
Getting Around: Optimizing Paths Taken Across Campus With Respect to Distance and
Weather

21-393 Final Project, Fall 2014
Haozhe Gao
David Wu

Benjamin Zhang

1

Contents

1 Introduction 3
1.1 Problem Description . 3
1.2 Methodology . 3
1.3 Assumptions . 3

2 Data and Analysis 4
2.1 Results . 4
2.2 Single Source Shortest Path . 4
2.3 Different Edge Weights . 4

3 Further Development 5
3.1 Web/Phone app . 5
3.2 Integration with Google Maps . 5
3.3 Desired stops . 6

4 Conclusion 6

5 Appendix 6
5.1 Code . 6
5.2 Graph 1 . 8
5.3 Graph 2 . 8
5.4 Graph 3 . 9
5.5 Table 1 . 9
5.6 Table 2 . 9
5.7 Table 3 . 10

2

1 Introduction

1.1 Problem Description

Consider the shortest path between two locations. If the world was just a plane, and you
can travel uninhibited through walls and empty space, the shortest path between two points
would be obviously a line, from which you cannot get more optimal. However, in practice,
the problem of deducing the shortest path between two points usually involves taking a
roundabout path, since there is rarely a direct line between where you are and where you
would like to go. Thus, to find this shortest path, we have to do more than connect two
dots in a three dimensional plane. Furthermore, the above model does not account for other
factors besides distance traveled. To this end, and to be able to express a realistic shortest-
path model, we turn to graphs. In the formal sense, a graph G = (V,E), where V is the
set of vertices, and E ⊆ V × V , as well as a weight function w : E → R+. For Carnegie
Mellons campus, what are the optimal paths to take between buildings to get to classes
to minimize time spent travelling, as well as avoiding unpleasant paths, such as those that
demands climbing a lot of stairs or spend a lot of time outside? To tackle this problem, we
utilized a graph representation of places on campus, and leveraged algorithms that solved
the shortest-path family of problems in a weighted undirected graphs.

1.2 Methodology

The first step in using these graph algorithm was to construct a graph, and to do that,
we collected data about actual walking times on campus. We decided to use main campus
locations as the nodes of our graph, and their respective possible paths as the edges of our
graph. To proxy for actual distance, we used time traveled to measure the distance between
locations. To collect data for our graph, we walked around the various well traversed campus
locations that we selected, recording our times of travel. In doing so we made a number of
assumptions about the data, such as assuming that we maintained a consistent pace. We
made repeated routes, and took the average of the travel times, in order to keep our sample
from being biased by a fast walker or a slow stair climber.

The edge data was then plugged into a computer, with a custom python script 1 that
utilized a 3rd party library to produce a visualization of the results.2.

1.3 Assumptions

There are many assumptions that we make in the performance and analysis of our project.
First, we assume that travel time between two points is constant, regardless of which one is
the source and which one is the destination. For the majority of segments of travel, this is
approximately true, but for some places, like stairs, it is not. We have made this assump-
tion in order to cut down on the number of nodes on the graph; Instead of representing the
entrance and exit to the stairwells as nodes on the graph, this abstraction trades complexity
in the nodes for a slight decrease in accuracy.

Secondly, we also assume that congestion is never an issue. In wide open spaces, such
as the path from the UC to the Randy Pausch Bridge, this is not a problem, and a good
assumption to make; in narrow spaces, such as most staircases, or in places where multiple
people share the same resource, such as the elevators, this assumption starts to deviate from
the true result. This can be accounted for in a variety to ways. We can take measurements
over the course of a day, in order to figure out the expected time that an edge will take,

1see Appendix-Code
2Installation direction, API, and sample code can be found at https://code.google.com/p/python-graph/

3

or we can adjust the model dynamically throughout the day, in accordance to the average
travel duration for that specific temporal segment. This issue also is apparent, upon further
directions outlined in the Further Development section. Steps to alleviate this discrepancy,
however, is included in the details of each subsection under Further Development.

2 Data and Analysis

2.1 Results

We collected raw results 3, and then used the a variant of code 4 to generate the visual
in 5. Due to the graphing visualization library used, the length of the edges is, in no way,
associated with the cartesian distance between two points. Rather, the time it took to walk
between two points, as well as if the segment was inside or outside, are displayed on the
labels for each edge. One can see, upon inspection of the graph, that the does not exist any
nodes that connects two points far apart; for instance, travel time between Hamerschlag and
Doherty is split up into two parts, one from Hamerschlag to Wean, and then from Wean to
Doherty. This is due to the fact that there are some source and destination pairs in campus,
such that all paths has to go through some other location of interest. For example, travel
between Baker Hall and Posner Hall’s Hunt exit, will naturally pass by Hunt Library. Thus,
these routes are represented not by a single edge in the map, but a path. Calculations can
then be done on the graph, using Dijkstra’s shortest path algorithm 6, in order to find the
shortest path between a pair of nodes on the graph.

2.2 Single Source Shortest Path

We also were interested in building a shortest-path tree (SPT), rooted at a given node. This
an useful representation of information, since the tree can represent efficiently the shortest
path from the root node to any node - just follow the path in the SPT from the root to
the node you want, and then nodes in the path will be nodes that you pass on the best
path. In this situation, we can actually improve the runtime of our algorithm by switching
to another shortest-path algorithm with a different idea, called the Bellman-Ford algorithm
7. This algorithm is based on a Dynamic-Programming-esque relaxation principle, unlike
Dijkstra’s. It runs in O(|V ||E|), as compared to Dijsktra’s O(|V |(|E|+ |V | log |V |)), which
is especially great for sparse graphs, such as the one we have in our campus graph, where
|E|inO(|V |). In dense graphs, where |E| ∈ O(|V |2), both algorithms run in O(|V ||E|). The
results of such a computation is found in the appendix 8

2.3 Different Edge Weights

The last analysis we did with the data was to change up the weight function associated with
each edge. As mentioned before, the weight function can be retooled to take into account
various characteristics of the path. In our methodology, we took a basic view on this, and
used a simple weight function to demonstrate how the optimal routes can change with the
new factors. With w : E → R+ as the old function, we used the function

w′(e) =

{
w(e) : e is inside
2w(e) : e is outside

3See Appendix-Table 1
4See Appendix-Code
5See Appendix-Graph 1
6http://en.wikipedia.org/wiki/Dijkstra%27s algorithm
7http://en.wikipedia.org/wiki/Bellman%E2%80%93Ford algorithm
8see Appendix-Table 2 and Appendix-Graph 2

4

We then redid the above calculation for the SPT using these new weights, which yielded
different results. 9

3 Further Development

3.1 Web/Phone app

This kind of shortest-path exploration could be useful as an informative mobile application.
This approach gives rise to interesting challenges and abilities that a research-then-release
methodology does not have. First and foremost, the question of how the application re-
sponds to multiple users, in the hundreds or thousands, all querying it at the same time,
would respond. Since the number of students on campus does not really match the through-
put seen by even one server by a popular web application, and assuming that people not
affiliated with the university does not use the application, we should be safe in this regard.

Another possible challenge is the notion that if our application directs everyone the same
way, we can be creating traffic jams in places that shouldn’t have any. This can slow down
travel time, which could make other routes more desirable. To combat this, our application
can incorporate a randomized factor in deciding how to position the multiple paths, in order
to maximize each user’s utility, or a social utility. In this aspect, we can leverage the idea
of a correlated equilibrium, which is something that we can calculate in poly-time with an
LP formulation, in order to ensure that everyone’s travel time is minimized, and that no
one would have anything to gain by walking along another path.

However, one exciting opportunity comes with the location tracking feature in most cell-
phones. By checking a user’s location periodically, the application can get a sense of how
fast the user is moving down a hallway, and with a multitude of data from the same hallway,
get a sense of how crowded it is. It can then dynamically reweigh the graph, so that further
calculations takes this delay into account. This way, as long as the first couple of people
has already been slowed down by a sudden change in travel time along a path (for instance
if a forklift is coming out of a hallway in wean), the application can dynamically adjust to
this detour, by getting a sense of how much it is slowing down walking times through the
congested path.

3.2 Integration with Google Maps

There are still other applications that we can look towards in studying optimal paths around
campus. Google Maps is one of the most widely used mapping services on the web, and it
is constantly monitored for updates and improvements. This program has many features; it
has the capability to provide satellite and street views, and also include a route planner that
tells you the available paths to your destination based on your method of transportation.
It also is a great locator for businesses and organizations, especially in decently sized cities.
Google Maps is also on the mobile store. We can use the tools Google Maps provides us to
give users a more dynamic experience.

One of the nice features of Google Maps is real time position tracking. In other words,
the program can calculate the path to a destination based on where you currently are. So, as
you move towards or away from your destination, the optimal path is constantly updated.
So this kind of feature is very useful for moving around campus, especially if you have
forgotten the times between buildings or just find yourself in an unfamiliar part of campus.
In the case that there are many users on the app at once, we can provide the real time
optimal path which is also based on how crowded the paths between buildings are at the
current time.

9see Appendix-Table 3, Appendix-Graph 3

5

3.3 Desired stops

To put a little more variety into the problem of optimal paths, we can add certain desirable
stops along the route to the destination. For example, if a student has a good amount of time
between classes, perhaps she/he can stop for a cup of coffee or grab some food beforehand.
So, this adds a new perspective on the problem and new variables. Different students have
different budgets or tastes, and so their stops will all be different. One of the advantages
that CMU has over other schools that makes this problem more interesting is that there is
no general dining hall; instead, there are many small locations for food or drink scattered
across campus. Furthermore, at different times of the day these locations can have large
lines. For example, there is always a long line at the food places in Gates Hillman Center
and Wean Hall around noon to early afternoon.

4 Conclusion

Dynamic programming algorithms are a very good way in finding the optimal paths across
campus. For our needs we can use Dijkstras algorithm and Bellman-Ford’s algorithm after
collecting simple data such as times and distances between buildings. To make our problem
more interesting we took into account how much being outside during the route effects
optimality. Since every person has different needs, the amount of stress placed on being
outside or not can be represented using weights on the paths in our graph. Lastly, there are
plenty of directions to further our project in, such as the development of a standalone travel
app, integration with Google Maps, or adding mandatory stop, that can bring additional
functionality, as well as challenges, to our project.

5 Appendix

5.1 Code

import sys

sys.path.append(’..’)

sys.path.append(’/usr/lib/graphviz/python/’)

sys.path.append(’/usr/lib64/graphviz/python/’)

from pygraph.classes.graph import graph

from pygraph.classes.digraph import digraph

from pygraph.algorithms.searching import breadth_first_search

from pygraph.readwrite.dot import write

from pygraph.algorithms.minmax import shortest_path_bellman_ford

Graph creation

gr = graph()

OUTSIDE = "outside"

INSIDE = "inside"

Add nodes and edges

def addEdge(gr, v1,v2, minutes,seconds,label):

gr.add_edge((v1,v2),

wt=minutes*60+seconds,

label ="%ss, %s"%(minutes*60+seconds, label))

6

edges= [("UC","Hunt",3,42,OUTSIDE)

,("Hunt","Wean",3,43, OUTSIDE)

,("Wean","Doherty",2,57, INSIDE)

,("UC","Doherty",2,34, OUTSIDE)

,("UC", "Gates",2,47, OUTSIDE)

,("Gates", "Wean",6-3,17+60-47, INSIDE)

,("Wean","Hamerschlag", 1,10, OUTSIDE)

,("Hamerschlag","Porter", 0,50,OUTSIDE)

,("Porter","Baker",2,35,INSIDE)

,("Baker","Hunt", 0,35,OUTSIDE)

,("Tepper\n(Margaret Morrison side)","Hunt", 2,48,OUTSIDE)

,("Tepper\n(Margaret Morrison side)","UC", 3,12,OUTSIDE)

,("Tepper\n(Margaret Morrison side)","Margaret Morrison\n(Tepper side)", 0,52,OUTSIDE)

,("Margaret Morrison\n(Tepper side)","Margaret Morrison\n(UC side)", 1,10,INSIDE)

,("Margaret Morrison\n(UC side)","UC",1,40,OUTSIDE)

,("Tepper\n(Hunt side)", "Tepper\n(Margaret Morrison side)",2,01,INSIDE)

,("Tepper\n(Hunt side)","Hunt",1,27,OUTSIDE)

,("Porter","Wean",0,53,OUTSIDE)

,("Gates","Walkway To the Sky",1,97-49,OUTSIDE)

,("UC","Walkway To the Sky",0,56,OUTSIDE)]

def constructRegularGraph():

gr = graph()

gr.add_nodes(["UC", "Hunt", "Wean", "Doherty", "Gates",

"Hamerschlag", "Porter","Baker",

"Margaret Morrison\n(Tepper side)",

"Margaret Morrison\n(UC side)",

"Tepper\n(Margaret Morrison side)","Tepper\n(Hunt side)",

"Walkway To the Sky"])

for edge in edges:

addEdge(gr,*edge)

return gr

def constructInsideGraph():

gr = graph()

gr.add_nodes(["UC", "Hunt", "Wean", "Doherty", "Gates",

"Hamerschlag", "Porter","Baker",

"Margaret Morrison\n(Tepper side)",

"Margaret Morrison\n(UC side)",

"Tepper\n(Margaret Morrison side)","Tepper\n(Hunt side)",

"Walkway To the Sky"])

for edge in edges:

v1,v2,minutes,seconds,inOrOut= edge

if (inOrOut ==OUTSIDE):

addEdge(gr,v1,v2,minutes*2,seconds*2,inOrOut)

else:

addEdge(gr,v1,v2,minutes,seconds,inOrOut)

return gr

tree, counts = shortest_path_bellman_ford(constructRegularGraph(),"UC")

7

def printEdges(edges):

for edge in edges:

v1,v2,minutes,seconds,inOrOut= edge

print " %s & %s & %d:%02d & %s\\\\"%(v1.replace("\n",""),v2.replace("\n",""), minutes, seconds, inOrOut)

def printAll(counts):

for dest in counts:

print "%s & %ds \\\\\\hline"%(dest.replace("\n",""), counts[dest])

printEdges(edges)

g = constructRegularGraph()

dot = write(g)

f = open(’or.dot’, ’a’)

f.write(dot)

f.close()

5.2 Graph 1

5.3 Graph 2

8

5.4 Graph 3

5.5 Table 1

5.6 Table 2

9

5.7 Table 3

10

