
E - 2011

Carnegie Mellon University
21-393 Operations Research II
December 21st, 2011

Dormitory Assignment Optimization

Shrui Hu

Adeline Li

Chang Qi

Kenneth Wong

1

E - 2011

Abstract

This paper describes our final project for the Operations Research II Course in Carnegie Mellon

University, we decided to investigate the topic of ”dormitory assignments”. All the data we have are from

the Housing and Dining Services for freshman dormitory assignments for Fall 2011. The final results from

this research was that our proposed assignment algorithm was better than the current one.

We would love to thank professor Alan Frieze for his feedback, and the Housing and Dining Services

for the support in providing us with the data.

2

E - 2011

Introduction

Each year, the housing office faces the problem of assigning every incoming freshman to a dormitory

room. With over 1,500 freshmen to allocate and possibly insufficient number of rooms, Housing and Dining

Services tries to satisfy every students requests as much as possible. However, along with the growing

student body each year and the many external preferential factors influencing the decisions of each student,

the assignment process becomes much more difficult.

Because all incoming freshmen are required to live on campus, the Housing and Dining Services

must assign all the freshmen to a specific dorm. To make the experience more enjoyable, the freshmen are

asked to list out personal preferences and Housing and Dining Services tries to allocate each freshmen to a

dorm while satisfying as many students preferences as possible.

Problem

This is where our research project comes in. Our research aims to use the techniques we learned in

class to find the best possible student-dorm assignments such that the combined satisfaction of all students

is maximized. By solving this problem, we hope to maximize the number of students obtaining a room of

their choice and achieve a more efficient algorithm for this process.

The maximization of total student satisfaction is important because it could impact overall mood

on campus. A student satisfied with their dorm assignment would probably be more likely to start their day

off with a better mood and outlook. Another crucial role dorm satisfaction takes is that it can determine

the number of students who choose to stay with on-campus housing the next year. Since a part of Carnegie

Mellons revenue comes from dormitory fees, maximizing students satisfaction can possibly maximize CMUs

revenue from dorms.

Current Method

Before the start of a new school year, every incoming freshman is asked to fill out an online application

asking them to list their top choices for dorm preferences. The Housing and Dining Services at Carnegie

Mellon University also asks other for other personal preferences such as specific roommate requests, dorm

gender, noise level, interests, and sleeping habits. After all the information is submitted, hard copies of each

application are printed out and then organized by gender, school and major, and by deposit submission

3

E - 2011

date. Applications are then looked at and considered in the order that the deposit was received. Students

who submitted their deposits earlier are more likely to have all their preferences satisfied. An exception to

this roommate requests, which is held in highest priority after deposit date. If Student A and Student B

requested to be roommates, and Student A submits her deposit early but Student B submits her deposit

later Student B will still be considered at the same time as Student A because they requested each other as

roommates. Though Student A and B may not get their desired room, they are guaranteed a room together.

This process continues until every student is assigned a dorm.

According to the data provided by the Housing and Dining Service, each enrolled freshman is asked

to submit their dorm preference form. They need to provide their top 5 dorms in order as well as to rank

the five room types. (Single, Double, Triple, Quad and Apartment) Each form is separated by gender and

then ordered by deposit date. The person who paid reservation deposit earlier will be in a higher order.

Proposed Method

In order to improve the method for the current assignment, we implement an optimization algorithm

to try and improve the satisfaction of the whole freshmen population.

The algorithm we implemented to our assignment problem is the Hungarian algorithm. We had

picked this because unlike the current method, it is not greedy and can give us a globally optimal solution.

The following is how the algorithm works:

1. Arrange your information in a matrix such that your variables are the along the top and the left side

of the matrix and each element is the cost for each pair of variables

2. Check to see if your matrix is a square matrix. If it isnt, then add dummy rows and columns such that

each dummy row/column is the same as the largest number in the matrix.

3. Find the smallest value of each row and subtract that value from every element in that row. This

reduces the rows of the matrix.

4. Reduce the columns by finding the smallest element of each column and subtracting that value from

every element in that row.

5. Draw the smallest number of horizontal and vertical lines so that the zero elements are crossed out. If

the number of lines is equal to the number of rows, go directly to step 9.

4

E - 2011

6. Find the smallest element that isnt crossed out and add that value to every element that is covered.

Add the value twice if the element is crossed out twice.

7. Find the smallest element in the matrix and subtract it to every element.

8. Cross out the zeroes with the minimum number of lines again and if the number of lines isnt equal to

the number of rows, go back to step 6.

9. Choose a set of zeroes such that each row and column has only one zero selected.

10. Comparing to the original matrix, find the values corresponding to the positions of the zeroes you

selected in Step 9 (disregarding dummy rows and columns). These values summed should give the

total minimum cost.

Assumptions

In order to do this project, we have made several assumptions:

1. There are enough rooms to house every incoming freshman (after all upperclassmen had received their

assignments).

2. Every student is treated equally. This means that no student will have special advantages over another

(with the exception of deposit submission date) in terms of satisfaction with his or her dorm assignment

Constraints

We will have a set of hard constraints and a set of soft ones. Hard constraints are ones that

should never be broken. For example, each student sleeps on exactly one bed, the number of students

assigned to a room must equal the total number of beds in that room, and that all available spaces are used.

Soft constraints, on the other hand, are constraints that are allowed to be broken only out of necessity. For

example, soft constraints could be preferential factors such as proximity to campus, co-ed living environment,

room facilities, and prices.

5

E - 2011

Cost Allocation

Our cost assignment works as follows:

Room Type Assignments

1st Choice +0 Cost

2nd Choice +5 Cost

3rd Choice +10 Cost

4th Choice +15 Cost

5th Choice +20 Cost

Dormitory Assignments Cost

1st Choice +0 Cost

2nd Choice +1 Cost

3rd Choice +2 Cost

4th Choice +3 Cost

5th Choice +4 Cost

No Choices Met +25 Cost

Other Cost Assignments Cost

Male Assigned to Female Only Dorms +M Cost

Female Assigned to Male Only Dorms +M Cost

Using this assignment function, we pair the m students with the n dorm room choices, getting

assignment matrix of dimensions m by n. The vertical axis will be the students, while the horizontal axis

will be the dorm rooms. So there will be a cost for each combination of assigning each of student j to

each of dorm room i. In this context, the cost actually means how unsatisfied a student would be with this

assignment, so while we are trying to maximize the satisfaction of all students, we are also trying to minimize

the dissatisfaction of each student.

6

E - 2011

Dormitory Assignment

Given that we have so much data, it is impossible to do this by hand. We used a matlab code that

reproduces the Hungarian algorithm to do the assignment for us. However, for demonstration purposes, we

did an example with a random sample of 10 students and 10 dorm rooms below.

Notice we may have the possibility of assigning a make and female together, for example. If a group

of rooms consists of 5 doubles, say there were 5 males and 5 females assigned to this group of rooms, one

room would house a male and female. We would have to remedy this after the assignment, it would make

the assignment less optimal, but the problem would be fixed. We could not have prevented this problem

from the beginning, since we would not the proportion of males and females assigned to each dorm room,

and altering the assignment would make it greedy and defeat the purpose of optimizing the whole freshman

population.

Demonstration

Lets choose students from the real data and see if our method is working well. We Choose the first

ten students from the data. Now suppose the rooms we have include a Donner Double, a Hamerschlag Single,

a Mudge Triple, an E-Tower Double, a Stever Single and a Donner Single. The data for these 10 students

are shown below:

7

E - 2011

We still use the greedy method first to solve the problem. Just as what we did in the previous

example, we will assign student 1 to Donner Double, 2 to E-Tower Double, 3 to Donner Double, 4 to E-

Tower Double, 5 to Mudge Triple, 6 to Stever Single, 7 to Mudge Triple, 8 to Mudge Triple, 9 to Donner

Single and 10 to Hamerschlag Single. The result is shown below.

The total cost for this method is calculated to be 88. Then we apply our method to this problem.

The assignment problem matrix will be:

Entry (m,n) means the cost or how unsatisfied the student m will feel if we assign him into bed n.

In this matrix we see some Ms because girls cannot be assigned to Hamerschlag. Since this is a 10 by 10

matrix. Its really hard to solve it by hand. So we use a MATLAB code of Hungarian Method uploaded

online for free to solve it. (The code is provided in the reference page) The assignment result to put student

8

E - 2011

1 to Hamerschlag Single, 2 to E-Tower Double, 3 to Mudge Triple, 4 to Donner Double, 5 to Stever Single,

6 to Donner Single, 7 to E-Tower Double, 8 to Mudge Triple, 9 to Mudge Triple and 10 to Donner Double.

Then we check the gender and find that student 2 (female) and student 7 (male) are in the same room.

Student 4 (female) and student 10 (male) are also in the same double room. So we need to switch two of the

four people. If we switch student 2 to Donner Double, 25 will be added to the cost. If we switch student 4

to E-Tower Double, 3 will be added to the cost. Similarly, if we switch student 7 to Donner or student 10 to

E-Tower, 3 or -2 will be added. So we decide to switch student 4 and student 7 to make the cost smallest.

The final result is shown below:

The total cost then is calculated to be 43 which is about half of the cost of the current method.

This example shows that with more data, our method works even better by successfully decreasing the cost.

Results

From our online survey, the estimated current freshman dorm satisfaction level is 82%. In another

word, out of the 130 CMU students who completed the survey, 106 of them are generally satisfied with their

freshman dorm. This high current satisfaction level was unexpected , and leaves us with very little space for

improvements.

Comparison

Our new system has several advantages compare to the current system. First of all, from our test

run results, we know that more freshman will be satisfied with their dorms using our proposed dorm selection

process. For both cases considering and not considering gender, our method significantly lowered the cost,

ie level of satisfaction, by nearly half. Second, the algorithm we used is not a greedy algorithm, which

9

E - 2011

eliminates the possibility that the optimal solution is only a locally optimal solution that approximates a

global optimal solution. Also, it is easier to implement new variables in our algorithm. To do so, we simply

add a variable to our cost assignment function and solve for the optimal solution under the new function.

Moreover, with simple explanation, our algorithm could be understood by people with little Operations

Research background. This would allow upcoming freshman to have a basic understanding of the essences

of the room assignment process. On the other hand, there are also disadvantages of our algorithm. First,

since we do not take into account of the order of payment, it might be unfair to those who paid first. In the

current system, the first person to make the tuition deposit has the highest priority in the room assignment

process, and so on, which we think is reasonable. However, it was problematic to include this factor in

our algorithm, so we left it to future discussion. Second, there is a trade-off between student satisfaction

and algorithm efficiency. Although our process significantly increase student satisfaction, it also increases

run time to O(n3). Also, since we need to gather all the data before we start running our algorithm, it is

impossible for us to adopt a rolling process, which means that there will be a long lead time and students

will have to wait for longer. Lastly, unlike the current process, our algorithm does not guarantee required

roommates. This would be something to work on in future expansions.

Expansion

There are some future expansions that we have in mind. We were not able to integrate these

expansions into our algorithm due to time and knowledge constraints, and given the chance we would like

to include these expansions in our project. First of all, some of the data in the current system were not

provided to us by the Housing office for confidentiality purposes, such as quiet floor requests and dorm

distance preferences of students. These could potentially be very important factors to students overall

satisfaction level of dorms. For example, being on the quiet floor might be very important to some students,

therefor not considering quiet floor requests might lead to potential high cost, or satisfaction level. We

would also like to add in roommate requests to our algorithm. On the other hand, there are some factors no

included the current system that we consider to be crucial. For example, some students might prefer dorms

with dinning. Also, being close to certain facilities could affect students preference for dorms as well. We

could add in these factors by adding new variables in cost assignment function. However, since some of these

factors are not conventional factors, some modification might be required.

10

E - 2011

Future Application

Dorm assignment problem could have a wide range of applications. Some similar problems could be

solved by directly applying our algorithm. Some examples of such type of problems are assigning professors

to classes problem, assigning cars to parking spaces problem, and assigning students to project problems.

By replacing our cost variables with new relevant cost variables, these problems could be solved using our

process. There are also some assignment problems that could be solved with a modified version of our

algorithm. One example would be the product pricing problem. Retailers might want to sell products at

different prices to different group of consumers (membership) or in different countries depending on their

buying powers. In this case, we can not directly apply our algorithm because we are not simply assigning a

set of prices to a set of consumers. Instead, we need to include in our algorithm a function that determines

the prices first given the cost variables and then assign these prices to the appropriate countries. Some other

problems that could be potentially solved or estimated by a modified version of our algorithm are

• Dorm Mate Assignment problem (different from roommate requests factor)

• Assignment problems involving time

• Minimizing Transport Distance problem

Conclusion

In conclusion, from test results and process analysis, we believe that our algorithm is a improved

version of room assignment process. We greatly improved student satisfaction level using our algorithm.

However, given the high current satisfaction level, there is only limited spaces for further improvement.

Given a chance, we would like to improve our algorithm even more by adding more relevant cost variables.

Also, even our process is an improved version of current process, depends on the cost for implementation if

might not be worth it to change the current system given the high current satisfaction level.

11

E - 2011

Appendix

References

Matlab Code for the Hungarian Method:

http://www.mathworks.com/matlabcentral/fileexchange/11609

A Summary of the Hungarian Method

http://canmedia.mcgrawhill.ca/college/olcsupport/stevenson/om3ce/IOM_applets/hungarian

Method/Hungarian.htm

12

E - 2011

Code

function [Matching,Cost] = Hungarian(Perf)

%

% [MATCHING,COST] = Hungarian_New(WEIGHTS)

%

% A function for finding a minimum edge weight matching given a MxN Edge

% weight matrix WEIGHTS using the Hungarian Algorithm.

%

% An edge weight of Inf indicates that the pair of vertices given by its

% position have no adjacent edge.

%

% MATCHING return a MxN matrix with ones in the place of the matchings and

% zeros elsewhere.

%

% COST returns the cost of the minimum matching

% Written by: Alex Melin 30 June 2006

% Initialize Variables

Matching = zeros(size(Perf));

% Condense the Performance Matrix by removing any unconnected vertices to

% increase the speed of the algorithm

% Find the number in each column that are connected

num_y = sum(~isinf(Perf),1);

% Find the number in each row that are connected

num_x = sum(~isinf(Perf),2);

% Find the columns(vertices) and rows(vertices) that are isolated

13

E - 2011

x_con = find(num_x~=0);

y_con = find(num_y~=0);

% Assemble Condensed Performance Matrix

P_size = max(length(x_con),length(y_con));

P_cond = zeros(P_size);

P_cond(1:length(x_con),1:length(y_con)) = Perf(x_con,y_con);

if isempty(P_cond)

Cost = 0;

return

end

% Ensure that a perfect matching exists

% Calculate a form of the Edge Matrix

Edge = P_cond;

Edge(P_cond~=Inf) = 0;

% Find the deficiency(CNUM) in the Edge Matrix

cnum = min_line_cover(Edge);

% Project additional vertices and edges so that a perfect matching

% exists

Pmax = max(max(P_cond(P_cond~=Inf)));

P_size = length(P_cond)+cnum;

P_cond = ones(P_size)*Pmax;

P_cond(1:length(x_con),1:length(y_con)) = Perf(x_con,y_con);

%***

% MAIN PROGRAM: CONTROLS WHICH STEP IS EXECUTED

%***

exit_flag = 1;

stepnum = 1;

while exit_flag

switch stepnum

14

E - 2011

case 1

[P_cond,stepnum] = step1(P_cond);

case 2

[r_cov,c_cov,M,stepnum] = step2(P_cond);

case 3

[c_cov,stepnum] = step3(M,P_size);

case 4

[M,r_cov,c_cov,Z_r,Z_c,stepnum] = step4(P_cond,r_cov,c_cov,M);

case 5

[M,r_cov,c_cov,stepnum] = step5(M,Z_r,Z_c,r_cov,c_cov);

case 6

[P_cond,stepnum] = step6(P_cond,r_cov,c_cov);

case 7

exit_flag = 0;

end

end

% Remove all the virtual satellites and targets and uncondense the

% Matching to the size of the original performance matrix.

Matching(x_con,y_con) = M(1:length(x_con),1:length(y_con));

Cost = sum(sum(Perf(Matching==1)));

%%%

% STEP 1: Find the smallest number of zeros in each row

% and subtract that minimum from its row

%%%

function [P_cond,stepnum] = step1(P_cond)

P_size = length(P_cond);

% Loop throught each row

for ii = 1:P_size

15

E - 2011

rmin = min(P_cond(ii,:));

P_cond(ii,:) = P_cond(ii,:)-rmin;

end

stepnum = 2;

%**

% STEP 2: Find a zero in P_cond. If there are no starred zeros in its

% column or row start the zero. Repeat for each zero

%**

function [r_cov,c_cov,M,stepnum] = step2(P_cond)

% Define variables

P_size = length(P_cond);

r_cov = zeros(P_size,1); % A vector that shows if a row is covered

c_cov = zeros(P_size,1); % A vector that shows if a column is covered

M = zeros(P_size); % A mask that shows if a position is starred or primed

for ii = 1:P_size

for jj = 1:P_size

if P_cond(ii,jj) == 0 && r_cov(ii) == 0 && c_cov(jj) == 0

M(ii,jj) = 1;

r_cov(ii) = 1;

c_cov(jj) = 1;

end

end

end

% Re-initialize the cover vectors

r_cov = zeros(P_size,1); % A vector that shows if a row is covered

c_cov = zeros(P_size,1); % A vector that shows if a column is covered

stepnum = 3;

16

E - 2011

%**

% STEP 3: Cover each column with a starred zero. If all the columns are

% covered then the matching is maximum

%**

function [c_cov,stepnum] = step3(M,P_size)

c_cov = sum(M,1);

if sum(c_cov) == P_size

stepnum = 7;

else

stepnum = 4;

end

%**

% STEP 4: Find a noncovered zero and prime it. If there is no starred

% zero in the row containing this primed zero, Go to Step 5.

% Otherwise, cover this row and uncover the column containing

% the starred zero. Continue in this manner until there are no

% uncovered zeros left. Save the smallest uncovered value and

% Go to Step 6.

%**

function [M,r_cov,c_cov,Z_r,Z_c,stepnum] = step4(P_cond,r_cov,c_cov,M)

P_size = length(P_cond);

zflag = 1;

while zflag

% Find the first uncovered zero

row = 0; col = 0; exit_flag = 1;

ii = 1; jj = 1;

while exit_flag

17

E - 2011

if P_cond(ii,jj) == 0 && r_cov(ii) == 0 && c_cov(jj) == 0

row = ii;

col = jj;

exit_flag = 0;

end

jj = jj + 1;

if jj > P_size; jj = 1; ii = ii+1; end

if ii > P_size; exit_flag = 0; end

end

% If there are no uncovered zeros go to step 6

if row == 0

stepnum = 6;

zflag = 0;

Z_r = 0;

Z_c = 0;

else

% Prime the uncovered zero

M(row,col) = 2;

% If there is a starred zero in that row

% Cover the row and uncover the column containing the zero

if sum(find(M(row,:)==1)) ~= 0

r_cov(row) = 1;

zcol = find(M(row,:)==1);

c_cov(zcol) = 0;

else

stepnum = 5;

zflag = 0;

Z_r = row;

Z_c = col;

end

end

end

18

E - 2011

%**

% STEP 5: Construct a series of alternating primed and starred zeros as

% follows. Let Z0 represent the uncovered primed zero found in Step 4.

% Let Z1 denote the starred zero in the column of Z0 (if any).

% Let Z2 denote the primed zero in the row of Z1 (there will always

% be one). Continue until the series terminates at a primed zero

% that has no starred zero in its column. Unstar each starred

% zero of the series, star each primed zero of the series, erase

% all primes and uncover every line in the matrix. Return to Step 3.

%**

function [M,r_cov,c_cov,stepnum] = step5(M,Z_r,Z_c,r_cov,c_cov)

zflag = 1;

ii = 1;

while zflag

% Find the index number of the starred zero in the column

rindex = find(M(:,Z_c(ii))==1);

if rindex > 0

% Save the starred zero

ii = ii+1;

% Save the row of the starred zero

Z_r(ii,1) = rindex;

% The column of the starred zero is the same as the column of the

% primed zero

Z_c(ii,1) = Z_c(ii-1);

else

zflag = 0;

end

% Continue if there is a starred zero in the column of the primed zero

if zflag == 1;

19

E - 2011

% Find the column of the primed zero in the last starred zeros row

cindex = find(M(Z_r(ii),:)==2);

ii = ii+1;

Z_r(ii,1) = Z_r(ii-1);

Z_c(ii,1) = cindex;

end

end

% UNSTAR all the starred zeros in the path and STAR all primed zeros

for ii = 1:length(Z_r)

if M(Z_r(ii),Z_c(ii)) == 1

M(Z_r(ii),Z_c(ii)) = 0;

else

M(Z_r(ii),Z_c(ii)) = 1;

end

end

% Clear the covers

r_cov = r_cov.*0;

c_cov = c_cov.*0;

% Remove all the primes

M(M==2) = 0;

stepnum = 3;

% ***

% STEP 6: Add the minimum uncovered value to every element of each covered

% row, and subtract it from every element of each uncovered column.

% Return to Step 4 without altering any stars, primes, or covered lines.

%**

function [P_cond,stepnum] = step6(P_cond,r_cov,c_cov)

20

E - 2011

a = find(r_cov == 0);

b = find(c_cov == 0);

minval = min(min(P_cond(a,b)));

P_cond(find(r_cov == 1),:) = P_cond(find(r_cov == 1),:) + minval;

P_cond(:,find(c_cov == 0)) = P_cond(:,find(c_cov == 0)) - minval;

stepnum = 4;

function cnum = min_line_cover(Edge)

% Step 2

[r_cov,c_cov,M,stepnum] = step2(Edge);

% Step 3

[c_cov,stepnum] = step3(M,length(Edge));

% Step 4

[M,r_cov,c_cov,Z_r,Z_c,stepnum] = step4(Edge,r_cov,c_cov,M);

% Calculate the deficiency

cnum = length(Edge)-sum(r_cov)-sum(c_cov);

21

