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Introduction/Motivation 

Each spring, the United States goes crazy over college basketball. The NCAA Division I 

Men’s Basketball Tournament, known as March Madness, sees to determine the best of the best 

of college basketball through three weeks of single-elimination games. Out of 134 total teams, 68 

are chosen to participate in March Madness through two steps. The first 32 teams are 

automatically a part of the tournament after winning their respective conference and the 

remaining 36 are chosen by a selection committee based on their performance that year. The 64 

teams are then split up into four regions and are ranked from 1-16. Typically, higher-ranked 

teams begin playing lower-ranked teams until upsets occur which make the tournament 

unpredictable. Each year, millions of people create their own bracket in an attempt to predict the 

result of each game. It should be noted that there is a 1 in 9.2 quintillion chance of creating the 

perfect bracket. 

 The selection committee currently uses the Rating Percentage Index (RPI) to aid the 

selection of the final 36 teams. RPI takes into account each team’s winning percentage, their 

opponents’ winning percentages, and their opponents’ opponents’ winning percentages. 

Although this gives an idea of how “good” a team is, it also emphasizes the importance of a good 

schedule.  Even with RPI, the committee relies a great deal on human reasoning, which is 

convoluted with biases and self-interest. One major source of this bias lies in the idea that the 

NCAA makes roughly 85% of their revenue from March Madness, so it is to the committee’s 

benefit to select interesting and exciting matchups that provide entertainment and thus generate 

revenue. In our project, we sought to replicate the seeding of the teams by creating a new rating 

system that rid the process of unfair judgements. We began by questioning whether there was a 

way to represent teams and even out the playing field by generating a better March Madness 
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bracket. This simple question led us to wonder whether we could extrapolate this to other sports 

teams and solve a major issue of college sport rankings in the United States.  

 

Concepts 

The PageRank algorithm was invented in 1996 by Larry Page and Sergey Brin, who would then 

go on to co-found Google. The goal was simple -- they wanted to be able to procedurally 

compute a well-defined ranking for a huge, incredibly interlaced span of web pages, but inferring 

value from page contents was a very difficult problem, both analytically speaking and in terms of 

result quality. The idea behind PageRank was to circumvent those difficulties by examining the 

connections between pages and glean the information from that -- which brings us to our project. 

Ranking basketball teams suffers from many of the same problems when trying to judge team-

specific qualities; there’s a lot of complex and frankly non-objective analysis that comes from 

examining a sport directly. By analyzing the network of head-to-head victories between teams, 

we believe we can gleam better information.  

 In both cases, the actual algorithm is deceptively simple. 

The first step is to reduce the network to a single directed graph (which we’ll represent with an 

adjacency matrix we’ll call A). In our case this boiled down to the head to head record of team i 
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vs team j being placed in Aij of the adjacency matrix (note that, naturally, all the diagonal entries 

would be 0). This stage is where any weighting methods we’re using to individual matches 

would be applied --  if for example instead of just counting wins we wanted to factor in the score 

of those wins, the weighting would be applied to that edge in the matrix. Next, you define a base 

vector v -- typically for some n teams, it would just be (1/n)1n, that is to say the n-length unit 

vector scaled down to sum to 1. However, if you did want to weight to prefer individual teams, 

this is where that would happen. 

 Finally, we reach the procedural part. Observe this example process: 

The first result is just A x v, the next result is just A left-multiplied by that, etc. You can continue 

this process indefinitely, and can attain convergence to within arbitrarily small bounds for the 

values. The end result gives a ranking for every team in the network, based on the size of the 

value in the corresponding row of the resulting vector. 

 It’s an incredibly elegant process, but what’s going on here? Conceptually, all the teams 

start on equal footing (with a normal base vector). With every iteration of the process, more 

“respect” is given to teams that win a lot as their weighting increases, but as those values get 

farther and farther from the baseline more and more weight is given for beating a team with real 



4 

credibility, whereas picking up easy games against comparative no-names fails to impress -- both 

of which are based in self-evident judgements. This is, in fact, the kind of analysis one hopes to 

get from a committee of sports analysts, to help sift through the dearth of pre-bracket data with 

many incongruities in schedule difficulties -- and what’s more, it’s done objectively and without 

delving into obtuse and inscrutable analysis with so many moving parts that any verification of 

statistical relevance would be hopeless. Indeed, after an examination of the process it seems an 

extremely natural way to approach the problem. 

 

Results 

 For this project we considered four separate variations of the PageRank algorithm to 

generate a numerated list of the teams. It is recognized that there are an extremely large amount 

of variations within college rankings right now due to factors including popular vote, conference 

setup, and human bias. Our list aims to rank the teams on a completely fair scale, disregarding all 

of these external factors. We believe the best data to rank teams should be based purely on 

scoring. Scores of games provide a factual, untainted indication of which team was better in the 

match. It is with this line of reasoning that our base case is a PageRank algorithm with an evenly 

distributed weight vector across teams. To achieve this we created a large matrix of all the teams 

then added a 1 in the space in which the column team beat the row team. These instances were 

then weighted by how many times the losing team lost in the season. Then using the equally 

distributed importance vector we computed the rank. This logic follows closely with a basic 

PageRank set up, for more insight refer to “Concepts” portion of this write up.  

To compare with our base case, we explored three different weighting techniques in the 

adjacency matrix. The first approach is very similar to the second approach, except that instead 
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of having a one where the column team beat the row team, we have the number of times the 

column team beat the row team. The second weighting method is the difference in points 

between the winning column team and the losing column team of their most recent head-to-head 

matching. The last weighting is similar to the second ranking, but instead of a difference in 

points, we report the ratio of points won by the column team to the points won by the losing row 

team. Taking into account the ratio allows a clearer understanding of which teams were stronger 

on the court and also controls for high scoring and low scoring games which the point difference 

metric does not.  

These methods produced results similar to the tournament seedings. Most of the top few 

seeds from all regions appear in the top 40 ranking; however, there are some schools, like 

Gonzaga that we rank far below where they should be. They were a number one seed going into 

the tournament and finished second overall, and our ranking puts them at best 19th  (number of 

wins) and at worst 33rd (score difference). Below is a table of our results. The first column 

denotes the seed that the team in the second column entered the tournament with. There are four 

teams ranked with each number because there is one team from each region with each ranking. 

The last four columns are the results of the PageRank algorithm with four different weighting 

strategies in the initial adjacency matrix. The top twelve teams are colored to easily track how 

our results compare to the official ranking. Most of the top twelve teams are seated near where 

they would be in the final bracket. Because the metrics produce very similar results, we propose 

that the standard ranking is sufficient to keep the model simple.  

Table 1 

 Tournament Seeds  Standard Number of Wins Score Difference Score Ratio 

1 Villanova  Butler Butler North Carolina Butler 

1 Gonzaga  North Carolina Villanova West Virginia North Carolina 
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1 Kansas  Duke Duke Butler Duke 

1 North Carolina  Villanova Creighton Virginia West Virginia 

2 Duke  Kansas Kansas Duke Villanova 

2 Arizona  Florida St Marquette Baylor Kansas 

2 Louisville  Marquette North Carolina Villanova Virginia 

2 Kentucky  West Virginia West Virginia Louisville Baylor 

3 Baylor  Louisville Iowa St Florida St Louisville 

3 Florida St  Baylor Florida St Miami FL Florida St 

3 Oregon  Iowa St Michigan Creighton Marquette 

3 UCLA  Notre Dame BYU Iowa St Iowa St 

4 Florida  Virginia Seton Hall Michigan Notre Dame 

4 West Virginia  Seton Hall Louisville Georgia Tech Wisconsin 

4 Purdue  Wisconsin Baylor Wisconsin Michigan 

4 Butler  UCLA Providence Georgetown Seton Hall 

5 Virginia  Minnesota Notre Dame Oklahoma St Creighton 

5 Notre Dame  Providence Virginia Florida Providence 

5 Iowa St  Creighton Gonzaga Kansas Miami FL 

5 Minnesota  Michigan Wisconsin Notre Dame BYU 

6 SMU  BYU Arizona Marquette Minnesota 

6 Maryland  Oregon UCLA BYU UCLA 

6 Creighton  Miami FL Xavier Kentucky Georgetown 

6 Cincinnati  Xavier Georgetown Oregon Oregon 

7 South Carolina  Indiana Oregon Syracuse Indiana 

7 St Mary's CA  Georgetown Minnesota Providence Xavier 

7 Michigan  Arizona Purdue Kansas St Arizona 

7 Dayton  Maryland Indiana Indiana Purdue 

8 Wisconsin  Purdue Maryland Purdue Gonzaga 

8 Northwestern  Gonzaga St John's Xavier Georgia Tech 

8 Miami FL  Iowa Miami FL Iowa Iowa 
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8 Arkansas  Syracuse Michigan St Seton Hall Syracuse 

9 Virginia Tech  Virginia Tech Virginia Tech Gonzaga Maryland 

9 Vanderbilt  Georgia Tech Iowa Virginia Tech Kentucky 

9 Michigan St  St John's Syracuse Minnesota Virginia Tech 

9 Seton Hall  Michigan St Kentucky Pittsburgh Michigan St 

10 Marquette  Kentucky Kansas St Arizona St John's 

10 VA Commonwealth  Pittsburgh Northwestern UCLA Kansas St 

10 Oklahoma St  Northwestern TCU Michigan St Northwestern 

10 Wichita St  USC Illinois St John's Pittsburgh 

11 Providence  Kansas St Georgia Tech Wake Forest Florida 

11 Xavier  TCU Pittsburgh Vanderbilt TCU 

11 Rhode Island  Florida USC Northwestern USC 

11 Kansas St  Ohio St Florida Oklahoma Oklahoma St 

12 USC  Texas Tech Oklahoma St South Carolina Texas Tech 

12 Princeton  Oklahoma St Ohio St TCU Ohio St 

12 Nevada  Wake Forest Cincinnati Illinois Illinois 

12 Wake Forest  Illinois SMU USC Wake Forest 

13 UNC Wilmington  Penn St Vanderbilt SMU Cincinnati 

13 Bucknell  Cincinnati Penn St Texas Tech Penn St 

13 Vermont  Nebraska St Mary's CA Maryland Vanderbilt 

13 MTSU  Vanderbilt Wake Forest Tennessee Nebraska 

14 ETSU  SMU Texas Tech St Mary's CA SMU 

14 FL Gulf Coast  South Carolina Nebraska Temple South Carolina 

14 Iona  NC State South Carolina Ohio St Oklahoma 

14 Winthrop  Tennessee NC State NC State Tennessee 

15 New Mexico St  Oklahoma Temple Colorado NC State 

15 North Dakota  Temple Indiana St Clemson Temple 

15 Jacksonville St  Colorado Tennessee Cincinnati Colorado 

15 Kent  Clemson Clemson Utah Clemson 
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16 Troy  Arkansas Oklahoma Penn St Texas 

16 S Dakota St  Texas Colorado Arkansas Arkansas 

16 NC Central  Indiana St Arkansas UT Arlington St Mary's CA 

16 N Kentucky  UCF Texas Stanford Indiana St 

17 Mt St Mary's  Rhode Island Rhode Island Georgia UCF 

17 UC Davis  St Mary's CA UCF Boston College Utah 

17 TX Southern  California VA Commonwealth Texas Rhode Island 

18 New Orleans  Georgia Dayton Memphis UT Arlington 

 

Assumptions and Possible Errors 

 As with any manipulation and conversion of data, there are several assumptions and 

limitations to the findings presented in this write up. It should first be recognized that this 

approach deals strictly with the numerical side of a sport. It does not account for player injury, 

coaching changes, or unforeseen events that may occur in the world of athletics. On top of this, it 

is limited in its ability to generate a ranking that could be used to establish a predictable March 

Madness bracket. In the real-life tournament, teams receive spots based on winning their 

conference, the type of school they come from, and decisions from the conference committee. 

With this in mind, it is nearly impossible that our final ranking will align perfectly with the 68 

teams chosen to compete in March Madness. The last assumption made during this experiment 

was that the four deviations to look at the data were the best possible approaches. 

 If this analysis was run again, there are several steps that can be taken to mitigate the 

possible errors within our findings. The first approach should be to look at other ways to weight 

the matrix in the PageRank algorithm. Differentiation like team popularity, the scoring history 

over the past 10 years, and funding received by the school may be underlying factors that 

indicate a higher likelihood of winning March Madness. We could also apply more weight to 
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recent games to account for improvements over the course of a season. If we wished to focus 

solely on how the teams chosen for March Madness performed, we could do more research on 

how easy/difficult schedules during the tournament can factor into our algorithm. With more 

time, a cleaner, slightly better picture could be built of the college rankings.  

 

Extensions 

One aspect of March Madness that we do not account for in our algorithm that creates a 

discrepancy in our results versus the final bracket is that conference winners get an automatic 

spot in the bracket. Our algorithm simply ranks teams 1-68 regardless of conference. Although 

this causes us to select different teams, we propose that the teams we select represent the best 68 

teams in the NCAA. Through the current selection process, there have been teams that are 

selected for the bracket who have won only about half of their games, while the teams selected 

for an at large bid may have lost only five of their 25 games in a season. Conference champions 

also may not be the best team in their conference. They only have to win the conference 

tournament, and their regular season record is not considered. Our algorithm could take into 

consideration the teams’ regular season and postseason records to create a better ranking of all 

teams in Division I NCAA basketball. Despite the flaw that the true top 68 teams are not 

represented in the tournament, there may be merit to including these teams such as having a 

diverse range of teams compete and to give smaller teams the opportunity to play. If we wanted 

to include these teams in our bracket, we run our algorithm the same way, and we would simply 

select these teams first, and go down our ranking list and add the top 32 teams that were not 

already selected for the at-large bids.  
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Another way would be to take a more statistical approach.  We could gather more data 

about the teams from past years to create a model of what a winning team looks like. We could 

look at variables that are currently in our model like number of wins and score difference and 

also add statistics about the players and teams like rebounds, field goals, free throw percentage, 

injuries, points per game, fouls per game, and difficulty of scheduled games. We could look at 

the number of top players leaving the team and the recruiting rank for the people coming onto 

the team. We could use these variables to create a power index where teams with a higher index 

have a higher ranking. The model would output the power index, and we would rank the teams 

according to their power index. We would use previous years results to test the model against 

official rankings to create an optimal power index rating.  

 

Conclusion 

College sports are one of the most lucrative enterprises in American industry. Raking in 

about a billion dollars every year, the NCAA provides entertainment to millions of viewers as 

well as a college education and athletic experience to over 450,000 athletes. It is with the large 

impact on society and the weight it carries in social culture that there exists a prominent need for 

NCAA to rank and represent teams fairly. With the PageRank algorithm, one can generate an 

unbiased list of college teams based on their scoring and past history. Although not a holistic 

view of the players, this concept provides a numerical based summary that is free of human error 

to a degree. By incorporating this approach into college sports across the nation the NCAA can 

provide an even playing field for all athletes.  


