 14, 2017 5:30-8:30 p.m.

19751 50 Monday, December 11, 2017 5:30-8:30 p.m.

 49

76205 50 Sunday, December 17, 2017 1:00-4:00 p.m.

76223 50 Sunday, December 17, 2017 5:30-8:30 p.m.

76239 50 Monday, December 18, 2017 8:30-11:30 a.m.

76315 50 Monday, December 18, 2017 1:00-4:00 p.m.

76337 50 Sunday, December 17, 2017 5:30-8:30 p.m.

76366 50 Monday, December 11, 2017 8:30-11:30 a.m.

76375 50 Monday, December 11, 2017 1:00-4:00 p.m.

76389 50 Friday, December 15, 2017 8:30-11:30 a.m.

76396 50 Sunday, December 17, 2017 8:30-11:30 a.m.

76441 50 Tuesday, December 12, 2017 1:00-4:00 p.m.

76450 50 Tuesday, December 12, 2017 5:30-8:30 p.m.

76457 50 Thursday, December 14, 2017 8:30-11:30 a.m.

76481 50 Monday, December 11, 2017 8:30-11:30 a.m.

76766 50 Thursday, December 14, 2017 5:30-8:30 p.m.

76775 50 Friday, December 15, 2017 8:30-11:30 a.m.

76789 50 Friday, December 15, 2017 1:00-4:00 p.m.

76791 50 Friday, December 15, 2017 5:30-8:30 p.m.

76796 50 Monday, December 11, 2017 5:30-8:30 p.m.

76841 50 Sunday, December 17, 2017 1:00-4:00 p.m.

76850 50 Sunday, December 17, 2017 5:30-8:30 p.m.

76857 50 Monday, December 18, 2017 8:30-11:30 a.m.

76881 50 Monday, December 18, 2017 1:00-4:00 p.m.

53353 50 Monday, December 18, 2017 5:30-8:30 p.m.

53451 50 Monday, December 11, 2017 8:30-11:30 a.m.

53740 50 Monday, December 11, 2017 1:00-4:00 p.m.

53751 50 Sunday, December 17, 2017 8:30-11:30 a.m.

79212 50 Tuesday, December 12, 2017 8:30-11:30 a.m.

79229 50 Tuesday, December 12, 2017 1:00-4:00 p.m.

79236 50 Thursday, December 14, 2017 5:30-8:30 p.m.

79259 50 Thursday, December 14, 2017 8:30-11:30 a.m.

79261 50 Thursday, December 14, 2017 1:00-4:00 p.m.

79265 50 Thursday, December 14, 2017 5:30-8:30 p.m.

79277 50 Friday, December 15, 2017 8:30-11:30 a.m.

79299 50 Friday, December 15, 2017 1:00-4:00 p.m.

79310 50 Friday, December 15, 2017 5:30-8:30 p.m.

79327 50 Friday, December 15, 2017 5:30-8:30 p.m.

79352 50 Sunday, December 17, 2017 1:00-4:00 p.m.

5341 50 Sunday, December 17, 2017 5:30-8:30 p.m.

5391 50 Monday, December 18, 2017 8:30-11:30 a.m.

 50

5410 50 Monday, December 18, 2017 1:00-4:00 p.m.

5430 50 Friday, December 15, 2017 5:30-8:30 p.m.

5431 50 Monday, December 11, 2017 8:30-11:30 a.m.

5499 50 Monday, December 11, 2017 1:00-4:00 p.m.

5610 50 Monday, December 11, 2017 5:30-8:30 p.m.

5630 50 Tuesday, December 12, 2017 8:30-11:30 a.m.

5631 50 Sunday, December 17, 2017 5:30-8:30 p.m.

5814 50 Tuesday, December 12, 2017 8:30-11:30 a.m.

5823 50 Thursday, December 14, 2017 8:30-11:30 a.m.

5891 50 Thursday, December 14, 2017 1:00-4:00 p.m.

5899 50 Sunday, December 17, 2017 8:30-11:30 a.m.

14642 50 Monday, December 11, 2017 1:00-4:00 p.m.

14741 50 Friday, December 15, 2017 1:00-4:00 p.m.

14848 50 Friday, December 15, 2017 8:30-11:30 a.m.

84326 50 Monday, December 11, 2017 1:00-4:00 p.m.

84369 50 Sunday, December 17, 2017 1:00-4:00 p.m.

84669 50 Sunday, December 17, 2017 5:30-8:30 p.m.

8631 50 Monday, December 18, 2017 8:30-11:30 a.m.

8672 50 Monday, December 18, 2017 1:00-4:00 p.m.

8722 50 Monday, December 18, 2017 5:30-8:30 p.m.

8736 50 Monday, December 11, 2017 8:30-11:30 a.m.

11291 50 Monday, December 11, 2017 1:00-4:00 p.m.

11411 50 Monday, December 11, 2017 5:30-8:30 p.m.

11492 50 Friday, December 15, 2017 5:30-8:30 p.m.

11611 50 Tuesday, December 12, 2017 1:00-4:00 p.m.

11676 50 Tuesday, December 12, 2017 5:30-8:30 p.m.

11692 50 Thursday, December 14, 2017 8:30-11:30 a.m.

11711 50 Sunday, December 17, 2017 8:30-11:30 a.m.

11751 50 Tuesday, December 12, 2017 1:00-4:00 p.m.

11777 50 Sunday, December 17, 2017 8:30-11:30 a.m.

11785 50 Friday, December 15, 2017 1:00-4:00 p.m.

11792 50 Friday, December 15, 2017 5:30-8:30 p.m.

11927 50 Tuesday, December 12, 2017 1:00-4:00 p.m.

10601 50 Sunday, December 17, 2017 1:00-4:00 p.m.

10701 50 Sunday, December 17, 2017 5:30-8:30 p.m.

27100 50 Monday, December 18, 2017 8:30-11:30 a.m.

27201 50 Monday, December 18, 2017 1:00-4:00 p.m.

27215 50 Monday, December 18, 2017 5:30-8:30 p.m.

27301 50 Friday, December 15, 2017 5:30-8:30 p.m.

 51

27324 50 Monday, December 11, 2017 1:00-4:00 p.m.

27432 50 Monday, December 11, 2017 5:30-8:30 p.m.

27502 50 Friday, December 15, 2017 5:30-8:30 p.m.

27766 50 Tuesday, December 12, 2017 1:00-4:00 p.m.

27797 50 Tuesday, December 12, 2017 5:30-8:30 p.m.

27799 50 Thursday, December 14, 2017 8:30-11:30 a.m.

21111 50 Thursday, December 14, 2017 1:00-4:00 p.m.

21112 50 Monday, December 18, 2017 8:30-11:30 a.m.

21120 50 Monday, December 18, 2017 5:30-8:30 p.m.

21122 50 Friday, December 15, 2017 1:00-4:00 p.m.

21127 50 Friday, December 15, 2017 5:30-8:30 p.m.

21128 50 Sunday, December 17, 2017 8:30-11:30 a.m.

21228 50 Sunday, December 17, 2017 1:00-4:00 p.m.

21235 50 Sunday, December 17, 2017 5:30-8:30 p.m.

21240 50 Monday, December 18, 2017 8:30-11:30 a.m.

21241 50 Friday, December 15, 2017 5:30-8:30 p.m.

21242 50 Monday, December 18, 2017 1:00-4:00 p.m.

21256 50 Friday, December 15, 2017 8:30-11:30 a.m.

21257 50 Monday, December 11, 2017 1:00-4:00 p.m.

21259 50 Monday, December 11, 2017 5:30-8:30 p.m.

21260 50 Monday, December 18, 2017 5:30-8:30 p.m.

21268 50 Tuesday, December 12, 2017 1:00-4:00 p.m.

21300 50 Tuesday, December 12, 2017 5:30-8:30 p.m.

21301 50 Thursday, December 14, 2017 8:30-11:30 a.m.

21325 50 Thursday, December 14, 2017 1:00-4:00 p.m.

21341 50 Thursday, December 14, 2017 5:30-8:30 p.m.

21355 50 Friday, December 15, 2017 8:30-11:30 a.m.

21356 50 Friday, December 15, 2017 1:00-4:00 p.m.

21369 50 Tuesday, December 12, 2017 1:00-4:00 p.m.

21370 50 Sunday, December 17, 2017 8:30-11:30 a.m.

21371 50 Sunday, December 17, 2017 1:00-4:00 p.m.

21373 50 Tuesday, December 12, 2017 1:00-4:00 p.m.

21378 50 Monday, December 18, 2017 8:30-11:30 a.m.

21441 50 Monday, December 18, 2017 1:00-4:00 p.m.

21602 50 Monday, December 18, 2017 5:30-8:30 p.m.

21603 50 Monday, December 11, 2017 8:30-11:30 a.m.

21632 100 Monday, December 18, 2017 5:30-8:30 p.m.

21651 100 Tuesday, December 12, 2017 5:30-8:30 p.m.

21720 100 Monday, December 18, 2017 5:30-8:30 p.m.

 52

24101 100 Friday, December 15, 2017 1:00-4:00 p.m.

24202 100 Monday, December 18, 2017 5:30-8:30 p.m.

24221 100 Monday, December 18, 2017 8:30-11:30 a.m.

24322 100 Sunday, December 17, 2017 1:00-4:00 p.m.

24334 100 Friday, December 15, 2017 5:30-8:30 p.m.

24351 100 Tuesday, December 12, 2017 8:30-11:30 a.m.

24370 100 Thursday, December 14, 2017 5:30-8:30 p.m.

24424 100 Thursday, December 14, 2017 1:00-4:00 p.m.

24425 100 Tuesday, December 12, 2017 8:30-11:30 a.m.

24451 100 Friday, December 15, 2017 1:00-4:00 p.m.

24626 100 Friday, December 15, 2017 8:30-11:30 a.m.

24652 100 Monday, December 18, 2017 8:30-11:30 a.m.

24683 100 Thursday, December 14, 2017 1:00-4:00 p.m.

24688 100 Friday, December 15, 2017 5:30-8:30 p.m.

24691 100 Friday, December 15, 2017 5:30-8:30 p.m.

24704 100 Tuesday, December 12, 2017 5:30-8:30 p.m.

24711 100 Monday, December 18, 2017 8:30-11:30 a.m.

24718 100 Sunday, December 17, 2017 1:00-4:00 p.m.

24722 100 Thursday, December 14, 2017 1:00-4:00 p.m.

24740 100 Monday, December 18, 2017 1:00-4:00 p.m.

24771 100 Tuesday, December 12, 2017 8:30-11:30 a.m.

24774 100 Thursday, December 14, 2017 8:30-11:30 a.m.

82101 100 Monday, December 11, 2017 8:30-11:30 a.m.

82102 100 Sunday, December 17, 2017 8:30-11:30 a.m.

82103 100 Sunday, December 17, 2017 5:30-8:30 p.m.

82104 100 Sunday, December 17, 2017 8:30-11:30 a.m.

82111 100 Friday, December 15, 2017 1:00-4:00 p.m.

82121 100 Monday, December 11, 2017 5:30-8:30 p.m.

82122 100 Monday, December 11, 2017 5:30-8:30 p.m.

82141 100 Monday, December 11, 2017 5:30-8:30 p.m.

82142 100 Tuesday, December 12, 2017 5:30-8:30 p.m.

82143 100 Monday, December 18, 2017 8:30-11:30 a.m.

82171 100 Tuesday, December 12, 2017 5:30-8:30 p.m.

82172 100 Thursday, December 14, 2017 8:30-11:30 a.m.

82173 100 Monday, December 11, 2017 5:30-8:30 p.m.

82174 100 Sunday, December 17, 2017 1:00-4:00 p.m.

82201 100 Tuesday, December 12, 2017 8:30-11:30 a.m.

82208 100 Sunday, December 17, 2017 5:30-8:30 p.m.

82211 100 Monday, December 18, 2017 1:00-4:00 p.m.

 53

82241 100 Monday, December 11, 2017 1:00-4:00 p.m.

82242 100 Tuesday, December 12, 2017 1:00-4:00 p.m.

82271 100 Sunday, December 17, 2017 5:30-8:30 p.m.

82281 100 Monday, December 18, 2017 5:30-8:30 p.m.

82283 100 Tuesday, December 12, 2017 1:00-4:00 p.m.

82291 100 Tuesday, December 12, 2017 8:30-11:30 a.m.

82311 100 Monday, December 11, 2017 5:30-8:30 p.m.

82342 100 Monday, December 18, 2017 1:00-4:00 p.m.

82343 100 Thursday, December 14, 2017 5:30-8:30 p.m.

82345 100 Friday, December 15, 2017 1:00-4:00 p.m.

82373 100 Tuesday, December 12, 2017 5:30-8:30 p.m.

82411 100 Monday, December 18, 2017 8:30-11:30 a.m.

82425 100 Monday, December 18, 2017 1:00-4:00 p.m.

82444 100 Friday, December 15, 2017 5:30-8:30 p.m.

82455 100 Friday, December 15, 2017 8:30-11:30 a.m.

57149 100 Thursday, December 14, 2017 5:30-8:30 p.m.

57151 100 Tuesday, December 12, 2017 8:30-11:30 a.m.

57152 100 Tuesday, December 12, 2017 1:00-4:00 p.m.

57173 100 Thursday, December 14, 2017 5:30-8:30 p.m.

57284 100 Thursday, December 14, 2017 8:30-11:30 a.m.

57480 100 Tuesday, December 12, 2017 1:00-4:00 p.m.

57780 100 Tuesday, December 12, 2017 5:30-8:30 p.m.

80180 100 Thursday, December 14, 2017 1:00-4:00 p.m.

80211 100 Friday, December 15, 2017 5:30-8:30 p.m.

80212 100 Sunday, December 17, 2017 5:30-8:30 p.m.

80223 100 Sunday, December 17, 2017 5:30-8:30 p.m.

80282 100 Thursday, December 14, 2017 1:00-4:00 p.m.

80327 100 Monday, December 11, 2017 1:00-4:00 p.m.

80381 100 Friday, December 15, 2017 8:30-11:30 a.m.

80627 100 Friday, December 15, 2017 5:30-8:30 p.m.

80681 100 Thursday, December 14, 2017 5:30-8:30 p.m.

33115 100 Monday, December 18, 2017 5:30-8:30 p.m.

33121 100 Sunday, December 17, 2017 8:30-11:30 a.m.

33122 100 Thursday, December 14, 2017 5:30-8:30 p.m.

33124 100 Tuesday, December 12, 2017 1:00-4:00 p.m.

33141 100 Friday, December 15, 2017 8:30-11:30 a.m.

33142 100 Tuesday, December 12, 2017 5:30-8:30 p.m.

33151 100 Tuesday, December 12, 2017 1:00-4:00 p.m.

33211 100 Monday, December 11, 2017 8:30-11:30 a.m.

 54

33231 100 Sunday, December 17, 2017 1:00-4:00 p.m.

33331 100 Thursday, December 14, 2017 1:00-4:00 p.m.

33338 100 Monday, December 11, 2017 5:30-8:30 p.m.

33341 100 Monday, December 18, 2017 8:30-11:30 a.m.

33441 100 Monday, December 18, 2017 5:30-8:30 p.m.

33445 100 Monday, December 11, 2017 8:30-11:30 a.m.

33650 100 Friday, December 15, 2017 8:30-11:30 a.m.

33755 100 Sunday, December 17, 2017 8:30-11:30 a.m.

33759 100 Sunday, December 17, 2017 8:30-11:30 a.m.

33761 100 Monday, December 11, 2017 1:00-4:00 p.m.

33778 100 Thursday, December 14, 2017 5:30-8:30 p.m.

33779 100 Monday, December 18, 2017 5:30-8:30 p.m.

33783 100 Sunday, December 17, 2017 1:00-4:00 p.m.

85102 100 Monday, December 18, 2017 1:00-4:00 p.m.

85211 100 Monday, December 18, 2017 8:30-11:30 a.m.

85213 100 Monday, December 11, 2017 1:00-4:00 p.m.

85219 100 Friday, December 15, 2017 8:30-11:30 a.m.

85241 100 Sunday, December 17, 2017 8:30-11:30 a.m.

85320 100 Tuesday, December 12, 2017 5:30-8:30 p.m.

85340 100 Tuesday, December 12, 2017 5:30-8:30 p.m.

85341 100 Sunday, December 17, 2017 8:30-11:30 a.m.

85370 100 Tuesday, December 12, 2017 8:30-11:30 a.m.

85390 100 Monday, December 18, 2017 1:00-4:00 p.m.

85408 100 Thursday, December 14, 2017 5:30-8:30 p.m.

85414 100 Monday, December 11, 2017 8:30-11:30 a.m.

85484 100 Tuesday, December 12, 2017 8:30-11:30 a.m.

85738 100 Monday, December 11, 2017 8:30-11:30 a.m.

85744 100 Monday, December 11, 2017 8:30-11:30 a.m.

85765 100 Thursday, December 14, 2017 8:30-11:30 a.m.

85770 100 Monday, December 11, 2017 1:00-4:00 p.m.

16161 100 Sunday, December 17, 2017 8:30-11:30 a.m.

16384 100 Thursday, December 14, 2017 8:30-11:30 a.m.

16456 100 Sunday, December 17, 2017 5:30-8:30 p.m.

16722 100 Thursday, December 14, 2017 5:30-8:30 p.m.

16811 100 Thursday, December 14, 2017 1:00-4:00 p.m.

16822 100 Tuesday, December 12, 2017 1:00-4:00 p.m.

88150 100 Friday, December 15, 2017 1:00-4:00 p.m.

88230 100 Tuesday, December 12, 2017 8:30-11:30 a.m.

88251 100 Friday, December 15, 2017 1:00-4:00 p.m.

 55

88302 100 Thursday, December 14, 2017 1:00-4:00 p.m.

88341 100 Friday, December 15, 2017 1:00-4:00 p.m.

88411 100 Sunday, December 17, 2017 8:30-11:30 a.m.

17651 100 Sunday, December 17, 2017 1:00-4:00 p.m.

36200 100 Monday, December 11, 2017 5:30-8:30 p.m.

36201 100 Monday, December 18, 2017 1:00-4:00 p.m.

36202 100 Sunday, December 17, 2017 1:00-4:00 p.m.

36208 100 Friday, December 15, 2017 5:30-8:30 p.m.

36217 100 Tuesday, December 12, 2017 5:30-8:30 p.m.

36220 100 Sunday, December 17, 2017 8:30-11:30 a.m.

36225 100 Friday, December 15, 2017 8:30-11:30 a.m.

36309 100 Thursday, December 14, 2017 8:30-11:30 a.m.

36461 100 Thursday, December 14, 2017 1:00-4:00 p.m.

36661 100 Tuesday, December 12, 2017 8:30-11:30 a.m.

36700 100 Thursday, December 14, 2017 8:30-11:30 a.m.

36705 100 Thursday, December 14, 2017 5:30-8:30 p.m.

36707 100 Friday, December 15, 2017 5:30-8:30 p.m.

36749 100 Monday, December 18, 2017 5:30-8:30 p.m.

